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The prevalence of cardiovascular mortality is higher in men than in age-matched

premenopausal women. Gender differences are linked to circulating sex-related

steroid hormone levels and their cardio-specific actions, which are critical factors

involved in the prevalence and features of age-associated cardiovascular disease. In

women, estrogens have been described as cardioprotective agents, while in men,

testosterone is the main sex steroid hormone. The effects of testosterone as a

metabolic regulator and cardioprotective agent in aging men are poorly understood.

With advancing age, testosterone levels gradually decrease in men, an effect associated

with increasing fat mass, decrease in lean body mass, dyslipidemia, insulin resistance

and adjustment in energy substrate metabolism. Aging is associated with a decline in

metabolism, characterized by modifications in cardiac function, excitation-contraction

coupling, and lower efficacy to generate energy. Testosterone deficiency -as found

in elderly men- rapidly becomes an epidemic condition, associated with prominent

cardiometabolic disorders. Therefore, it is highly probable that senior men showing

low testosterone levels will display symptoms of androgen deficiency, presenting

an unfavorable metabolic profile and increased cardiovascular risk. Moreover, recent

reports establish that testosterone replacement improves cardiomyocyte bioenergetics,

increases glucose metabolism and reduces insulin resistance in elderly men. Thus,

testosterone-related metabolic signaling and gene expression may constitute relevant

therapeutic target for preventing, or treating, age- and gender-related cardiometabolic

diseases in men. Here, we will discuss the impact of current evidence showing how

cardiac metabolism is regulated by androgen levels in aging men.
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INTRODUCTION

The multifactorial origin of cardiovascular diseases compels a comprehensive approach that
incorporates lifestyle modification with an appropriate selection of medications for energy-
regulation and its co-morbid conditions (1–4). In a physiological scenario, cardiometabolic
adaptations involve a complex relationship among mechanisms responding to energy needs and
substrate availability, in order to maintain homeostasis (5–7). During senescence, reduced ATP
generation in the heart impairs normal contractile performance. There is a positive association
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between cardiac failure in age-related pathologies and insulin
resistance, diabetes, sarcopenia and cardiovascular diseases (8, 9).

According to a 2019 update article from the American
Heart Association, almost one in three adult men have some
type of cardiovascular disease (10). Women are known to
suffer cardiac disease 10–20 years later than men, which
supports the hypothesis that physiological estrogen levels confer
cardioprotective effects (11–14). In the past decades, the effect
of sex-related steroid hormones on the cardiovascular system
has been predominantly focused on estrogen actions, whereas
research concerning the beneficial cardiac effects of androgens
has been limited.

There is an extensive body of information indicating that
administration of supraphysiologic doses of testosterone and
cognate anabolic steroids induce adverse cardiovascular effects by
triggering cardiac hypertrophy and heart failure (15). Although
androgens have been considered previously to cause adverse
cardiac outcomes, recent studies support favorable effects of
these hormones on cardiovascular homeostasis (16–18). Many
clinical publications over the past few years have indicated
that very low levels of plasma testosterone are associated with
pathophysiological processes, such as dyslipidemias, metabolic
syndrome and diabetes type 2, which are considered as the
underlying mechanisms involved in age-related cardiovascular
diseases in men (19–23). Low circulating testosterone levels,
as found in late-onset hypogonadism and elderly men, have
also been associated with different types of heart diseases (24,
25). Moreover, epidemiological reports show that decreased
testosterone concentration is a predictor of mortality in senior
men (26).

A recent report from the Mayo Clinic (2018) exhaustively
reviewed and analyzed the main clinical publications over
the past 10 years related to testosterone levels, testosterone
administration and their impact on the cardiovascular system
(27). Pharmacological replacement of testosterone prevents heart
disease, improves exercise-induced myocardial ischemia, dilates
the coronary arteries, and decreases insulin resistance (28, 29).
The overall evidence indicates that physiological testosterone
levels are beneficial for the male cardiovascular system, while
low testosterone concentration is linked to unfavorable metabolic
profile and increased cardiovascular risk (27).

Aging, at same time, is associated with a gradual decline
of testosterone levels in men (30). Plasma levels of androgens
fluctuate throughout life. During childhood and before puberty,
testosterone concentrations are usually lower in males than
females. After puberty, testosterone levels increase in males,
peaking at the age of 20–25. Thereafter, during aging, testosterone
levels decrease (31–33). A cross-sectional study reported that
in men over 40 years-old, total circulating testosterone levels
decrease around 0.8% per year, while both free and albumin-
bound testosterone levels decrease by 2%. In addition, plasma
levels of sex hormone binding globulin (SHBG) increases by
1.6% per year, which may further decrease the bioavailable
testosterone concentrations in elderly men (30, 34). Circulating
SHBG levels in humans are influenced by different factors,
such as nutritional state, metabolism, hormonal factors and
aging (34–37).

Testosterone is well-known for both its androgenic properties
and its anabolic effects. This steroid hormone induces changes
on organs and tissues promoting the adoption of the adult
male phenotype (38). In the heart, testosterone associates
key physiological input for metabolism and protein synthesis
(39). Cardio-specific and concentration-dependent effects of
testosterone are modulated by its circulating plasma levels,
cellular metabolism, modulation of intracellular transduction
pathways and androgen receptor expression (15, 18).

Age-related andropause is characterized by diminished
plasma testosterone concentration in adult men. With the
increasing aging of the world population, andropause is quickly
becoming an epidemic condition associated with metabolic
disorders and prominent cardiovascular risks (32, 40, 41).
Decreased testosterone concentrations in older men are linked
to changes in body composition, like increase of fat mass and
reduction of lean body mass, dyslipidemia, insulin resistance,
and reduced glucose metabolism (22). The relationship between
metabolic and cardiovascular risk in humans is evident in men
suffering from hypogonadism, a condition in which the reduced
functional activity of the gonads causes a decrease in testosterone
levels (42). Hypogonadal men exhibit higher prevalence of
cardiometabolic disorders compared to those with normal
physiological levels of androgens (43). Retrospective studies of
testosterone prescription databases have generated controversial
and opposite results. Although testosterone replacement therapy
to handle men hypogonadism it has been obtainable since 1939
(44), the apprehensions regarding the safety of testosterone
treatment in men with cardiovascular diseases persist. However,
to date, few systematic controlled studies have been performed to
evaluate adverse events on cardiovascular system by testosterone
administration (45–47). A recent randomized trial suggested that
testosterone administration could increase cardiovascular risk
in certain clinical populations, and it was suggested that pre-
existing comorbidities as well as circulating lipid disturbances
could influence the risk of cardiovascular events in older men.
By contrast, several cross-sectional studies have demonstrated
higher prevalence of cardiovascular diseases among men
with low testosterone levels, and that replacement reduces
cardiovascular risk (48, 49). Likewise, subjects with low plasma
testosterone concentrations are more prone to develop insulin
resistance and diabetes, as well as central obesity and heart failure
(21, 50, 51).

Similar responses have been observed in elderly men
exhibiting diminished testosterone concentrations, which
result in hormonal and metabolic alterations associated
with increased risk for developing cardiomyopathies (52).
Androgen supplementation is a focus of emerging interest for
the treatment of age-related metabolic diseases and muscle
wasting (29, 53). Accordingly, male sex steroids can regulate
cardiometabolic functionality and energy production through
transcriptional and post-transcriptional mechanisms, and
therefore, can offer insights into energy spreading pathways and
their mechanistic control during aging (54). The mechanisms by
which testosterone contributes to beneficial metabolic actions
on the development of metabolic syndrome and diabetes type 2
are revised and discussed by Kelly and Jones and these effects
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seem to involve multiple targets of lipid and carbohydrate
metabolism (55).

Additionally to testosterone reduction in elderly men, low
concentrations of testosterone are also found in late-onset
hypogonadism, reduction of testicular volume and malfunction
of the androgen production machinery, systemic accelerated
testosterone metabolism and expression of defective androgen
receptors (24, 25, 42, 56). In skeletal muscle, physiological
testosterone levels regulate a host of metabolic enzymes and
transcription factors that regulate the expression of nuclear-
encoded mitochondrial oxidative phosphorylation proteins (57).
In the elderly, the ATP production machinery is less efficient,
and this condition represents an energy dilemma. Metabolic
unbalance during aging in men must be resolved by adjusting the
energy substrates and the expression of metabolic genes (58–64).
Age-related cardiac metabolic adaptations must regulate energy
demands with fuel supply under switching nutrient conditions.
The impact of testosterone administration to increase skeletal
muscle mass is recognized, but its therapeutic use in aging men
is still controversial and the underlying mechanisms remain to
be defined. Recent reports indicate that testosterone therapy
increases the expression of fibroblast growth factor 2 (FGF2) and
decreases myogenic regulatory factor 4 (MRF4) and myostatin
in skeletal muscle from men suffering hypogonadotropic
hypogonadism, suggesting that the expression of these proteins
contribute to muscle growth after testosterone therapy (65).

CELLULAR MECHANISMS OF

TESTOSTERONE ACTION

As it is well known, the hypothalamic-pituitary-gonadal axis
modulates testosterone production. The hypothalamus produces
and secretes gonadotrophin-releasing hormone (GnRH), which
stimulates the pituitary to induce the pulsatile secretion of
luteinizing hormone (LH), which then prompts the Leydig cells
of the testes to produce testosterone (66, 67), which, in turn,
exerts a negative feedback on GnRH and gonadotropin secretion.
As age progresses, both the amount of Leydig cells and their
ability to produce testosterone are reduced, contributing to lower
circulating levels of androgens in elderly men (22, 30). However,
other authors have argued that there is not a reduction of
Leydig cell mass with aging, and that the main defect occurs in
intracellular cell signaling and cholesterol transport (68). During
obesity and aging, a raise in the activity of aromatase enzyme
converts testosterone into estrogens in men, further reducing
circulating plasma levels and the ability of testosterone to exert
its appropriate metabolic actions (40, 69).

The main mechanism of action of testosterone involves direct
binding to the intracellular androgen receptor (70–72), which
is a member of the nuclear/steroid receptor superfamily. These
receptors are proteins capable of binding their ligands in the
cytoplasm or nucleus, and directly activating gene transcription
(73, 74). The androgen receptor is a 110 kDa protein with
three major functional regions for transactivation, a DNA
binding domain and a hormone binding domain (75). After
ligand binding, intracellular receptors are translocated to the

nucleus, where they dimerize and bind to androgen response
elements (ARE) to regulate target genes (74). Once bound
to the hormone, other regulatory proteins or transcriptional
coactivators can bind to the testosterone-androgen receptor
complex to stabilize the promoter, thus achieving differential
effects of this hormone either in a concentration-dependent or
tissue-specific manner (76).

Previously, we and others have reported that testosterone also
activates non-transcriptional signal transduction pathways, like
extracellular signal-regulated kinase (ERK), phosphoinositide-
3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) and Ca2+-
calmodulin-dependent protein kinase II (CaMKII) (77–80).
In cardiomyocytes, testosterone induces hypertrophy through
activation of the mechanistic target of rapamycin complex
1 (mTORC1) pathway (79) and glucose uptake by AMP-
activated protein kinase (AMPK) activation (80). Overall,
these evidences suggest that the effects of testosterone involve
activation of anabolic and catabolic pathways. Thus, integration
of transcriptional and non-transcriptional signals supplies
cooperative mechanisms to support energy production under
metabolic demand in cardiomyocytes.

As was mentioned above, SHBG is a protein that binds and
transports testosterone within the bloodstream and regulates its
bioavailability and access to extravascular target tissues (35, 81).
Following the “free hormone hypothesis,” there is a proportion
of testosterone bound to SHBG with high affinity, the rest
corresponds to free testosterone which is either loosely bound
to albumin, or unbound to proteins (82, 83). Free testosterone
can cross the plasma membrane and it associates directly with
androgen receptors; therefore, it is regarded as the bioavailable
fraction, which is responsible for the biological activity of this
hormone (84). SHBG levels have been negatively correlated with
insulin levels (85), and in a meta-analysis that included cross-
sectional and prospective observational studies, Brand et al.
found an inverse relationship between total testosterone and free
testosterone with SHBG levels, and metabolic syndrome (86, 87)
raising the question about the role that intracellular androgen
binding protein levels play in endocrine cellular physiology.

EFFECTS OF TESTOSTERONE ON THE

CARDIOVASCULAR SYSTEM

Testosterone influences the cardiovascular system by
acting directly on cardiac cells, the vascular tree, and
by regulating cholesterol levels (88–90). In particular,
exogenous administration of supra-physiological testosterone
concentrations has been reported to produce cardiac
hypertrophy, ventricular remodeling, cardiac failure, and
sudden cardiac death (39, 91, 92). In humans and experimental
animal models, testosterone has been related with higher risk
of coronary artery disease through negative effects on plasma
lipid and lipoprotein profiles, which may induce thrombosis
and dilated cardiomyopathy (15, 39, 88–90, 93). It has been
suggested that testosterone replacement therapy can increase
blood viscosity and develop myocardial infarction, underscoring
that in each individual patient with various comorbidities, one

Frontiers in Endocrinology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 316

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Barrientos et al. Age-Related Cardiometabolic Actions of Testosterone

or more thrombosis mechanism/s may be playing an effect.
However, a systematic review meta-analysis in men did not
clearly show a significant association between testosterone use
and higher risk of venous thromboembolism (94).

On the other hand, at normal physiological levels, androgen
actions are necessary for a range of biological processes,
including protein synthesis and cardiomyocyte metabolism.
Androgens also induce other hemodynamic consequences,
including vascular bed relaxation, thus reducing after-load and
rapidly increasing cardiac contractility, which increases cardiac
output (95). In humans, the effect of a 3-year testosterone
administration did not increase atherosclerosis progression (96);
however, another study showed that testosterone treatment of
elderly men increased the volume of coronary artery plaques
(97). The effects of androgen supplementation on plasma
lipids depend on the dose, the route of administration and
the subject population. In patients with congestive heart
failure, testosterone would exert a beneficial role by improving
functional capacity, cardiovascular parameters and quality of
life (98). Interestingly, testosterone replacement therapy can
reduce circulating levels of inflammatory mediators, including
interleukin (IL)-1β and tumor necrosis factor α (TNF-α), as
well as total cholesterol in patients with simultaneous coronary
artery disease and testosterone deficiency (99, 100). The
possible health risks and benefits of long-term testosterone
replacement on older men with andropause caused by reduced
testosterone concentrations are unknown. An interesting
hypothesis has been postulated by Herring et el. suggesting
that testosterone may simultaneously benefit and harm the
cardiovascular system by different pathways (101). Caminiti
et al. (102) reported that in elderly patients with congestive
heart failure, testosterone replacement therapy improves
functional capacity in, large-muscle strength, and glucose
handling. The improvement of functional capacity and muscular
strength are correlated with the higher plasma testosterone
levels (102).

Hypertension is a risk factor for developing cardiovascular
diseases. In adult men, hypertension is more frequent and
occurs earlier than in women of similar age (103–105). In
men, blood pressure rise has been associated with the effects
and differences of sex-related steroid hormones. The different
ranges in blood pressure in men, compared to women,
remain until 60 years of age. Various epidemiological studies
have reported that in men under 60 years old the systolic
blood pressure is 6–7mm Hg higher than in women, while
diastolic pressure is higher by 3–5mm Hg (106). On the
other hand, in women over 60 years of age, blood pressure
gradually increases, reaching a similar prevalence than in
elderly men. The reduction of estrogens and the change in
the estrogen/androgen ratio seems to be relevant for the
increase in blood pressure in postmenopausal women (107,
108). An inverse relationship between systolic pressure and
plasma testosterone levels has been reported in men, and an
increased prevalence of hypertension in men with decreased free
circulating androgens (104). The positive results of testosterone
replacement are well documented. In randomized, double-blind,
case-control clinical studies, the administration of hormones was

associated with reduction of vascular tone (109). A beneficial
role of testosterone was found in patients with congestive
heart failure, by improving functional capacity, cardiovascular
parameters, and quality of life (98). Several reports have
suggested that testosterone vasodilatory action is mediated
by the smooth muscle cell through ion channel modulation,
modulating either potassium channel opening and/or calcium
channel inactivation (110).

ANDROGEN ACTIVATES INTRACELLULAR

PLAYERS RELATED TO CARDIAC

METABOLISM

The heart demands a continuous supply of energy to maintain
muscle excitation-contraction coupling, and other intracellular
adaptations, including fine-tuning in the expression of genes, ion
homeostasis, signaling pathways, energetic balance and survival
signals (58, 63, 111). Under normal conditions, cardiomyocytes
prompt and effectively decode metabolic signals to evoke
intracellular settings that improve cardiac functions to maintain
an adequate energy balance that preserves work output and
efficiency of the heart (112, 113). In the fetal period, glucose is
the main energetic substrate for ATP generation in the heart,
switching to fatty acid in adults to adjust to increased energy
demands (63). Thus, in adult cardiomyocytes, under normal
conditions, ATP is mostly produced by fatty acid β-oxidation.
Glucose represents another substrate metabolized by glycolysis.
Fatty acids are transported into the mitochondria by the enzyme
carnitine palmitoyl transferase 1 (CPT-1). Glycolysis requires
glucose uptake, which occurs in cardiac cells through glucose
transporter 1 (GLUT1) and GLUT4 (113). Inside the cell, glucose
can be phosphorylated by hexokinase and further metabolized
to pyruvate. Both, β-oxidation and glycolysis produce acetyl-
CoA to generate NADH and FADH2 via the citric acid
cycle. These metabolites are later used by mitochondria to
generate ATP through the electron transport chain. Aerobic
respiration pathways by oxidative phosphorylation, produces
up to 60% of their energy from fatty acid and triglyceride
metabolism, 35% from carbohydrate metabolism, and 5% from
amino acid metabolism. These metabolic pathways are regulated
through substrate/product ratio, rate of enzyme action and gene
expression of metabolic enzymes and transporters (9, 113).

Preference in energy substrate utilization may change in
response to substrate availability or metabolic deregulation in
cardiomyocytes (9, 113, 114). Under testosterone stimulation,
the heart experiences a series of adaptive processes that enable
acute metabolic changes for functional demands. If demand
for increased effort is repeated or continuous, structural and
metabolic changes occur (115). Dynamic adjustments of energy-
generating machinery under either low- or high-testosterone
inputs compel critical adaptive responses from cardiomyocytes
to maintain work output and efficiency of the heart (63,
116, 117). Disturbed feedback between energy requirements
and production impairs mitochondrial function and energetic
efficiency of cardiomyocytes (118–120).
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Testosterone Improves Mitochondrial

Function in Cardiac Cells
Transcriptional control of mitochondrial energy-generating
machinery involves coordinated expression of proteins
from two distinct genomes. Due to the limited coding
capacity of mitochondrial DNA, nuclear encoded genes are
also required (121). Mitochondrial enzymes are regulated
through allosteric, post-translational, and transcriptional
modifications (122). Testosterone regulates the expression of
mitochondrial genes encoded by the nuclear genome and also,
through direct action on mitochondria (123–125). Thus, by
regulating cytosolic and mitochondrial pathways, testosterone
exerts metabolic functions, with a possible feedback system
between energy-producing mechanisms and cardiometabolic
actions of testosterone in cardiomyocytes. Previous studies
have shown that testosterone enhances the expression of
mitochondria-encoded subunits of the respiratory chain,
modulating mitochondrial respiratory function promoting
functional efficiency (57, 126). In addition, androgens have direct
interactions with respiratory chain complexes (123). In skeletal
muscle cells, overexpression of androgen receptors increases
mitochondrial enzyme activities and oxygen consumption
(127). Following orchiectomy, young male mice show a
decrease in the expression of genes associated with energy
metabolism and oxidative phosphorylation, a phenotype
that was reversed by testosterone treatment (61). With
advancing age, androgen levels decrease and cardiac cells
exhibit less mitochondrial number and lower energy production
efficiency (57).

Androgen receptor signaling controls the transcription
of several metabolic genes by engaging nuclear coactivator
and corepressor proteins (128). In cardiac cells, peroxisome
proliferator-activated receptor γ co-activator 1α (PGC-
1α) stimulates mitochondrial biogenesis (129). PGC-1α is
associated with cardiac energy metabolism through its upstream
regulators and downstream targets (130) and it is highly
expressed in the heart (131). The PGC-1α N-terminal domain
interacts with proteins containing histone acetyltransferase
activity, which allows remodeling of chromatin structure and
transcriptional activation (132). Adjacent to the N-terminus,
PGC-1α contains a regulatory domain with a LXXLL motif that
interacts with nuclear receptors (133, 134). The PGC-1α C-
terminus recruits proteins that facilitate its interaction with the
transcription initiation machinery (135). Moreover, PGC-1α also
regulates cardiac metabolism coactivating several transcription
factor partners, including the androgen receptor (129). Also,
testosterone up-regulates transcription of the nuclear respiratory
factor-1 (NRF1), which controls the expression of mitochondrial
respiratory chain complex proteins (136). NRF1 promoter
contains putative ARE motifs in the DNA capable of binding the
androgen receptor (125). It has been proposed that testosterone
has a key modulatory role over NRFs and PGC-1α modulating
mitochondrial biogenesis and metabolism (137). Moreover,
androgens induce transcriptional and posttranslational
regulation of Drp1, a key protein in the mitochondrial fission
machinery (57, 123, 138). In contrast, low testosterone levels are

associated with reduced expression of mitochondrial respiratory
genes (126). In young male mice orchiectomy reduces the
expression of genes associated with energy metabolism,
oxidative phosphorylation, and ubiquinone pathways (139).
Androgen receptor overexpression in cardiomyocytes increases
mitochondrial enzyme activities and oxygen consumption
(139). Testosterone administration, together with low-intensity
physical exercise, increases mitochondrial biogenesis, increasing
mitochondrial quality, and enhancing spontaneous physical
activity, respiration and muscle mass (70). Therefore, the
expression of metabolic genes related to testosterone may
represent an important therapeutic modality to prevent or treat
age- and gender-related cardiac diseases.

AMPK and Cardiac Metabolism
AMPK is a serine/threonine kinase considered a fundamental
intracellular energy sensor that regulates cell metabolism (6).
AMPK is activated in response to physiological or pathological
stimuli that reduce cell energy levels, by sensing the AMP/ATP
ratio (140). AMPK modulates the activity of acetyl-coenzyme
carboxylase, which in turn affects the levels of malonyl-coenzyme
A, which is a key cellular energy regulator. AMPK coordinates
metabolic pathways by limiting ATP expenditure and promoting
ATP production to adjust to energy demands. In general,
AMPK stimulates catabolic processes (141). Thus, AMPK
promotes: (1) fatty acid β-oxidation, increasing their input
to mitochondria and by activating enzymes such as carnitine
palmitoyltransferase-1; (2) Glycolysis, increasing glucose uptake
by GLUT4 and activating enzymes such as phosphofructokinase-
2. Furthermore, activated AMPK can deliver energy status
information through transcription factors to regulate gene
expression of key proteins related to energy producing routes
(142). A recent report has indicated that intramuscular injections
of testosterone increase the expression and phosphorylation
of AMPKα in adipose tissue and skeletal muscle biopsies of
hypogonadism patients; these findings suggest that testosterone
therapy may improve insulin sensitivity in obesity-associated
hypogonadotropic hypogonadism men (143).

It has been well accepted that AMPK is cardioprotective (6).
AMPK deficiency exacerbates cardiac necrosis and apoptosis
following ischemic-reperfusion injury in transgenic mice
expressing a dominant negative form of AMPK. Furthermore,
the hearts of these mice show loss of contractile force and
low ATP levels, suggesting that AMPK plays a crucial role in
cardiac function (144, 145). Additionally, AMPK activation
with AICAR blocks cardiac hypertrophy induced by several
pro-hypertrophic stimuli, mainly by its inhibitory effect on
the mTORC1 pathway (146). Metabolism during compensated
cardiomyocyte growth implicates that anabolic processes
are associated with controlled catabolic processes. In a prior
work, we reported that stimulation of cardiomyocytes with
testosterone during a short-time (<15min) increases AMPK
phosphorylation through CaMKII in a concentration- and
time-dependent manner (80). Once AMPK is activated, GLUT4
translocation to the plasma membrane increases, thus increasing
glucose uptake (147). Therefore, increased glucose uptake and
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utilization may be an adaptive response, because ATP production
from glucose consumes less oxygen than that from fatty acids.

Integrated Metabolic Actions of

Testosterone and the AMPK/PGC-1α Axis

in Cardiomyocytes
Metabolic information obtained through cytosolic energy
sensors must be decoded by specific downstream metabolic
pathways to improve energy production capacity. Moreover,
PGC-1α interacts physically and functionally with well-known
transcription factors involved in cardiomyocyte metabolism
and growth (135). In fact, proximal PGC-1α promoter has
different putative DNA binding sites to bind transcription
factors involved in re-expression of gene programs during
cardiac metabolism and cardiomyocyte growth, such as GATA4
and Myocyte-enhancer factor 2 (MEF2). Mutations in these
transcription factors affect PGC-1α promoter activity (148, 149).
Some authors have reported that MEF2C and histone deacetylase
5 (HDAC5) have both, positive and negative modulation of
PGC-1α expression (135). Thus, PGC-1α represents a metabolic
regulator by modulating gene expression and cell growth,
suggesting that the activation of the AMPK-PGC-1α pathway is
critical for the metabolic actions of androgens in the heart.

PGC-1α is activated by exposure to cold, fasting, exercise
and various stimuli that promote oxidative metabolism (150,
151). Signaling pathways associated with these stimuli include
p38 MAP kinase, β-adrenergic/cAMP, nitric oxide, AMPK, and
CaMKII. These diverse pathways modulate PGC-1α activity
by increasing PGC-1α expression, nuclear transactivation and
its downstream regulated genes (141, 152, 153). In the heart,
PGC-1α expression increases sharply at birth, coincident with a
perinatal shift from glucose metabolism to fat oxidation (154).
Different reports have indicated that low PGC-1α expression
correlates with pathological energy mechanisms and heart failure
(153, 155). In young or ovariectomized animals models, sex
steroids control mitochondrial energy production modulating
the transcriptional and post-transcriptional machinery (123).

In the heart of neonatal mice, overexpression of PGC-
1α increases total mitochondrial mass (130, 156). In contrast,
in adult mouse hearts, PGC-1α overexpression results in
modest mitochondrial biogenesis, followed by cardiomyopathy
associated with mitochondrial abnormalities (157). PGC-1α,
together with PPARα, coactivates the enhancement of genes
involved in the fatty acid β-oxidation pathway (116, 133, 158).
Conversely, PGC-1α induces GLUT4 expression in skeletal
muscle, resulting in increased glucose uptake, which, in turn,
significantly reduces plasma glucose levels (159). Furthermore,
normal mitochondria biogenesis is activated in response to
changes in the ATP/ADP ratio and subsequent AMPK activation,
which increases PGC-1α expression (156, 160). AMPK activation
by AICAR increases β-oxidation of fatty acids by direct action
on β-oxidation enzymes and by PGC-1α and PPARs activation.
Additionally, in response to chronic energy deprivation,
mitochondrial biogenesis is dependent on AMPK (6, 141). In
prostate cancer cells, testosterone promotes cell growth in an
AMPK-dependent pathway, which allows metabolic changes by

increasing PGC-1α-dependent mitochondrial biogenesis (141,
161). In mice, treatment with testosterone increases PGC1α
expression levels (136), while low levels of testosterone are
associated with reduced expression of PGC-1α (125, 162).
Furthermore, androgen receptor-deficient mice express low
levels of PGC-1α (162).

Effect of Sirtuins on Cardiac Metabolism
Protein acetylation/deacetylation play central roles inmodulating
cellular machinery related to metabolism (163). Mitochondria-
mediated energy pathways contain acetylated proteins implicated
in the tricarboxylic acid cycle, oxidative phosphorylation, fatty
acid β-oxidation and glucose metabolism (163). In the heart, the
protein sirtuin 3 (SIRT3) is a key regulator of mitochondrial
function that adjusts energy availability, fuel sources and
metabolic enzymes (164). Abnormal function of SIRT3 in
pathophysiological processes is considered as the underlying
mechanism of cardiovascular diseases (165–168). In cardiac
cells SIRT3 is a stress-responsive deacetylase that protects
these cells from damage induced by genotoxic and oxidative
stress-mediated agents. It has been shown that the increased
expression of SIRT3 protects murine cardiomyocytes from
genotoxic and oxidative stress-mediated cell death (169, 170).
Current evidence associates impaired SIRT3 activity with higher
risk of aging-associated illnesses like cardiovascular disease
(164, 171, 172). Therefore, altered expression of SIRT3 may
be the consequence of impaired upstream metabolic signaling
that influences PGC-1α activity, including AMPK and SIRT1
(129, 154). SIRT3 KO mice show cardiac mitochondrial function
impairment and signs of premature aging (173). In addition,
mice display contractile defects, such as a decrease of cardiac
power, cardiac output, and developed pressure (171, 174).
Porter et al. reported that decreased SIRT3 levels might raise
the sensitivity of both heart cells and adult cardiac muscle
to ischemia-reperfusion injury. This might contribute to a
higher level of ischemia-reperfusion damage in the aged heart
(175). Moreover, testosterone antagonizes doxorubicin-induced
senescence of cardiomyocytes (176).

AMPK/PGC-1α interaction is critical for the up-regulation
of mitochondrial function and SIRT3 activity (177, 178). SIRT3
can also deacetylate and activate liver kinase B1 (LKB1) that, on
its own, increases the activity of AMPK. NAD+ is considered
an inhibitor of cardiac hypertrophic signaling pathways and
it is regulated to prevent cardiac hypertrophy and heart
failure (6, 140). Interestingly, disruption of the CD38 gene
in male mice enhances cardiac function by elevating serum
testosterone levels and producing a general increase in NAD+
tissue concentration (179). A key metabolic regulator is AMPK,
which controls mitochondrial homeostasis and metabolism by
acting as an energy sensor (150, 159, 180). Moreover, the
cytosolic deacetylate SIRT1 activates PGC-1α in cardiomyocytes
to increase transcriptional activity and mitochondrial biogenesis
(181). In the nucleus, androgen receptor signaling stimulates
PGC-1α to increase the expression of various nuclear-encoded
mitochondrial genes, including oxidative phosphorylation genes
(137). SIRT3 is an important regulator of energy homoeostasis
and basal production of ATP. The heart expresses high
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levels of SIRT3, leading to a marked reduction of ATP in
its absence (182). However, SIRT3 can boost ATP levels in
mitochondria due to the acetylation process, which diminishes
with age (178). Aging-induced tissue fibrosis is mediated
by Glycogen Synthase Kinase 3β (GSK3β) (183). Therefore,
deacetylation of GSK3β by SIRT3 might reduce the tissue
fibrosis associated to aging (165). Moreover, mitochondrial DNA
content and activity, protein synthesis, oxidative capacity and
ATP production are impaired by oxidative stress and free
radicals. Regulated ROS production mediates redox signaling
of transcription factors involved in mitochondrial biogenesis.
However, an excess in the generation of mitochondrial ROS
promotes oxidative stress that causes dysfunction and reduces
mitochondrial biogenesis. Interestingly, SIRT3 reduces cardiac
hypertrophy through increasing Foxo3a-dependent antioxidant
defense mechanisms, suggesting that SIRT3 is an endogenous
negative regulator of cardiac hypertrophy that protects the heart
by suppressing cellular levels of ROS in mice (165). Thus, age-
induced oxidative stress could be the underlying process that
impairs mitochondrial biogenesis and downregulation of genes
required for mitochondrial function and biogenesis induced by
testosterone in cardiac cells.

A decline in cardiometabolic adaptations possibly reflects
several age-associated changes, including a decrease in
circulating testosterone levels (184). Thus, prevention of
androgen deficiency might improve cardiovascular outcomes
and extend longevity. Because cardiomyocytes must meet
energy demands with fuel supply under switching nutrient
conditions, the responses to androgen signaling in the elderly
would not be able to produce enough ATP for anabolic effects,
resulting in reduced energetic efficiency in cardiomyocytes. As
was mentioned above, despite that testosterone controls gene-
expression programs related to energy metabolism —a crucial
requisite for the induction of energy-producing mechanisms in
mitochondria— there is limited information about the signaling
pathways interlinking metabolism and growth mediated by
changes in circulating plasma testosterone levels and their effect
on cardiometabolic homeostasis.

Testosterone Metabolites in Aging
Testosterone can be transformed by the enzyme 5α reductase to
5α-dihydrotestosterone (DHT) mainly in skin, liver, hair follicles
and prostate, where it acts locally (74). DHT is considered
one of the main endogenous androgens (185). DHT binds to
androgen receptors and induces the transcription of gene targets
like testosterone. However, the dissociation constant of DHT-
androgen receptor complex is 2–5 times lower than testosterone
adduct, while DHT has a 10-fold higher potency on the signaling,
which means that the effects of DHT and testosterone are
different, but complementary (75).

Some reports suggest that DHT induces cardiac hypertrophy
in cultured rat cardiomyocytes (186, 187) and in a rat model
(188). On the other hand, treatment with finasteride, which
inhibits the transformation of testosterone to DHT, reduces
both cardiac hypertrophy and remodeling (187, 189). Evidence
has indicated that the conversion of testosterone to DHT is
required for mediating some of the effects of androgen on the

cardiovascular system. In patients with mutations in type 2
5α reductase enzyme or finasteride treatment, the DHT levels
are lower than healthy men but the androgenic phenotype is
preserved. Nonetheless, these patients still show significant levels
of circulating DHT. These results suggest that the conversion of
testosterone to DHT is not essential for mediating its effects on
muscle mass and strength (190). However, other studies have
indicated that DHT may be an important risk predictor for
cardiovascular disease in aging men. Healthy androgen levels
are associated to survival and the total mortality of senior men
displaying midrange concentrations of T and DHT is lower than
men with low androgen levels, whereas those with higher DHT
levels have shown lower ischemic heart disease mortality (191).

In men, estrogen levels increase during aging (192).
Testosterone is converted to estradiol by the aromatase
enzyme (193, 194), which is mainly expressed in adipose
tissue (195). However, other factors also increase circulating
estrogen levels, including impaired liver function, zinc
deficiency, obesity, excessive use of alcohol and, environmental
estrogens. Furthermore, estrogen levels are increased in men
by various medications, such as statins and some blood
pressure medications, antidepressants, and nonsteroidal anti-
inflammatory drugs. In the case of obesity, aromatase activity
increases estrogen levels and reduces testosterone levels (196).
In turn, the generated estradiol exerts a negative feedback
effect on LH secretion, further reducing plasma testosterone
concentrations (192). In healthy men, pharmacological
inhibition of aromatase reduces insulin sensitivity. Furthermore,
patients with CYP19 aromatase mutations display reduced
muscle and fat mass, and suffer insulin resistance (69, 196).
Experimental gene selection data suggest that aromatization
of testosterone to estradiol may be important in mediating
the effects of androgens on body composition. The effects
of testosterone on lean mass, muscle size, and strength were
not reduced when its conversion to estradiol was inhibited by
the treatment with aromatase inhibitors. However, the effects
of testosterone on fat mass and sexual desire seemed to be
mediated by estradiol (197). These results suggest that the
different effects of sex hormones are complex and dependent
on the relative levels of testosterone, DHT and estradiol, factors
associated with health in elderly men. More studies are required
to evaluate the mechanism by which androgens might influence
the cardiovascular system in older men, in order to determine
the risks and benefits of clinical intervention.

Given the important roles of androgens in normal physiology
of men, abnormal low levels must be considered as one
of the main causes implicated in several disorders and
pathological conditions in aging men. In the context of human
disease relevance, androgen deficiency treated with testosterone
prescriptions at physiological concentrations has been associated
with lower cardiometabolic risk and treatment outcomes. In
2015 the international expert consensus panel suggested that we
need more research regarding the cardioprotective benefits of
testosterone replacement, implying that there is enough evidence
about the safety of testosterone therapy in hypogonadal and aging
men and that the future research should be to study the suitable
therapeutic options for age-related cardiovascular diseases (198).
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CONCLUSION AND FUTURE RESEARCH

Age-related cardiometabolic actions of testosterone are

tightly regulated by its circulating plasma concentrations.
This is an essential aspect regarding male physiology, since

testosterone levels decline in older men, concomitantly
increasing metabolic- and gender-related cardiovascular

diseases. Further research on cardiometabolic testosterone
effects are required to determine their effective cardiac
properties. By applying controlled, randomized studies,
working to attain physiological testosterone concentrations,
we will obtain new data to understand the role of testosterone
as a metabolic modulator that can improve ATP production,
and, in parallel, increase cardiac performance. These further
studies on the divergent energy-controlling mechanisms

that mediate testosterone effects and testosterone-related
metabolic gene expression, may represent an important
therapeutic modality for preventing or treating gender-related
cardiac diseases.
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