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Over recent millennia, human populations have regularly reconstructed their subsistence

niches, changing both how they obtain food and the conditions in which they live. For

example, over the last 12,000 years the vast majority of human populations shifted

from foraging to practicing different forms of agriculture. The shift to farming is widely

understood to have impacted several aspects of human demography and biology,

including mortality risk, population growth, adult body size, and physical markers

of health. However, these trends have not been integrated within an over-arching

conceptual framework, and there is poor understanding of why populations tended to

increase in population size during periods when markers of health deteriorated. Here,

we offer a novel conceptual approach based on evolutionary life history theory. This

theory assumes that energy availability is finite and must be allocated in competition

between the functions of maintenance, growth, reproduction, and defence. In any

given environment, and at any given stage during the life-course, natural selection

favours energy allocation strategies that maximise fitness. We argue that the origins of

agriculture involved profound transformations in human life history strategies, impacting

both the availability of energy and the way that it was allocated between life history

functions in the body. Although overall energy supply increased, the diet composition

changed, while sedentary populations were challenged by new infectious burdens. We

propose that this composite new ecological niche favoured increased energy allocation

to defence (immune function) and reproduction, thus reducing the allocation to growth

and maintenance. We review evidence in support of this hypothesis and highlight how

further work could address both heterogeneity and specific aspects of the origins of

agriculture in more detail. Our approach can be applied to many other transformations

of the human subsistence niche, and can shed new light on the way that health, height,

life expectancy, and fertility patterns are changing in association with globalization and

nutrition transition.
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INTRODUCTION

Over recent millennia, human populations have regularly
reconstructed their own subsistence niches, a practice known
as “niche construction” (1). Arguably the most important
such transformation occurred with the origins of agriculture.
From around 20,000 years ago in the Levant, for example,
populations began to aggregate in long-term settlements, and
to systematically exploit wild grain (2) and produce new staple
foods such as bread (3), which led to widespread domestication
of plants and animals throughout the Near East (4). Over the
past 10,000 years, the domestication of numerous species of
plants and animals has occurred independently and in different
ways in different parts of the world (5, 6), though a small
proportion of humanity continues to practice hunting and
gathering. Such domestication events also led to increased use
of secondary animal products such as milk, which further led
to the independent evolution of lactase persistence in some
human populations (7). However, the adoption of agriculture
is only one such example of niche construction. We can use
the same conceptual approach to consider more recent societal
transformations, such as industrialisation, or globalization and
the ongoing nutrition transition. These transformations of the
human niche are widely understood to generate both benefits and
costs for human health.

Many of these transitions have been sufficiently rapid that
the biological consequences cannot be attributed only, or
even primarily, to genetic change. Rather, physiological and
behavioural plasticity are also implicated. Various mechanisms
of developmental plasticity are now understood to contribute
to substantial variability in phenotype and health outcomes
through the life-course. For example, variability in nutrition,
growth rates, and exposure to infections in early life shapes
many traits at later ages, including body size and composition,
reproductive scheduling, and the risk of various diseases (8). The
transitions associated with the origins of agriculture, and the
domestication of animals and use of secondary animal products,
were both transitions in the energetics of the human diet,
where dietary shifts were characterized by more energetically-
rich but less diverse sources of food and increased risk of
famine. However, these subsistence shifts also involved more
fundamental transformation of the human niche, for example by
changing patterns of physical activity and reshaping exposure to
predators and pathogens and social inequality (9).

Today, we face a paradox that apparent improvements

in human living conditions, including economic growth and

nutrition transition, are strongly associated with emerging
epidemics of chronic non-communicable disease, such as obesity
and cardiovascular disease (10). Moreover, while the burden of
infection appeared to decline over the twentieth century (11)
through the development of diverse forms of prevention and
medical treatment, many pathogens are evolving resistance to
drug therapies while new diseases can evolve (12, 13). The burden
of infection faced by future human populations may therefore
be more threatening, and there is an urgent need to understand
how alterations to human subsistence niches impact our biology
and health.

Here, we develop a conceptual framework based on
evolutionary life history theory (14), and apply it to improve
understanding of how human biology changed in ancestral
populations in association with the origins of agriculture. In this
article, we use this term to refer to the suite of domestication
events of plants and animals that is highly variable temporally
and geographically, but which fundamentally changed the human
subsistence niche wherever it occurred. By focusing on patterns
of change that occurred in a major past transformation of our
subsistence niche, we may gain valuable new insight into what is
happening in contemporary populations. The patterns of change
that we describe are largely regulated by hormonal mechanisms
and many occur during development, hence our framework
offers a new perspective on the role of endocrinology, in
particular pediatric endocrinology, in the evolutionary trajectory
of our species.

It has long been recognised that the emergence of agriculture
had profound effects on human biology, at the level of both
populations and individuals. For example, the shift from foraging
to farming was associated with major increases in population
size in some places, demonstrated by the emergence of villages
and urban settlements from 12,000 to 5,000 years before present
(BP) in the Levant, China, India, andWest Africa (5). Population
growth in the pre-agricultural Palaeolithic is likely to have
occurred at a very slow overall rate, subject to local boom-bust
dynamics (15). In contrast, the transition to agriculture was
associated with more systematic population growth (16, 17).

Exactly what stimulated the adoption of agriculture is
controversial. Boserup (18) and Cohen (19) suggested that larger
populations stimulated a need for agricultural production to
meet food requirements. The main demographic change was not
a reduction of mortality, but rather a decrease in the average
inter-birth interval, so that any increases in mortality were
over-compensated by rising fertility (16). However, a classic
review of the literature by Cohen and Armelagos found many
indications that health deteriorated in the early agricultural
era (20). This perspective—that human populations expanded
in size, despite living conditions actually worsening (20)—has
become the dominant paradigm, however little attention has
been directed to whether these parallel trends might have some
deeper biological link.

In this review, we develop a new hypothesis to explain these
trends: that the correlated changes in phenotype and population
size reflect a reorganization of human life history strategy, to
accommodate the composite change in ecological conditions
provoked by niche construction (10). Changes in each of food
supply and environmental risk are expected to impact life history
strategy, especially when both factors change simultaneously. We
first describe life history theory and summarise evidence for
trade-offs between individual life history traits obtained from
studies of contemporary human populations. We then consider
how the onset of agriculture altered the human niche, impacting
a series of selective pressures including energy supply, dietary
diversity, and pathogen burden. We review evidence for life
history trade-offs in the archaeological record, noting that these
shifts are likely to have been variable and distributed over a range
of timescales, depending on how the transition to agriculture
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played out locally. Finally, we discuss how, if our hypothesis
is correct, it may apply to other systematic shifts in living
conditions that had an impact on human energetic ecology, such
as industrialisation.

LIFE HISTORY THEORY AND PHENOTYPIC
CHANGE

Life history theory offers unique opportunities for biologists to
investigate phenotypic change in populations over time (14).
The value of this theory is 2-fold—first, it models variability
in phenotype in general, rather than individual traits, and
second, it can address phenotypic variability or change that
arises both through genetic adaptation, and also through
mechanisms of plasticity, whether physiological, developmental,
or behavioural (21).

Life history theory considers how organisms maximise
their genetic fitness through harvesting resources from the
environment, and investing them in a suite of biological
functions throughout the life-course (14, 22). In theory, multiple
currencies of resource allocation may be important, such as
different nutrients (23), but in practice the theory gives priority
to “energy” and “time” as the most important resources, and
assumes that organisms making the best use of energy over their
lifespan will receive the highest fitness payoffs (24).

The theory assumes that for any individual organism, the
supply of energy is finite, and that allocating more energy
to one function precludes its allocation to other functions
(22). Traditionally, life history theorists focused on three
competing functions, namely maintenance (M), growth (G), and
reproduction (R) (22). Maintenance refers to keeping the body
in good condition through diverse homeostatic process, thereby
promoting longevity and maximising the future opportunities
for reproduction. Growth refers to the process of development
and maturation, and typically occurs prior to reproduction in
most mammals. Reproduction refers to all processes involved
in finding a mate, producing offspring and investing in them,
and essentially allocates energy to the next generation. From an
inclusive fitness perspective, investment in “reproduction” may
incorporate patterns of social behaviour that benefit kin who
share genes (25).

The principle of competition between these functions results
in energy-allocation trade-offs between them at any given stage of
life. Natural selection then favours the emergence of life history
traits, and broader developmental or life-course strategies, that
are shaped by such trade-offs. Each organism’s life history can be
summarized as a cumulative series of energy-allocation decisions,
represented by a suite of developmental and reproductive traits.
These include how fast and large to grow, how to address risks
and defend against threats, and how to schedule reproductive
effort (14).

In practice, however, we have argued that it is more
appropriate that four life history functions be differentiated
(21). Whilst “defence” (D) against pathogens and predators
was initially considered to come under the general umbrella of
maintenance (22), it is increasingly recognised that defence is

subject to overt trade-offs against each of maintenance, growth,
and reproduction (10). Both immune function and activating
the “fight-or-flight” response to avoid predation reduce the
availability of resources for other life history functions. In Box 1

and Figure 1, we review the implications for life history theory of
treating defence as a separate life history function, increasing the
number of binary trade-offs that can be tested in empirical work.

Initially, life history theory was primarily used to explore
phenotypic differences between species (30). The diverse selective
pressures associated with any given ecological niche favour the
emergence of broad species-specific energy allocation strategies,
underpinned by genetic adaptation. Life history variability is
assessed by considering a set of demographic and physical traits
that can be readily assessed in any organism. For mammals, these
traits include size at birth, time taken to reach maturity, the
frequency of reproducing, the number of offspring produced per
reproductive event, and the total lifespan (30).

The two main ecological factors driving life history trade-
offs across species are the supply of resources (effectively,
energy), and the risk of mortality (33). First, organisms subject
to high mortality risk are unlikely to maximise fitness if
they prolong the period of growth, instead selection favours
earlier reproduction. Moreover, because of the high risk of
mortality for each individual offspring, organisms in such
environments should produce large numbers of offspring
but allocate little parental investment to each. In this way,
mortality risk inherently shapes life history traits such as
physical growth, maturation rate, and reproductive scheduling
(30, 32). Second, all other things being equal, a greater
supply of energy allows individual organisms to grow bigger,
or the number of offspring produced to be greater, or the
investment per offspring to be increased, promoting offspring
fitness. Again, therefore, local ecological productivity shapes life
history traits.

Within species, genetic variability may also contribute to life
history variability among individuals. For example, most life
history traits in humans have been shown to have a component
of genetic variability, demonstrated at the broader level by
calculations of heritability and at more specific levels by the
findings of genome-wide association studies (Table 1) (53).

In non-human animals, experimental support for the notion
that natural selection shapes life history traits has been provided
by elegant studies of small freshwater fish called guppies, living
in the mountain streams of Trinidad (54). These studies clearly
illustrate the influence of mortality risk on life history strategy.
Typically, the streams have waterfalls that restrict predators to
the lower reaches. Guppies living downstream, with a high risk of
predation, grow faster, and start to breed earlier than those living
upstream. Transplanting downstream guppies into the upstream
environment resulted in a slower life history emerging across
generations—the onset of reproduction was later, and fewer but
larger offspring were produced. In contrast, introducing the
predators upstream elicited a faster guppy life history strategy,
indicated by earlier onset of reproduction. Further studies have
shown that this variability is in part genetic, supporting the
hypothesis that different life history strategies can evolve through
genetic change in different environments (54).
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BOX 1 | Incorporating defence as a separate function into life history theory.

Early work on life history theory considered that there were three competing functions (maintenance, growth, and reproduction) giving rise to three potential binary

trade-offs (14, 22), as illustrated In Figure 1A. Particular attention was directed to the trade-off between reproduction and survival, whereby producing more offspring

was assumed to reduce investment in homeostatic maintenance (e.g., through mechanisms such as oxidative stress), thereby accelerating ageing and shortening

parental lifespan (26). For example, experimental studies in animals tested the effect of imposing a greater reproductive burden (e.g., augmenting brood size in birds)

on parental lifespan (27), while observational analyses in humans tested for inverse correlations between fertility and lifespan (28, 29).

We propose that defence can be differentiated conceptually from maintenance as involving metabolic responses that respond to the activities of external organisms

that threaten survival or fitness through predation or infection/parasitism. On this basis, defence manifests specifically as short-term responses to combat these

external threats, and to repair any immediate damage to organs and tissue, with these responses necessarily precluding optimal investment in other life history

functions. In contrast, the routine allocation of resources to preserving organs, tissues and immune function in good operating condition, in the absence of specific

activities by predators, pathogens, or parasites, can be considered homeostatic maintenance.

Treating defence as a discrete life history function increases the number of binary trade-offs in the model from three to six, as illustrated in Figure 1B. This

approach offers a richer conceptual framework for investigating adaptation to ecological conditions or change (note that the number of binary trade-offs can be

further expanded by considering those across generations, as illustrated in Figure 4). We suggest that the value of this framework may be further enhanced by

paying particular attention to trade-offs that manifest during development, as well as those occurring during adult life. For example, many of the most salient markers

of growth (e.g., limb lengths) reach their final value at the start of adult life, meaning that the most important trade-offs involving these outcomes must have occurred

during earlier stages of development. It has already been recognised that the effect of mortality risk on life history trade-offs varies according to the age of the organism

(30), and we suggest that the same issue is relevant for growth, which for example has relatively high costs in infancy and adolescence but reduced costs during

childhood and much lower costs during adult life (31).

In conventional life history theory, much attention has been directed to “extrinsic mortality risk” as a key factor shaping the likelihood of survival and lifespan. For

example, the “disposable soma” theory assumes that the higher the risk of mortality, the lower the optimal level of investment in maintenance as the pay-offs are

unlikely to be recouped (32). This approach expects an inverse association between mortality risk and lifespan. However, by differentiating defence as a discrete

function, we can see that threats to survival and fitness can be countered by mounting specific responses to reduce the risk of mortality, but at a cost to the ability

to invest in other functions. Not all infections directly threaten survival, but they can still demand expensive immune responses. Paradoxically, this scenario results in

the potential to observe positive correlations between lifespan and markers of ill-health, as individuals manage to survive for longer, but in sub-optimal condition.

FIGURE 1 | The principle of life history theory, showing (A) the traditional 3-function model and (B) our expanded 4-function model. The arrows represent the binary

trade-offs, between maintenance, growth and reproduction in the traditional model, and between maintenance, growth, reproduction, and defence in the expanded

model.

Similar to work on other species, much research on human
life history strategy has analysed the same set of demographic
traits, i.e., size at birth, growth and maturation rates, adult
size, reproductive scheduling, and lifespan (55–57). However,
a range of somatic traits can also be considered from the
same perspective. The “embodied capital” conceptual model
of Kaplan and colleagues considers the body in terms of
a range of traits that reflect somatic investment (58). This
investment may be considered in physical terms, expressed
through the characteristics of individual tissues and organs, or
in functional terms, expressed through a range of capabilities.
Of particular relevance for studying past human populations,
this conceptual approach allows the life history framework to

be applied to many aspects of human anatomy, physiology,
and morphology.

For example, adult stature is a marker of investment in
overall growth, adipose tissue is a marker of investment
in reproduction for females (59), and in defence (for
funding immune function) for both sexes (60), while
organ mass and quality are markers of investment in
maintenance (61). This means that variability across different
morphological traits can be used to index life history
trade-offs, offering a new perspective on the archaeological
skeletal record.

In stochastic environments, however, there are benefits to
withholding a portion of energy from immediate investment, to
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TABLE 1 | Evidence for heritability of life history traits and examples of individual genetic determinants.

Trait Population Heritability GWA evidence References

Birth weight UK twins 44% (34)

Norwegian families 31% (35)

Swedish twin pairs 25–40% (36)

Meta-analysis of 69,308 Europeans

from 43 studies

7 alleles associated with birth

weight variability

(37)

Age at Menarche Australian sister-pairs 69% (38)

Dutch families 70% (39)

US families (Fels study) 49% (40)

Meta-analysis of 182,416 women of

European descent from 57 studies

106 alleles associated with

variability in age at menarche

(41)

Adult height Gambian families 60% (42)

Indian families 74% (43)

European twins 81% (44)

∼450,000 UK Biobank participants

of European ancestry

3,290 near-independent SNPs

associated with variability in

height

(45)

Body mass index Finnish twins 80% (46)

Nigerian families 46% (47)

Chinese twins 61% (48)

∼450,000 UK Biobank participants

of European ancestry

716 near-independent SNPs

associated with BMI

(45)

Age at menopause US families (Framingham) 52% (49)

Dutch mother-daughter pairs 44% (50)

Dutch twins 71% (51)

17,438 women from two US cohorts 13 SNPs associated with

variability in age at menopause

(52)

be able to draw on it at some future time when new stresses
or opportunities emerge. Several different strategies are available
whereby organismsmay store energy in generalised forms, so that
it can be allocated to any life history function when needed (62).
The origins of agriculture led to food surpluses and storage (63),
while the origins of dairying involved the use of secondary animal
products that provide a constant source of energy rich food, as
grazing animals process grasses that humans cannot eat into milk
and its by-products. Beyond the physical storage of foodstuffs,
there are other social and biological means of storing energy.
Mutually supportive social relationships are one such method,
for example humans are “cooperative breeders,” whereby kin
provide support to mothers during reproduction and mitigate
some of the energetic costs (62). A second method is the storage
of energy as lipid in adipose tissue. Should dietary energy
intake decrease unexpectedly, or infection elicit an immune
response, energy needs can be met by oxidising lipid stores
(62). Similarly, humans are “capital breeders,” whereby females
tend to store energy prior to pregnancy so that reproduction
is viable regardless of external ecological conditions (64). As
a fundamentally social species that also has greater levels of
body fat than most other primates, humans have evolved the
capacity to store energy in several different forms, indicating

that our life history strategy was strongly shaped by stochastic
environments (65).

So far, we have considered how human life history traits
in general may have emerged through genetic adaptation
in response to variable ecological conditions. However, the
same traits also show substantial plasticity, indicating that
such responses may also occur over faster timeframes. Here,
selection has favoured the evolution of reaction norms
that allow fitness-maximizing traits to emerge in response
to stimuli and stresses encountered within the life-course.
Reaction norms refer to the spectrum of phenotypes produced
by a genotype across a range of environmental conditions
(14). To highlight this plasticity, Table 2 summarises secular
trends in human life history traits, indicating their capacity
to respond to changing ecological conditions and generate
new trade-offs.

Beyond any genetic determinants, therefore, life history
strategies may vary through mechanisms of developmental
plasticity, through which phenotype may be adjusted in
association with recent or prevailing conditions. Such phenotypic
adjustments can then be considered to have adaptive benefits,
promoting survival and fitness. For example, secular declines in
mortality risk are associated with secular increases in adult height
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TABLE 2 | Evidence for plasticity in life history traits, demonstrated by secular trends.

Trait (units) Population Rate in units per decade Decade per SD change References

Birth weight (g) Canada (1985–1998) 27.7 18.1 (66)

Norway (1967–1998) 36.8 13.6 (67)

India (1963–1986) 32.2 15.5 (68)

Papua New Guinea (1969–1996) 70.4 7.1 (69)

Vietnam (rural) (1999–2010) 95.0 5.3 (70)

Age at menarche (y) Spain (1925–1962) 0.26 3.8 (71)

South Africa (black) (1956–2004) 0.50 2.0 (72)

India (1979–2003)* 0.20 4.9 (73)

Korea (1920–1986) −0.64 1.6 (74)

Colombia (1944–1984) −0.55 1.8 (75)

Height (cm) Czech (f) (1935–1955)$* 1.1 5.4 (76)

Indian (f) (1979–2003)* 2.2 2.1 (73)

Portugal (m) (1904–1996) 1.0 6.1 (77)

Poland (1965–1995) 2.1 2.9 (78)

Belgium (1830–1980)$ 1.0 6.0 (78)

Adult BMI (kg/m2 ) Sweden (f) (1985–2002) 1.2 2.5 (79)

Greece (m) (1990–2006) 0.6 5.3 (80)

United States (m) (1980–1987) 0.8 3.7 (81)

China (1991–2011) 1.2 3.0 (82)

Brazil (f) (1975–2003) 1.1 2.7 (83)

Age at menopause (y) Spain (1883–1941)$ 0.34 11.7 (84)

Sweden (1908–1930)$ 1.00 4.0 (85)

United States (1912–1969)$ 0.59 6.8 (86)

Iran (1930–1960)$ 0.70 5.7 (87)

Korea (1927–1947)$ 1.7 2.3 (88)

BMI, Body mass index; m, male; f, female.

*Based on mothers being on average 24 years older than daughters, and assuming that the data were collected the year prior to publication.
$Period over which trend assessed based on age at birth.

(89), indicating that in benign environments, energy can be re-
allocated from defence to growth. Similarly, patterns of growth
in early life predict the timing of pubertal maturation, though in
different ways depending on the quality of the environment (33).

Overall, life history strategies can change over time through
both genetic and plastic responses, and both mechanisms may
be relevant to phenotypic change associated with the origins of
agriculture. Regardless of mechanism, such changes in trade-
offs are assumed to be fitness-enhancing. Moreover, this theory
predicts fundamental connections between changes in different
biological traits. We emphasise that both natural selection, and
ecological stresses within the life-course, do not act on individual
traits, rather they act on strategies (90), which can be readily
conceptualised as trade-offs. For example, we should focus not
on height as a discrete outcome, nor even on the strategy of
growing, but rather on the trade-off between allocating resources
to growth vs. other life history functions. Our argument is that
the origins of agriculture provoked trends in many components
of biology, such as body size, fertility, and health status, through
shifting these trade-offs to new niche-specific optima. To provide
empirical support for this theoretical framework, we now review
evidence for life history trade-offs in contemporary human
populations, focusing primarily on plastic responses.

EVIDENCE FOR LIFE-HISTORY
TRADE-OFFS IN HUMANS

Many studies illustrate trade-offs between life history functions,
though the findings are often not presented within this
conceptual framework. Trade-offs might be driven by variability
either in energy supply, or in the energy demanded by particular
biological functions. In each case, the optimal allocation of energy
between competing functions may change. For example, Figure 2
illustrates how an infection may elicit increased energy allocation
to immune function, at a cost to all three other functions. In
practice, most studies enable only two-function (binary) trade-
offs to be considered. Between the four life history functions
that we propose, a total of six binary trade-offs can be assessed.
Evidence for each of these is now briefly reviewed, addressing
where possible both short-term trade-offs that may be reversible
(evident for example in adults) and also developmental trade-offs
in early life that may be less reversible. Specific examples are also
summarised in Table 3.

Maintenance-Growth (M-G)
By strict definition, a trade-off between maintenance and growth
can only occur during development, as growth in its normal
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sense ceases with the realisation of adult size. However, a looser
definition of growth, which extends to tissue deposition and
renewal processes, allows adult phenotype to be addressed. For

FIGURE 2 | A life history trade-off, whereby allocating more energy to defence

(e.g., from fighting an infection) results in less energy being available for

maintenance, growth, and reproduction. The dotted line boxes indicate

“equal” levels of investment across the four functions, and the coloured boxes

indicate the actual magnitude of investment.

example, bonemaintenance continues through adult life andmay
be adversely affected by dietary or infectious stresses, as well as
by reproduction in women (110). Similarly, adult weight gain,
which comprises both fat and lean tissue, is associated with faster
telomere attrition, a marker of cellular aging (94).

During development, reduced energy supply affects tissues
to different degrees, as recognised by the thrifty phenotype
hypothesis (111). Essential organs such as the brain and
lungs are protected, at a cost to other organs (112, 113). In
particular, the brain has an obligatory demand for energy, and
meeting this demand can directly impact on the growth of
competing tissues, such as the liver, pancreas, and muscle mass,
which contribute to metabolic homeostasis (114). In turn, the
preservation of homeostatic capacity slows the rate of ageing and
promotes longevity.

In a study comparing lowland and highland children from
Peru, for example, highland children exposed to high composite
levels of ecological stress (poverty, under-nutrition, hypoxia,
infections) protected growth of the brain and torso, at a cost to
limb lengths, in particular the length of the tibia (112). Similarly,
survivors of severe-acute malnutrition in Malawi protected both
their brain and their lung function (essential for supplying the
brain with oxygen) in mid-childhood, at a cost to leg length and
muscle function (113). In turn, leg length is a strong predictor
of metabolic health in adult life (115, 116). Thus, when energy

TABLE 3 | Evidence for life history trade-offs in humans between maintenance (M), growth (G), reproduction (R), and Defence (D).

Trade-off Population Life-history trait Exposure Outcome References

M-G UK Longevity Rapid infant growth Arterial stiffness (91)

UK Longevity Post-natal growth High blood pressure (92)

India Cellular health Adult weight gain Telomere attrition (93)

US Cellular health Adult weight gain Telomere attrition (94)

M-R Global data Maternal longevity Reproductive effort Shorter lifespan (95)

UK Maternal longevity Reproductive effort Shorter lifespan (29)

Finland Maternal longevity Bearing twins Shorter lifespan (96)

UK Bone health Early menarche Reduced bone strength (97)

M-D Europe Longevity Infant disease load Shorter adult lifespan (89)

Ethiopia Mental health Fetal fat deposition Poorer mental health (98)

Meta-analysis Metabolic homeostasis Hepatitis C infection Increased risk of type 2 diabetes (99)

Meta-analysis Metabolic homeostasis Periodontal disease Increased risk of cardiovascular disease (100)

G-R SS Africa Child growth Number of siblings Growth declines w. sibling no. (101)

UK Child growth Earlier reproduction Low birth weight (102)

UK Bone health Early menarche Reduced bone size (97)

India Adult height Early menarche Short adult stature (103)

G-D SS Africa Child growth Maternal malaria Low birth weight offspring (104)

Guatemala Child growth Diarrhoeal disease Reduced growth (105)

Ecuador Child growth Immune activity Reduced growth (106)

Europe Adult height Infant mortality rate Mortality declines predict taller height (89)

R-D Senegal Maternal mortality Malaria Reproduction increases infection risk (107)

UK athletes Reproductive investment Endurance exercise Decline in testosterone (108)

UK athletes Immune function Endurance exercise Increase in immune markers (108)

Malaysia Reproductive investment Reduced maternal stress Increased breast-milk transfer (109)

SS Africa, sub-Saharan Africa.
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supply is restricted, protecting brain growth comes at a direct cost
of a reduced capacity for maintenance, which may contribute to
an increased risk of chronic diseases at later ages (111, 117).

Although maintenance is usually measured at the level of
physiological homeostasis, physical activity level can also be
considered as a broader marker, though it is also relevant to
other life history functions. At a behavioural level, activity is
a key aspect of subsistence effort (118) but it also contributes
to cellular homeostasis, promoting antioxidant enzymes that
scavenge free radicals and prevent telomere attrition (119–121).
Among a rural population of Yucatan Maya, where children
used to provide significant levels of domestic and subsistence
labour to the household economy, a longitudinal analysis showed
that those demonstrating greater allocation of energy to physical
activity were shorter and lighter than their less active peers
(122). However, as we discuss below, physical activity also
plays a unique role in life history trade-offs, as cooperative
behaviour and “labour subsidies” allow the maintenance needs
of some individuals to be met by the physical activity patterns of
others (118).

Maintenance-Reproduction (M-R)
A trade-off between maintenance and reproduction could be
shown by testing for elevated mortality risk following the
production of offspring. For example, early studies suggested that
producing offspring is correlated with reduced lifespan among
parents of both sexes (28, 29), though in general the strongest
evidence is for mothers. However, several studies have failed
to demonstrate negative associations between reproduction and
lifespan (123, 124), and the evidence that greater reproductive
effort promotes faster ageing through oxidative damage is
inconsistent (26). We suggest that a wider range of metabolic
traits relative to fitness merit consideration.

Reproduction is a challenging period for maternal
metabolism, temporarily depleting the mother of energy,
micronutrients, and mineral. For example, higher parity, short
inter-birth interval, and earlier age at first birth were associated
with reduced bone quality among Tsimané forager-farmer
women after adjusting for potential confounders (125). These
findings are especially relevant to our hypothesis, as bonemineral
density can potentially be examined in the archaeological skeletal
record. However, studies from high-income countries indicate
that the net loss of bone during lactation may be resolved after
weaning (126). Moreover, other studies of the Tsimané found
that despite their high fertility rates, markers of cardio-metabolic
disease are amongst the lowest reported in human populations
(127, 128). The costs of reproduction may therefore be both
“condition dependent,” i.e., varying in association with broader
ecological conditions, and also outcome-dependent, i.e., varying
across different markers of maintenance (26). In addition, they
may also be shaped by experience in early life. For example, the
effect of activity level on reproductive function in rural Polish
women was found to be mediated by size at birth (129).

Parent-offspring conflict theory assumes that offspring are
selected to demand more resources than their parents are
selected to provide (130). During pregnancy, this results in
a “metabolic battle” over maternal circulating nutrients. The
fetus and placenta (which share a common genotype) secrete

hormones that increase maternal glucose levels and blood
pressure, which act to force more nutrients across the placenta.
The mother responds by counter-effects, reducing the pool
of nutrients (131). The metabolic strain of pregnancy makes
mothers vulnerable to conditions that impair maintenance, such
as gestational hypertension and diabetes. Whilst these metabolic
conditions are strongly associated with obesity in contemporary
populations, there are indications that they also affected past
populations, perhaps through the adoption of diets that exposed
metabolism to unprecedented levels of refined carbohydrate
(132). Any metabolic costs of particular diets to the mother are
expected to have been exacerbated by the effects of maternal-
offspring conflict.

For cardio-metabolic outcomes, therefore, reproduction
appears to increase the risk of chronic diseases in women,
indicating that it imposes costs on homeostasis. However,
these costs may to some extent be mitigated by breast-feeding
(133), moreover reproduction is protective against diseases
associated with excess fuel availability, in particular cancers (134).
Therefore, trade-offs between reproduction and maintenance
vary in association with the underling metabolic pathways to
disease. Intriguingly, both short and long inter-birth intervals
have been associated with elevated maternal mortality risk (135).

Some costs of reproduction can potentially be offset by
greater kin support, as expressed in the concepts of cooperative
breeding (136) and pooled energy budgets (118). In this context,
sedentary farmers might be able to draw on a larger pool
of relatives than foragers, while also benefitting from new
cereal-based weaning foods (137) that could promote such kin-
cooperation. Conversely, the costs of reproduction could also be
elevated by shorter inter-birth intervals, hence markers of health
and longevity must be assessed to test whether the transition
to agriculture was beneficial or detrimental to “maintenance”
in women.

Maintenance-Defence (M-D)
Defence typically requires that baseline homeostatic processes
be curtailed in favour of more aggressive metabolic activities,
that either protect the body from external threats (predators),
supply damaged tissue with resources, or neutralise pathogens
and parasites.

The generic costs of immunity have been elegantly revealed
through studies of non-human animals, that for ethical reasons
are not appropriate in humans. For example, a study of
bumblebees showed that, after imposing starvation to ensure
limited energy availability, simply activating the bee’s immune
system in the absence of actual exposure to pathogens reduced
survival of the bees by 50–70% (138). Immune function can
therefore be regarded as a high-benefit, high-cost trait, that
is potentially life-saving but metabolically expensive to run
(139). Similarly, many experimental studies have shown that
injecting animals with foreign antibodies generates an elevation
in metabolic rate, which clearly reduces the availability of energy
to other functions (140, 141).

In young men, observational studies showed that even mild
respiratory infection increases resting metabolic rate (142). In
children, likewise, each degree of temperature rise associated with
fever increases metabolic rate by ∼11% (143). A recent study
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of Shuar forager-horticulturalist children of Amazonian Ecuador
found resting energy expenditure to be increased by ∼20%
relative to children from industrialized settings, due to persistent
immune activation (144). At the level of cellular metabolism,
injury or infection elicits a state of inflammation, disrupting
homeostatic processes such as the maintenance of core body
temperature, appetite and sleep patterns (139). These responses
impair components of cellular homeostasis such as DNA repair
and telomere maintenance (145, 146).

The costs of defence relate not only to immune function
itself. Many pathogens may not necessarily threaten survival, but
nonetheless rely on their hosts for nutrition, shelter, warmth,
and a “home base” for reproduction. Until cleared from the
body, all their metabolic requirements are necessarily met by the
host organism (147). Given the high costs of prolonged immune
response, the optimal trade-off may be to tolerate some parasites
or pathogens (148, 149). The lower the level of energy supply, the
higher may be the resulting tolerated pathogen burden. This issue
is particularly relevant to early agricultural communities, as they
experienced unprecedented exposure to pathogens and parasites
compared to ancestral foragers.

From a behavioural perspective, the stress response plays
a key role in enabling escape from predators, but again at a
cost to normal homeostatic function (150, 151). The hormone
cortisol plays a key role in allocating energy between different
physiological systems. High cortisol levels maintain alertness
and the capacity to respond to stresses, but at a cost to cardio-
metabolic health (152–154).

The study of Mayan children discussed above showed
that children with higher levels of physical activity not only
demonstrated poorer growth, but also had reduced subcutaneous
adiposity, indicating that working harder on subsistence tasks
reduced allocation to immune function (122). In extreme
conditions, however, physical activity could itself be considered
an investment in defence. One such example comprises fleeing
from predators, however farmers may also need to work
especially hard in some seasons to reduce the risk of famine
(155), or protect crops from insect pest invasions. In contrast
to moderate activity levels, intense levels can cause weight loss
(156, 157), and can result in the net production of free radicals,
causing oxidative damage (158).

Beyond direct energetic costs, greater investment in
immunity may also compromise other nutrient-dependent
forms of maintenance. For example, among Tsimané forager-
horticulturalists in Bolivia, markers of elevated immune
activation were associated with estimates of lower trabecular
bone density, a risk factor for fragility fractures at older age
(159). Although exposure to pathogens in early life may also
contribute, the markers of immune activation in this study were
measured during adult life, and indicate continued deficits in
bone maintenance generated by the burden of infections.

Growth-Reproduction (G-R)
At the simplest level, reproduction broadly occurs only when
growth has ceased, meaning that the starkest trade-offs are driven
by a time-shift in allocating energy between these functions.

However, considered in more detail, there are more subtle trade-
offs between these functions.

First, there may be a genetic basis to a trade-off between
maturation rate and adult size. Both stature and age at menarche
demonstrate heritability (see Table 1), and short stature has been
correlated with earlier menarche (160, 161). This suggests that
some populations might have adapted to high-risk environments
by shifting the G-R trade-off systematically in favour of earlier
reproduction (33). Within populations, genetic variability in
these traits indicates a range of variability in this trade-off
(162). However, the same trade-offs can also emerge through
plastic mechanisms.

First, early reproduction appears to curtail maternal physical
growth. Several studies have shown that adolescent childbearing
is associated with a reduced rate of linear growth, indicating that
the energy costs of reproduction reduce the allocation of energy
to maternal growth (163). Second, several studies have shown
a trade-off between weight gain and height gain. For example,
age at menarche is positively correlated with adult height (161,
164), but negatively correlated with adiposity through adult life
(165). This indicates that the developmental pathway to earlier
reproduction favours the allocation of energy to somatic stores,
at a cost to linear growth. Whereas stature and lean mass
are markers of growth, gluteo-femoral adipose tissue can be
considered an investment by females in reproduction, providing
energy stores to fund lactation (59, 166).

Catch-up growth allows the body to respond to early under-
nutrition, should more resources become available. However,
studies show that rapid catch-up growth may promote adiposity
over linear growth. For example, studies of Indian girls who
were adopted by Swedish families in early life showed that in
the improved nutritional environment, they underwent very
early puberty and remained short as adults (103, 167). Again,
this highlights the diversion of resources from growth and
maintenance toward earlier reproduction.

Growth-Defence (G-D)
Numerous studies in children show that infections reduce linear
growth rate, examples including helicobacter pylori infection and
diarrhoea (105, 106, 168). Among Shuar forager-horticulturalist
children in Amazonian Ecuador, even mildly elevated immune
activity reduced growth rate by half (106). In the reverse
direction, childhood immunisation programmes are beneficial
for child growth, through reducing the allocation of energy to
fighting infections (169). Aside from linear growth, infections can
also reduce tissue masses. In acute illness, for example, in the
absence of adequate dietary supply, lean tissue may be broken
down to release acute-phase proteins. Similarly, populations
occupying environments with higher infectious burdens show
lower levels of truncal subcutaneous fat (170), a depot closely
associated with immune function (60, 171).

From an inter-generational perspective, maternal infections
during pregnancy also reduce the energy available for fetal
growth (172). Numerous studies have linked maternal pregnancy
infection with lower birth weight (173, 174), and these
associations persist into post-natal life. For example, infants
exposed to maternal HIV, but themselves uninfected, show poor
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growth during early infancy, the period of exclusive breastfeeding
(175). Placental malaria likewise constrains infant catch-up
growth (176).

These trade-offs may generate correlations between the
burden of infectious disease encountered in early life, and
subsequent adult height. Many studies have assessed childhood
infection burden through the proxy of infant mortality rate, on
the assumption that higher infant mortality indicates exposure
to a higher disease load amongst those who survived. Over
the twentieth century, declines in infant mortality rate within
countries correlate strongly with increases in adult stature 20
years later (89). While these studies are observational and cannot
prove causation, they support the hypothesis that linear growth
benefits from less energy being allocated to immune function,
consistent with the mechanistic studies reviewed above.

When dietary quality improves in the absence of increased
infection burden, more energy can be allocated to growth. For
example, among moderately malnourished young children in
Burkina Faso, providing high-energy ready-to-use therapeutic
foods along with medical care resulted in 93% of weight gain
comprising lean tissue, indicating prioritised allocation of energy
to growth (177, 178).

Reproduction-Defence (R-D)
Immediate trade-offs between reproduction and defence are
illustrated by the greater susceptibility to infections among
women during pregnancy and lactation. For example, the energy
demands of lactation make mothers more susceptible to malaria
infection during the early post-partum period (104).

As with growth, greater exposure to infections in early
life can slow the rate of maturation and hence potentially
delay reproduction. For example, Ellison reviewed data on
infant mortality rate in the 1940s, and mean age at menarche
in the 1960s−1970s, in populations from low- and middle-
income countries (179). Among populations where mortality
was generically low, there was no association between infant
mortality and age at menarche. Above a certain threshold of
infant mortality, however, there was a dose-response linear
correlation between the two parameters. This implies that in
populations suffering a high disease burden, expending more
energy fighting infections slows the rate of maturation.

However, growth-defence trade-offs can also lead to earlier
menarche, which may in turn result in shorter adult height.
As discussed above, maternal infections during pregnancy may
reduce fetal growth, propagating to shorter adult height of
the offspring. Catch-up growth may exacerbate this effect, by
accelerating pubertal development but thereby shortening the
duration of growth (164). Both of these R-D trade-offs could have
operated in populations undergoing the transition to agriculture.

Defence may also relate to psychosocial factors associated
with the stress response. Activating the “flight-or-fight” response
reduces energy availability for other functions. Studies have
associated maternal stress during pregnancy with lower birth
weight (180). A recent randomised trial showed that reducing
anxiety among healthy first-time mothers was associated with
increased breast-milk transfer, and with greater weight gain in
the infant (109).

Composite Trade-Offs and
Inter-Generational Effects
So far, we have considered evidence for binary trade-offs between
life history functions. Few studies have considered how ecological
factors shape “bundles” of trade-offs more comprehensively,
however we review several examples highlighting the relevance
of life history trade-offs for understanding the potential
consequences of variability in ecological conditions. None of
these studies explicitly examines the consequences of change
in human subsistence mode, but each shows how variability in
ecological conditions is associated not simply with variability in
a specific trait, but rather in composite life history strategies that
respond through genetic change or reaction norms to maximise
fitness. Our emphasis here is that coherent trade-offs, in response
to particular selective pressures, are expected to result in multiple
traits clustering within individual organisms.

One such example has been observed in non-human animals,
and relates to the emergence of distinct “animal personalities.”
This has been attributed to the action of selection on traits that
coordinate risk-taking behaviour (181). A similar scenario may
relate to suites of life history traits in human populations.

A second example goes beyond the traditional focus on energy
allocation, to consider dietary macronutrient composition. The
framework of “nutritional geometry” assumes that animals satisfy
competing appetites for different macronutrients in ways that
maximise fitness (182). In Drosophila, diets that maximised
longevity had different composition to those that maximised
fecundity. When offered a choice of complementary foods, flies
regulated their food intake to maximize lifetime egg production
(183). Similar experimental work on mice has likewise shown
that dietary macronutrient composition effects both health
and longevity (184). Changes in the diet therefore appear
to drive composite changes in life-history trade-offs in non-
human animals.

A third example comprises a study of 22 small-scale human
societies by Walker et al. (33). This study showed that
variation in both the supply of energy, and mortality risk,
is associated with varying patterns of growth, indicating that
environmental conditions drive trade-offs across populations.
The authors identified one subset of societies, occupying
more favourable conditions, which demonstrated faster growth
and earlier puberty. These populations attained adulthood
faster because of greater energy availability, proxied by larger
adult size. However, the authors also identified another
subset of populations that experienced low sub-adult survival
rates. In this subset, earlier maturation and reproduction is
again favoured to counter mortality risk, but at a cost to
adult body size. The authors concluded that both genetic
adaptation and life-course plasticity might contribute to these
contrasting strategies. Individual studies have elucidated in
more detail several relevant trade-offs. For example, among
Pume foragers in Venezuela, early female reproduction is
favoured by a rapid growth spurt prior to the adolescent
onset of reproduction, and the provision of food by kin
(energy-pooling) to meet the metabolic costs of this fast
life history strategy, which collectively maximises female
fitness (185–187).
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A fourth example illustrates how these trade-offs may emerge
through the life course, in response to variable investment
in early life. In a longitudinal cohort study from Brazil
(188), lower levels of maternal investment were associated
with developmental trade-offs that favoured immediate survival
and early reproduction at a cost to growth and maintenance
(Figure 3). Maternal capital was assessed by scoring “penalties”
in each of maternal height, nutritional status, family income, and
education level. A composite score of these penalties enabled
mothers to be ranked in terms of overall capital level, assumed
to equate to variable capacity for maternal investment.

Lower-capital mothers produced daughters with smaller size
at birth, who continued to show poor linear growth during
infancy. Compared to daughters of high-capital mothers, the
low capital daughters did not experience earlier menarche,
but nevertheless were more likely to have produced offspring
by 18 years, while being both shorter and more centrally
adipose in early adulthood. This study highlights a life-course
developmental trajectory of growth being curtailed from fetal
life onwards, and energy instead being allocated to body fat to
fund reproduction (peripheral fat) and immune function (central
fat). Overall, low maternal investment drove trade-offs that
promoted reproduction and defence at the expense of markers
of maintenance and growth.

This study illustrates how reproduction brings the life history
strategies of two generations together. The mother’s allocation
of energy to reproduction is shaped by her own life history
trade-offs, while the magnitude and developmental timing of this
investment shapes the cumulative emergence of trade-offs in the
offspring (Figure 4). In that sense, the daughters’ trade-offs are
responses to trade-offs occurring during maternal development.

Having demonstrated comprehensive evidence in support
of binary, composite and inter-generational trade-offs in
contemporary human populations, we now turn to the origins
of agriculture to consider whether there is also evidence for such
trade-offs in association with major changes in human diets and
living conditions.

THE ORIGINS OF AGRICULTURE

It is now generally recognized that the transition to agriculture
involved a long-term co-evolutionary relationship that increased
the population size and density of both humans and their
domesticated plant and animal species over thousands of years.
This process, where it occurred, involved the replacement of
foraged and hunted foods with domesticated varieties and animal
by-products, and involved the gradual selection for larger grain
size indices representing greater agricultural productivity (189).
However, it is also important to note that a proportion of human
populations never adopted any form of agriculture, others did
so only transiently, and still others practised mixed foraging
and farming (190, 191). Where agriculture did emerge, it did
so in a wide variety of ways and on different timescales, and
can therefore be assumed to have impacted human biology in
heterogeneous manner. Wherever it occurred, the association
between niche construction and human biology is likely to have

involved positive feedback, so that farming stimulated new life
history trade-offs that may then have shaped the subsequent
trajectory of agricultural development.

Domestication involved “a continuum of human, plant, and
animal relationships . . . and was driven by a mix of ecological,
biological, and human cultural factors” (6). Its timing varied
substantially across different geographical regions, and whereas
in some (e.g., the New World) crop domestication preceded
that of animals by several millennia, in others (e.g., Africa,
Arabia, India) the converse occurred (6). The role of active
human selection for specific traits also varied, and some traits
that were beneficial for humans likely emerged as a by-product
of cultivation/husbandry practices (6). Given this heterogeneity,
we should expect human life history traits to have shifted, by
genetic or plastic mechanisms, whenever the changes to the
socio-ecological niche were of sufficient magnitude to favour
such responses. Which periods generated the greatest selective
pressures, opportunities, or stresses, and hence drove the most
marked life history shifts, is an important topic for further work.

With richer andmore stable resources and larger social groups
aggregating at specific settlements, storage of food surpluses,
new forms of cooperative behaviour, and the exploitation of
renewable dairy animal by-products, the transition to agriculture
dramatically shifted the energetic ecology of the human dietary
niche. The human gut is small in size with a limited transit
time, thus constraining the volume of food that can be ingested
and, through digestion, converted to metabolisable energy. By
consuming foods that are energy-rich and extra-somatically
processed (e.g., ground grain/carbohydrate and milk), dietary
energy supply can be increased despite our biological constraints.

However, beyond dietary shifts per se, any observed changes in
human biology that occurred in association with the transition to
agriculture should be considered in the context of changes in the
entire ecosystem. Human life history transformations occurred
alongside similar changes in a variety of the organisms that were
farmed. Through the process of domestication, humans actively
or passively selected for and against many of the traits that
represent life history adaptations of crop and animal species.

For example, human activities changed the morphology of
plants in favour of increased grain sizes and non-shattering
spikelet scars of wheat, barley, and rice (189). This had the effect
of producing larger, more energy-rich grains that were less likely
to be lost in harvesting, but often required further processing
before consumption. Moreover, by selecting against components
of plant and animal “defence,” humans had to invest more time
and effort in defending their new resources against the pathogens
and predators that target these species. Over thousands of years,
early farmers were therefore drawn into a new “labour trap,” and
exposed to new stresses associated with enhanced seasonality of
the food supply (192).

In these respects, domestic plant and animal species showed
their own life history shifts whereby investment in defence
was suppressed, while investment in the traits that from a
human perspective drive agricultural yield increased (Figure 5).
In crops, this is reflected by larger grain size, whereas the size
of animals often decreased initially (193) while their fertility
increased (192). In each case, these trends indicate greater
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FIGURE 3 | Summary of findings from the Pelotas 1993 birth cohort study, where low maternal capital was associated with developmental trade-offs in the daughter

between linear growth and weight gain. At 18 years, daughters showed preferential energy allocation to reproduction and defence, at a cost to growth and

maintenance. Based on data from Wells et al. (188).

investment in reproduction, and hence greater potential harvests
for humans. This evidence indicates that humans may have
changed through similar correlated shifts in life history trade-
offs, allowing adaptation to the new agricultural niches.

Foragers diversify their efforts across multiple food webs,
and are protected against shocks in any one of them (194).
In contrast, farmers increasingly invest in a single food web,
and become more susceptible to any ecological stress that
reduces its productivity (192). Agricultural settlements are often
near natural watercourses, which allowed for the development
and intensification of irrigation to maintain crop yields, which
created more larval habitats for vector-borne diseases (195).
These concentrated communities may then have seen a further
intensification of the infectious burden, radically transforming
the risks of morbidity and mortality.

Composite Stress Imposed by Agriculture
The adoption of agriculture transformed the entire human
subsistence niche, changing both the human diet and many
other aspects of the local ecology, which we argue may
have led to a cascade of coordinated life history trade-offs.
However, these changes must have played out in varying
ways according to the historical period, the local ecology,
and the type of agriculture that developed. As all of these
factors would have been under the influence of longer-
term climatic trends, the selective pressures must therefore

have varied accordingly. We briefly summarise some of
the key stresses and some of the trends that might have
shaped them.

Compared to forager diets, those of early farmers tended
to incorporate higher levels of carbohydrate from grains, but
lower levels of fibre, micronutrients, and protein (9, 20, 196).
These changes would have altered the macronutrient substrates
available for metabolic processing, with implications for life
history trade-offs as highlighted above regarding experimental
work on non-human species (183, 184). In humans, for example,
low levels of dietary protein are associated with slower childhood
growth (197, 198) and with higher levels of fat storage (182,
199). In this context, the implications of dairying are of especial
interest. Following the emergence of a specialised dairying
economy in the European Steppe by 7000BP, single nucleotide
polymorphisms (SNPs) associated with lactase persistence appear
to have evolved by ∼5600BP (200). In particular, the adoption
and spread of intensive dairying may have buffered the difficulty
of agricultural subsistence in Northern Europe and led to
the modern north-south gradient of body size in Europe, an
interpretation supported by the detection of selection for reduced
height in the Iberian Neolithic but increased height in the
Neolithic populations of the steppe (201).

Agriculture also exposed human populations to greater
seasonality in food supply, exacerbated by the risk of famine
through harvest failure. Other seasonal stresses that could
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FIGURE 4 | Life history trade-offs across two generations, showing how the relative allocation of energy by the mother to reproduction shapes the energy available for

allocation between all four functions in early life in the offspring.

dramatically reduce annual yields include floods, or spikes in
agricultural pests.

A second key stress experienced by growing sedentary
populations comprised exposure to a range of pathogens (195),
driven by several related factors. First, higher population
densities inherently favoured greater opportunities for
infection. This scenario was then exacerbated by greater
exposure to pathogens associated with human/animal faeces
and contaminated water sources, and by the proximity to
domesticated animals, some of which transmitted novel diseases
to humans. Indeed, the longer the history of domestication of a
species, the more common infectious diseases they share with
human populations (202), indicating a long history of exposure
to zoonotic disease following domestication. However, although
early farming populations are widely assumed to have acquired
an elevated burden of pathogens from their newly domesticated
animals, emerging evidence suggests they may also have passed
pathogens adapted to humans back to their stock animals, one
example being the transfer of salmonella to pigs (203). Human
populations also became susceptible to new “crowd” infections
that, since they infect people only briefly before they recover or
die, require a relatively large population size for their persistence
(204), and against which foragers had been protected through
their nomadic lifestyle and small population size. This enhanced
overall disease load had two key effects on life history strategy—
first, it increased the energy demand for immune function, and

second it increased extrinsic mortality risk, which would then
favour earlier reproduction (either achieved through maturing
earlier, or through ceasing growth at smaller size). Each of these
effects would inherently reduce the energy available for growth
and maintenance.

Over the longer-term, climate change altered seasonal
patterns and extended the dry season, leading to agricultural
intensification and the adoption of practices such as mass
irrigation (205). These more concentrated communities may
then have experienced greater susceptibility to the stresses
highlighted above.

Finally, there is growing evidence that the ecological
stresses associated with the transition to agriculture may have
intensified under the influence of early states, and that their
political institutions may have influenced the crops grown,
the diet consumed, the extent of crop irrigation, and the risk
of disease and subsistence crises (192). Furthermore, states
presupposed growing levels of social inequality, and state control
over resources.

Since farming can increase dietary energy supply relative to
foraging, one could question whether the transition to agriculture
must inevitably have driven life history trade-offs. Could not
the additional energy costs of immune function have been
met simply by consuming more calories? Alternatively, farmers
could have demonstrated lower physical activity levels, thus
reducing their energy demands, for example by benefitting

Frontiers in Endocrinology | www.frontiersin.org 13 May 2020 | Volume 11 | Article 325

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wells and Stock Life History Transitions and Agriculture

FIGURE 5 | Trade-offs between traits in crop and domesticated animal species, reflecting artificial selection by humans during the early agricultural period (192, 193).

Photo credits (Top left) LepoRello (https://commons.wikimedia.org/wiki/File:Triticum_boeoticum_Bajuwarenhof_Kirchheim_2012-08-05.jpg), “Triticum boeoticum

Bajuwarenhof Kirchheim 2012-08-05,” https://creativecommons.org/licenses/by-sa/3.0/legalcode (Botttom left) User:Bluemoose (https://commons.wikimedia.org/

wiki/File:Wheat_close-up.JPG), “Wheat close-up,” https://creativecommons.org/licenses/by-sa/3.0/legalcode (Top right) F. Spangenberg (Der Irbis, own photo)

(https://commons.wikimedia.org/wiki/File:Bezoarziege.jpg), “Bezoarziege,” https://creativecommons.org/licenses/by-sa/3.0/legalcode (Bottom right) Cleur Monie

(https://commons.wikimedia.org/wiki/File:Lamancha_mix_goat_kids.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode.

from new “economies of cooperation” that are less amenable
to exploitation by individual foragers (9). However, a review
of energy expenditure in contemporary subsistence farmers
suggest that levels of energy expenditure are moderate to high
(206), while a study of Hadza foragers found that their energy
expenditures were lower than expected (207), despite high levels
of physical activity. Food production generates new demands
for “food processing,” meaning that farmers may have to work
harder to produce the same amount of dietary energy as foragers.
Contemporary subsistence farmers also demonstrate prevalences
of child malnutrition that are amongst the highest of all human
populations (208), indicating that the composite stresses of food
insecurity and infections is detrimental to growth. This is an
important point, as many ecological stresses relevant to the
transition to agriculture may have acted most strongly during
early development, rather than during adult life. Finally, trade-
offs could have occurred in response to changes in dietary
macronutrient composition, as well as in the overall energy
budget. For all of these reasons, we therefore consider that

phenotypic shifts mediated by trade-offs were likely inevitable in
early farmers. The mechanisms could have allowed phenotypic
responses favouring growth and maintenance during better
ecological conditions, and the reverse pattern during more
stressful periods.

Overall, we can assume the emergence of agriculture changed
the human diet while provoking profound life history trade-
offs that increased the allocation of energy to reproduction and
defence, at a cost to growth and maintenance, as illustrated
in Figure 6. We now review evidence in favour of each of
these trends.

Reduced Allocation to Growth
There is relatively consistent evidence for a decline in adult body
sizes associated with the transition to agriculture (209–214). A
recent systematic review found evidence of declining stature in
14 different analyses among populations from Europe, Africa,
the Middle East, Asia, Central and South America, and North
America (215). While the trend toward decreasing stature is
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FIGURE 6 | Summary of how the combination of changes in subsistence practices may have increased energy availability, but also changed the ecological stresses in

early agricultural populations. These composite changes may have elicited life history trade-offs favouring reproduction and defence, over maintenance and growth, as

described in detail in the text.

commonly associated with the transition to agriculture, there
is some evidence for temporal and regional variation. In some
cases the initial transition to agriculture was associated with an
early small increment in stature, followed by later, long-term
systematic decline (9); or more subtle patterns of decline that
varied between men and women (216). In other regions stature
remained relatively consistent across the transition or even
increased (217). Some of the cases where more complex patterns
are observed involved the transition to wet-rice agriculture that
may have had different energetic consequences, both in terms of
the high energetic demand of paddy field farming, but also higher
yields and lower amylose content (218, 219), while others may
have reflected broader socio-economic changes in the Holocene.

More recent studies have analysed long diachronic samples.
One such study shows that within the central European steppe,
there was a significant decline in stature between the Mesolithic
and Neolithic (220) that persisted among both men and women
through the bronze and iron ages before a recovery in the
Medieval period. Similarly, height declined sharply in association
with the adoption of agriculture in India, and has remained
low subsequently (221). Another recent study reported a similar
decline in stature among the earliest farmers in the Nile Valley,
followed by a subsequent increase in stature with the rise of the
Egyptian Empire (222), trends that are matched by evidence for
periods of childhood stress (223).

These bulk of studies typically document a decline in stature
that is either immediately associated with the agricultural
transition or occurs with agricultural intensification. This trend
appears to persist in many contexts for thousands of years before
an eventual increase. In each case, the initial size reduction
demonstrates decreased energetic investment in somatic growth,

which suggests a shift in life history strategy following the
transition to domesticated plant and animal resources. Overall,
therefore, the available evidence suggests that in most regions
the allocation of energy to somatic growth initially declined in
association with the transition to agriculture, but was followed by
increases associated with subsequent shifts in energetic ecology.

Since height in many populations has recently increased,
it is not clear whether the declines associated with adopting
agriculture involved genetic adaptation, although there is some
evidence for a general correspondence between stature estimates
and polygenic risk scores for genes associated with stature
(224). Intriguing evidence comes from inter-ethnic studies
of birth weight, where the ethnicity of each parent can be
considered separately by comparing offspring with parents of
contrasting ethnicity. In this study, infants with European
mother and south Asian father weighed less than infants with
two European parents, suggesting that in the Indian population,
genes expressing the paternal growth drive may have been
selected to demand a lower nutritional transfer from the mother
during fetal life (225). This may relate to the challenges of
developing agriculture in an environment with high ecological
volatility associated with the monsoon. Further studies are
needed to test this hypothesis more robustly.

Increased Allocation to Reproduction
It has long been considered that there is a causal relationship
between subsistence strategies, as the basis for the mode
of production, and demographic change, with agricultural
subsistence directly leading to more permanent settlement and
hence the demographic expansion of populations (16, 226).
However, prehistoric demography is challenging to interpret,
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as it is dependent on proxy data. Many early estimates of
exponential growth in human populations were based on
evidence from rapid increases in settlement sizes, but recent use
of radiocarbon dates as proxies for demography highlight more
subtle fluctuations of population in some regions throughout the
Holocene (227).

The strongest evidence for population growth in the Holocene
comes from direct analysis of human remains and modern
human genetic diversity. In the most systematic study of
Neolithic demography, for example, Bocquet-Appel compared
palaeodemographic data from 200 cemeteries (228). The results
suggest there was a relatively abrupt increase in fertility following
the transition to agriculture in the Northern Hemisphere. In the
Levant, this is estimated to represent an increase in total fertility
from 4.5 to 10 throughout the reproductive lifespan (228). The
notions that fertility increased and inter-birth intervals decreased
are supported by ethnographic studies of demography among
recent or contemporary foragers and transitional-farmers (229),
and by comparisons across subsistence mode that control for
phylogenetic relationships (230).

Recent evidence for an agricultural demographic transition
also comes from genetic estimates of population sizes. For
example, Gignoux and colleagues investigated mitochondrial
DNA diversity and revealed strong evidence for demographic
expansions in the past 10,000 years in Europe, south east Asia,
and sub-Saharan Africa (231). In all cases, coalescence times
linked these demographic expansions closely with the adoption
of agricultural subsistence.

Evidence regarding the effect of the transition to
agriculture on mortality patterns is less consistent.
Comparing palaeodemographic life tables of hunter-gatherers,
horticulturalists, and agriculturalists, mean life expectancy
was 21.6, 21.2, and 24.9 years, respectively, with none of the
differences being statistically different (232). However, we should
also note that mortality rates before and after the transition to
agriculture might not necessarily be the same as those during the
transition, and there are many uncertainties that are difficult to
resolve when estimating past mortality rates (232). Moreover, the
implications of transitioning to agriculture may not necessarily
have been equal for the two sexes. In a study of age at death in
the Levant, for example, life expectancy of Neolithic populations
appeared to be slightly greater than that of the earlier Natufian
hunter-gatherers. However, relative to males, female longevity
appeared to decline, suggesting an elevated burden of maternal
mortality in the Neolithic (233).

Importantly, however, our conceptual framework is relatively
robust to this uncertainty. As discussed above (Box 1), we
do not need to assume a simple linear correlation between
health and lifespan. Rather, rising rates of markers of disease in
bone among early agricultural populations could simply reflect
that people typically lived in poorer states of health. Since
early farmers do not appear to have lived significantly longer
than their hunter-gatherer predecessors, elevated frequencies of
pathological indicators are unlikely to be an artefact of a new
reservoir of older individuals, in whom such deterioration would
be expected regardless of their subsistence niche, but rather
indicate higher levels of morbidity throughout a similar lifespan.

Collectively, therefore, there is strong evidence for a major
demographic shift associated with the origins of agriculture,
driven primarily by rising fertility rates. While it is expected
that higher resolution data will reveal subtle and minor
regional variations to this trend that are dependent on local
circumstances, there is no doubt that the transition to agriculture
was accompanied by a significant demographic shift that
stimulated the population growth of the last 10,000 years.

Increased Allocation to Defence
There is a significant body of evidence that many of the
most significant infectious diseases that afflict human societies
originated in other species, were propagated by the process
of domestication, or found enhanced environments for vector-
borne transmission following the transition to agriculture (234,
235). There is also a demonstrable link between agricultural land
use and infectious disease risk today (236).

The impact of these diseases on human populations
is demonstrated by genetic evidence, which suggests that
pathogens have been the main selective pressure in recent
human populations (237, 238). Palaeopathological evidence from
prehistoric archaeological sites is consistent with the hypothesis
of increased exposure to pathogens among early farmers. An
early, and now classic, synthesis of research in this area identified
widespread increases in markers of disease associated with
the transition to agriculture in different regions (20). While
some of the assumptions of this interpretation have been
challenged (239), the general observations have been repeated in
other regions and very large datasets (240) suggesting that the
relationship between the agricultural transition and exposure to
infectious disease is widespread and consistent.

More recent comparisons of hunter-gatherer and Neolithic
skeletons spanning the earliest origins of agriculture in the
Levant have demonstrated an increase in pathological conditions
causing inflammatory lesions among the earliest farmers, and this
has been interpreted as evidence for heightened immune function
in response to pathogen exposure (241). The most significant
recent review of palaeopathological evidence for infectious
disease following the transition to agriculture demonstrates
increases in the prevalence of four infectious diseases that
are slow to progress and leave signatures on the skeleton:
treponematosis, tuberculosis, dental caries, and periodontal
disease (242). These infectious diseases generally represent
chronic conditions that cause consistent, long-term effects on
human health, and therefore represent markers of elevated
morbidity rather than overt mortality risk and shorter lifespans
(as discussed above). Their slow progression in part explains the
fact that they are manifest in skeletal lesions, as the skeleton is
slow to remodel and only reflects conditions over a long period
of time. Such diseases would have necessitated heightened and
sustained immune response, which as discussed above would be
energetically costly.

The long-term energetic costs of pathogen response could be
exacerbated by the evolution of pathogens themselves. Pathogens
may become more or less virulent through time, depending
on mechanisms of transmission, morbidity, mortality, and the
frequency of epidemic waves. If an infection immunizes those
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who survive, and returns at a relatively short interval of 5–10
years, then it will automatically become a childhood disease. One
consequence of this, observed both in mathematical models and
in recent demographic datasets, is that adult life expectancy may
increase even as life expectancy at birth declines (243). Using
average lifespan as a marker of investment in defence is therefore
of limited value, and markers of skeletal health in different age
groups merit more attention. This underscores the importance of
demography to our interpretation of palaeopathological data in
the archaeological record (244).

An increased parasite burden would also place energetic
demands on the host. Recent evidence demonstrates for example
the presence of whipworm at the early farming community of
Çatalhöyük in modern Turkey (245). In sum, the prehistoric
impact of pathogens on human populations seems clear, both
in the increased burden of infectious disease, and the energetic
consequences of the immune response.

Reduced Allocation to Maintenance
In contrast to the three life history functions considered above, it
is more challenging to interpret changes in energy allocation to
maintenance in the past, as the only remaining biological tissues
are typically bone and teeth. One possible approach is to consider
markers of bone maintenance. Recent evidence documents a
general decline in the mechanical competence of the skeleton
associated with the transition to agriculture, both in cortical
(222, 246) and trabecular (247) bone. While this is perhaps best
interpreted in relation to decreasing mechanical loading of the
skeleton and dietary shifts, it also reflects a decreased investment
in skeletal tissue remodelling throughout the adult lifespan, and
thus decreased investment in skeletal maintenance.

While it is difficult to identify other specific markers of
cell maintenance in the past, we can draw on physiological
studies in living humans to interpret archaeological evidence.
One measure of maintenance is antioxidant capacity, which
fights the accumulation of free-radicals that are associated with
multiple diseases. While antioxidant profiles have not been
sufficiently compared between hunter-gatherers and agricultural
populations, there is evidence that more homogenized diets with
lower diversity of plant foods lead to lower antioxidant levels
(248), and that antioxidant levels are inversely proportionate
to cancers (249). Likewise, higher antioxidant levels appear to
prevent low-density lipoprotein oxidation, which delays the onset
of atherogenesis and progression of atherosclerosis (250). This
evidence is suggestive of an association between dietary shifts and
a decrease in measures of somatic maintenance.

One line of evidence that can illuminate this issue comes from
the analysis of mummified human remains. A recent study of
137 mummified humans from recent ancient populations from
Egypt and Peru, and recent ancestral populations in southwest
America and the Aleutian Islands, demonstrated the presence
of atherosclerosis in 34% of all individuals, with a prevalence
ranging from 25 to 60% within populations (251). This
study found high frequencies of atherosclerosis among several
agricultural populations. While the Aleutian Islanders included
in this study practiced a hunter-gatherer subsistence strategy,
their diet was also very high in animal protein and fat as is typical

of arctic foragers. At this stage, there is no similar prehistoric
evidence from terrestrial or marine foragers at lower latitudes,
however living Tsimané forager-horticulturalists from Bolivia
show low levels of coronary atherosclerosis (128). How the
transition to agriculture affected cardiovascular health therefore
remains unclear, and might demonstrate heterogeneous effects.

More broadly, further work is required to clarify trends in the
allocation of energy to maintenance. However, under the logic
of the capacity-load model (252), reduced linear growth can also
be considered a marker of depletion of maintenance in the long-
term. Growth is most sensitive to insults in early life, and this
is a key period for the development of the metabolic capacity
for homeostasis (252). During development, growth is associated
with organ size (253), and in adulthood, shorter adults have
smaller organs and poorer capacity for metabolic homeostasis
(117, 254). Thus, the declines in growth described above provide
indirect evidence for reduced energy allocation to maintenance.

Of relevance here, the allocation of energy to maintenance
also involved new forms of pooled energy budgets (118), where
both adults and children could undertake specific subsistence
tasks. On the one hand, parental subsistence activities may have
increased the supply of energy to meet the maintenance costs
of children, for example by developing food stores that could
feed entire households during “hungry seasons.” On the other
hand, farming also provided new opportunities for children to
contribute to subsistence effort, for example by shepherding
domesticated animals, or by gleaning crops at harvest time. The
energetic consequences of variation in habitual activity, as a
component of both intra-and inter-individual life-history trade-
offs, is an area that requires further research.

In summary, the preponderance of evidence suggests that
there were general and coordinated life history shifts associated
with the transition to agriculture, supporting the overall trends
illustrated in Figure 6. Agricultural subsistence generated more
energetically-rich food through the processing of grain and
through secondary animal by-products like milk. The energetic
and mechanical properties of this diet, in combination with
the storage of surpluses, ensured the perpetual availability
of weaning foods, and led to shorter inter-birth intervals.
Agricultural communities were also typically sedentary which,
in combination with living in close proximity to domestic
animals, increased the pathogen burden. The general features
of agricultural societies led to increased energetic availability
in general, but also an increased risk of famine, and overall
characteristics of the environment that lead to life-history trade-
offs. From the review above, we note that the transition to
agriculture appears to be typically associated with reduced
energetic investment in maintenance and growth, and increased
investment in reproduction and defence.

Our review has assumed that these life history transitions
were primarily driven by plastic responses, and we have drawn
on similar evidence from contemporary humans to provide
mechanistic support. However, early agriculturalists may have
replaced foragers in any given niche, as well as exposing
themselves to new selective pressures, hence genetic factors
undoubtedly merit further research. The population growth that
followed the transition to agriculture increased the opportunity
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for new mutations to manifest (255), while niche construction
is likely to have intensified selection on certain genes (9, 256).
In Table 4, we provide examples of genetic change in traits
relevant to all four life history functions, likely to have occurred
in response to selective pressures provoked by the transition
to agriculture.

While these trade-offs seem to generally hold for most of the
available evidence, we may expect variations in some populations
dependent upon a variety of ecological factors including the
nutritional composition of crops and the local infectious disease
burden. In that sense, we suggest that “the exceptions prove the
rule,” in that it is also possible for the adoption of agriculture
to elicit different life history strategies through the same plastic
mechanisms. For example, should farm yields and ecological
conditions permit, greater energy might be allocated to growth.
More broadly, our framework can also be applied to populations
that did not adopt agriculture, including contemporary foraging
societies, or those currently transitioning, as discussed in Box 2.

The Central Role of Women and
Inter-Generational Effects
While life history trade-offs could have emerged both through
genetic adaptation, and life-course plasticity, it is worth
focusing briefly on inter-generational trade-offs. The transition
to agriculture had major impact on women, for several reasons.
First, as highlighted above, increases in fertility inherently place
unique energetic stresses on women, through the processes
of pregnancy and lactation. While agriculture made possible
new cereal-based complementary foods, allowing populations to
wean their offspring earlier than typical of foragers (272), the
changes may also have accelerated the rate at which successive
offspring were produced. Second, women’s subsistence tasks also
changed. There is strong evidence that women performed a high
proportion of repetitive subsistence-related labour, following
the adoption of agriculture in central Europe. In particular,
habitual loading of the upper limbs due to repetitive use of
the saddle quern to process grain, led women to have greater
mechanical loading than contemporary athletes (273). This
labour may have simultaneously raised their energy needs, whilst
also increasing their exposure to pathogens. While much of the
evidence suggests a decrease in terrestrial mobility associated
with the transition to agriculture in most but not all contexts
(222, 246, 274, 275), this may have been counterbalanced by
an increase in manual labour among both sexes (273, 276), so
specific aspects of behavioural shifts associated with the transition
to agriculture are expected to be spatially and temporally
variable (277).

The notion that energetic stresses experienced by women
propagate metabolic penalties to the next generation is supported
by data on contemporary human populations. For example,
across 96 countries, an index of societal gender inequality
(indicating women’s low status in society relative to men,
mediated by a lack of access to resources and opportunities that
promote health, education, and autonomy) was associated with
three markers of child under-nutrition (low birth weight, and
child stunting and wasting) as well as the risk of child mortality

in the first 5 years of life (Figure 7) (278). In contemporary
populations, women continue to be allocated both subsistence
tasks as well as the primary responsibility for looking after infants
and young children.

However, many studies have shown that male offspring are
more susceptible to malnutrition in early life (279), most likely
because their faster growth ratemakes themmore sensitive to any
constraints on energy supply. Of interest here, there is evidence
for more significant body size shifts among men than women
(220), which suggests that male offspring disproportionately
picked up the signal of energetic stresses affecting adult women.

Unanswered Questions
While we have found supportive evidence for our primary
hypothesis, that the adoption of agriculture profoundly changed
human biology through re-organising life history trade-offs,
many more specific questions remain. Given the considerable
spatial, temporal, ecological, and cultural variation in the
transition to agriculture globally, one would not predict a
uniform response in different regions. Our key aim at this stage
has been to provide a broad and solid conceptual framework
that may inform and guide such future research questions. A
series of issues meriting further work, regarding the timing of
change, the environmental factors responsible, and the biological
mechanisms involved, are listed in Table 5.

Progress in investigating these questions requires more
integrative approaches to the bioarchaeology of past populations.
Research programmes in this field are often determined by focus
and methodology, investigating variation in prehistoric human
health, diet, or activity in isolation. Studies that are beginning
to combine relevant datasets in the study of prehistoric dietary
transitions, incorporating for example the study of body size,
activity patterns, and diet (280), provide a model of such fruitful
integration. Major global comparisons of prehistoric health, such
as those conducted in the “Global History of Human Health”
project (240, 281, 282), provide useful integration of relevant
palaeopathological and growth data, but would benefit from
broader integration and theoretical context to begin to investigate
past life history transitions.

A key challenge for bioarchaeologists is the interpretation
of detailed demographic and life history data from skeletal
assemblages. There are many approaches to palaeodemographic
interpretation of factors relevant to the interpretation of life
history traits, such as population structure, mortality, and
migration (283), the challenges of which have been discussed
at length (284). New osteological approaches have also been
developed for the interpretation of fertility (285) and the
timing of puberty (286) that deserve greater attention. Future
research could address many of the questions posed above
through systematic comparison of skeletal assemblages and the
integration of bioarchaeological studies of prehistoric growth,
activity, diet, and pathology with skeletal estimates of life history
parameters including fertility, birth weight, age at menarche, and
age at death and mortality profiles. There are also opportunities
to apply modelling approaches. For example, both human
biology and agriculture can be approached through the lens of
“risk management” (287, 288).
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TABLE 4 | Hypothesised selective pressures and genetic change impacting life history functions associated with the transition to agriculture.

Inferred selective pressure Change in alleles Life history functions affected References

Increased burden of infectious disease Most adaptations targeting coding variation related to human innate

immune function have occurred in the last 6,000–13,000 years

Defence (257)

Rising population density and pools of

standing water favour mosquito-borne

diseases

Selection for various forms of haemoglobinopathy in last 5,000 years,

providing protection against malaria

Defence (258)

Changes in the physical properties of

food

Quantitative genetic models show directional changes in skull

morphology indicating trend toward lower masticatory demands

Growth (259)

Domestication of plants Modifications to Cytochrome P450 and NAT2 genes promote

detoxification of plant secondary compounds

Defence (256)

Introduction of dairying Independent emergence of alleles for lactase persistence emerged in

several different global regions in association with dairying

Growth (260)

Increased consumption of starch from

new crops

Genetic variants of TCF7L2 associated with improved blood sugar

regulation evolved in three global regions at the same time as

agricultural transition

Maintenance (261)

Consumption of new fermented

products that contain alcohol

Selection on alcohol dehydrogenase alleles resulting in more efficient

ethanol metabolism

Maintenance (262)

Increased risk of famine associated with

crop failure

Derived GIP-1920A haplotype could have maintained higher maternal

blood sugar levels during famines, favouring fetal survival and growth

Reproduction (263)

BOX 2 | Populations that did not adopt agriculture.

While our focus has been on the transition to agriculture, much may be gained from extending the investigation of trends in life history trade-offs to populations that

did not adopt any kind of farming, or who made only transient shifts toward agricultural subsistence, or who are only just starting to make this transition.

In the long-term past, populations that continued to forage provide a key reference against which to compare early farmers. Prehistoric foragers did not necessarily

inhabit stable ecological environments, and may for example have had to adapt to major climatic change, as highlighted by research on the Natufians in the Levant

(2, 264). Moreover, populations that persisted in foraging may have been exposed to the impact of neighbouring farmers on the local ecology (9), and over longer

time periods foragers were increasingly pushed toward more marginal habitats (191).

Similarly, it is possible to study more recent “transitions to agriculture,” where foraging is only recently or currently being abandoned. Examples include the Toba

and Wichí of the Argentine Gran Chaco (265), the Tsimane in Bolivia (266), the Pume in Venezuela (267), the Ache in Paraguay (268), and the Hadza in Tanzania

(269). Other researchers have addressed this opportunity by studying groups of farmers and foragers that are closely related, such as the Bofi of the Central African

Republic (270).

Such research can provide unique insight into the shifting trade-offs that we consider fundamental to the transition in the past. For example, a study of the Agta, a

foraging population from the Philippines, found that more sedentary groups engaging in horticulture demonstrated increased levels of viral and helminthic infections

but also higher fertility levels compared to those still foraging, thus supporting the notion that the shift toward sedentary life diverts energy toward defence and

reproduction (271).

For those addressing genetic adaptations, a current limitation
is the bias of genome-wide association (GWA) studies toward
individuals of European ancestry. For example, a summary of
GWA studies reported up to 2019 found that 78.4% of individuals
included in such studies were of European ancestry, and just
10.2, 2.0, and 1.3% of Asian, African or Hispanic/Latin American
ancestry, respectively (289). Further work could provide a more
comprehensive perspective on genetic change associated with the
transition to agriculture.

While our main aim is to encourage application of the life
history theoretical framework to the archaeological record, it may
also be used to shed light on life history traits in contemporary
farmers, especially where they have practiced a specific form
of agriculture for many centuries (Box 3). One intriguing
issue relates to human—plant—parasite interactions. Although
cultivated cropsmost obviously supply human energy needs, they
may also supply specific nutrients that promote immune defence
against local pathogens (299). For example, the cultivation of fava
beans is common among circum-Mediterranean populations,

and dates back to ∼8,500 years in the Levant. These populations
also demonstrate high levels of deficiency in the enzyme glucose-
6-phosphate dehydrogenase (G6PD), and both G6PD deficiency
and fava beans increase risk of “favism,” a form of acute
haemolytic anaemia. However, G6PD deficiency also confers
protection against malaria, and this protection is enhanced by
consumption of fava beans (299). This and other examples
indicate that the type of crops cultivated could alter the impact
of pathogens on human biology, with potential implications for
life history trade-offs.

Overall, we hope that our conceptual approach will stimulate
more work on the transition to agriculture, and indeed it could
also be applied to other transformations of the human subsistence
niche, as briefly reviewed next.

BEYOND AGRICULTURE

The life history transitions that we have focused on around the
origins of agriculture are by no means unique. Our over-arching
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FIGURE 7 | Associations of the Gender Inequality Index (GII), a marker of societal gender inequality, with the prevalence of (A) low birth weight, (B) child stunting, (C)

child wasting, and (D) the risk of child mortality in the first 5 years of life, across 96 countries. Reproduced with permission from Marphatia et al. (278).

TABLE 5 | Issues that merit investigation in future work.

Timing

Which periods generated the greatest selective pressures, opportunities or

stresses, and drove the most marked life history shifts?

How correlated were life history trade-offs temporally?

What were the implications for human life-history trade-offs of first domesticating

crops vs. animals?

Were there periods that favoured increased energy allocation to growth and

maintenance?

How did past disease epidemics emerge, and in which periods did mortality

risk peak?

Environment

How did human life-history trade-offs vary in association with different types of

agriculture?

How did trade-offs vary in association with different ecological conditions?

To what extent did “labour traps” associated with dietary and cultural transitions

determine energetic allocation toward activity?

How did changing activity patterns shift energy allocation through the lifespan?

Mechanism

To what extent were genetic vs. plastic responses involved?

Beyond energy supply, what other “nutritional currencies”—e.g.,

macronutrients/micronutrients—drove trade-offs?

What was the shape of life history trade-offs (linear, non-linear)?

Were trade-offs conditional on phenotype, or on developmental experience?

hypothesis is that much adaptive change in humans may be
underpinned by such life history transitions. There is evidence
that the trends we discussed above were already operating at

slower paces during the palaeolithic, and we can project them
back into the deeper past. Indeed, contrasting with the current
focus on skeletal traits such as the form of bipedalism and the size
of the adult brain, the entire evolutionary history of hominins can
be portrayed as the evolution of different life history strategies,
as explored in another paper in this collection (300). The same
approach can also be used to reconstruct the evolution of human
childhood and “emerging adulthood” (301, 302).

Similar trade-offs are expected to have occurred since the
origins of agriculture. Figure 8 summarises a series of events
in recent human history where combined changes in mortality
risk and subsistence niche can be expected to have elicited the
reorganisation of human life history strategy. Some of these have
already been supported by evidence. For example, Stock and
Migliano linked a reduction in stature among Great Andamanese
Islanders with increased mortality associated with exposure to
British colonial rule (303). We briefly consider in more detail two
recent examples.

Onset of Industrialisation
The early industrial revolution was another period in which,
paradoxically, substantial population growth occurred in the
UK while markers of health and, in some populations, life
expectancy declined. These correlated trends were highlighted in
the nineteenth century by pioneering political economists, who
understood very well that while the overall supply of food was
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BOX 3 | Life history adaptations evident in contemporary farmers.

One example of how a particular form of agriculture has left a signal in contemporary life history trade-offs is given by the Sardinian population, a genetic isolate

occupying an island off the Italian mainland. Their subsistence mode was historically based on sheep farming and cultivating cereals and legumes, under the notable

ecological stress of endemic malaria. Until recently, the typical phenotype of Sardinians included short stature (290) but also longevity, indicated by a high prevalence

of centenarians (291), as well as lactose intolerance (292). The population also shows a very high prevalence of G6DP deficiency, which can be attributed to the

selective pressure of malaria. Co-adaptation of the microbiota also appears to contribute to longevity (291), whereas gene polymorphisms of cytokines playing a

major regulatory role in the inflammatory response are not associated with life expectancy (293). The microbiome can impact many metabolic traits in the host, for

example by varying in its species diversity, the presence of species that aid the digestion of particular diets, and its inflammatory profile (294–296). This suggests that,

aside from any selective pressures acting directly on human genetic determinants of lifespan, the transition to agriculture might also have elicited life history trade-offs

through changes in the genetic profile of the microbiome.

In recent decades, the eradication of malaria, nutrition transition, and dietary change has elicited a rapid secular trend in height in Sardinia, greater than elsewhere

in Italy (290), but also increased rates of auto-immune diseases such as coeliac disease and type 1 diabetes (292, 297, 298). The high levels of these diseases may

reflect the overloading of homeostatic traits that evolved to optimise fitness in pre-modern conditions.

FIGURE 8 | Potential events in human evolutionary and recent history, where

changes in mortality risk and dietary subsistence may have elicited the

reorganisation of human life history strategy.

increasing, many of the new factory workers were exposed to
appalling living conditions and suffered high rates of infant, child,
and adult morbidity and mortality (304).

Data on soldiers born in the southern part of the UK indicate
a broad decline in adult height from the mid eighteenth to
the mid- nineteenth century, reaching a nadir around 1,855
(305). At the same time, the rapidly growing industrial cities
were characterised by worsening air pollution and exposure to
infectious disease (304). Adults also demonstrated high levels of
degenerative diseases, which were directly linked with poor living
conditions (306). Nonetheless, the nineteenth century also saw
substantial population growth in the UK, from around 11 million
in 1,801 to 37 million by 1,901 (307).

These trends match closely with those we have described for
agriculture, and indicate the diversion of energy to immune
function and reproduction, at the expense of growth and
maintenance. Another similarity is that these life history
transitions occurred under the influence of dietary change, as

new industrial foodstuffs (bread, jam) and imported foods from
overseas colonies were used to reduce the costs of expanding the
new urban proletariat (308).

Nutrition Transition
The latest life history transition could be said to be taking
place through globalisation and the nutrition transition. In
high-income countries, the long-term transitions have been
favourable to health, indicating the benefits of better food
supplies and public health efforts to combat infectious disease
(89). Industrialised countries have seen secular increases in
height as well as steady improvements in life expectancy, and
both of these have been directly associated with declines in
infant mortality rate, indicating a lower allocation of energy to
immune defence in early life (89). The twentieth century has also
seen major demographic changes, encompassing both later onset
of reproduction and reduced family size. These demographic
changes have been in large part achieved by the uptake of various
forms of contraception. Thus, in high-income countries, life
history transitions have seen a re-allocation of energy to growth
and maintenance, over reproduction, and defence.

In low- and middle-income countries, however, the trends are
more complex. Secular increases in height have been relatively
modest, especially in south Asia and sub-Saharan Africa (309),
whereas increases in obesity have been much more noticeable
(310). Improvements in life expectancy have been variable, and
epidemics such as HIV briefly reduced it in some countries.
Moreover, within recent decades, around 80% of the global
burden of chronic non-communicable disease is now occurring
in low- and middle-income countries (311).

Why are these trends different from those in high-income
countries? A key factor is likely to be the persisting high burden
of infectious disease, which is detrimental both to child growth
and health (maintenance) (89), as well as other social and
environmental stresses (312). Given higher extrinsic mortality
risk, it is arguably unsurprising that energy allocation to growth
and maintenance is constrained in favour of greater allocation to
reproduction and defence. Contrasting with the modest secular
increase in height, many populations are showing substantial
increases in central abdominal fat, as well as secular declines
in the average age at menarche (313). These trends may be
exacerbated by the fact that nutrition transition is not only
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increasing energy availability, but also changing the composition
of the diet, making it more obesogenic (314).

CONCLUSIONS

In summary, we have used life history theory to consider how
rapid environmental shifts may have impacted human growth
and development by orchestrating coordinated and synchronic
life-history trade-offs in human populations. The primary change
appears to have been a systematic shift toward allocating energy
to reproduction and defence, indicated by population growth and
both direct and indirect indications of higher infectious disease
load. This shift reduced the energy available for growth and
maintenance, indicated by declines in stature and an increase in
markers of degenerative bone disease.Where populations did not
follow this general pattern, we can still use life history theory to
understand how different life history transitions emerged.

The conceptualmodel that we developedmay help understand
other major transitions such as industrialisation and rapid
nutrition transition. Over the last 150 years in high-income
countries, public health efforts have simultaneously improved
diet and reduced infection risk, thus reversing the life history
transitions that were provoked by adopting agriculture (8). In
contemporary low and middle income countries, conversely,

where infectious disease burdens remain high for both
infants/children and adults, and agricultural yields have been
poor for decades, the subsistence niche has changed substantially
less over centuries (though this is also related to historical trends
such as colonialism) (8). As rapid nutrition transition occurs,
the change in energy availability is not accompanied by equally
rapid changes in broader living conditions, providing us with
new insight into why the primary secular trends relate more to
adiposity than to adult height.

We thus link the construction of novel niches with life history
responses, including evolutionary strategies for body size. This
approach may ultimately help understand how developmental
plasticity mediates links between changes in our subsistence
niche and human health outcomes.
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