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The Wamide neuropeptide superfamily is of interest due to its distinctive functions in

regulating life cycle transitions, metamorphic hormone signaling, and several aspects of

digestive system function, from gut muscle contraction to satiety and fat storage. Due to

variation among researchers in naming conventions, a global view of Wamide signaling in

animals in terms of conservation or diversification of function is currently lacking. Here, I

summarize the phylogenetic distribution of Wamide neuropeptides based on current data

and describe recent findings in the areas of Wamide receptors and biological functions.

Common trends that emerge across Cnidarians and protostomes are the presence

of multiple Wamide receptors within a single organism, and the fact that Wamide

signaling likely functions across an extensive variety of biological systems, including

visual, circadian, and reproductive systems. Important areas of focus for future research

are the further identification of Wamide-receptor pairs, confirmation of the phylogenetic

distribution of Wamides through largescale sequencing and mass spectrometry, and

assignment of different functions to specific subsets of Wamide-expressing neurons.

More extensive study of Wamide signaling throughout larval development in a greater

number of phyla is also important in order to understand the role of Wamides in hormonal

regulation. Defining the evolution and function of neuropeptide signaling in animal nervous

systems will benefit from an increased understanding of Wamide function and signaling

mechanisms in a wider variety of organisms, beyond the traditional model systems.
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INTRODUCTION

Neuropeptides are short peptidergic molecules released by animal neurons that act as modulators
or hormones to regulate biological processes. These signaling molecules are notable for being
present in the nervous system of early metazoans, and for their important functions in regulating
animal behavior and physiology. Historically, neuropeptides have been named according to their
function, or where function is unknown, according to repetitive conserved sequence motifs
found in the precursor peptide. These naming strategies have the unfortunate consequence of
often obscuring neuropeptide relationships across species or phyla. The Wamide neuropeptide
superfamily is a striking example of this. Wamides are repetitive proneuropeptides that contain
multiple cleavage sites flanking short, amidated active peptides with a conserved C-terminal
tryptophan (W). This neuropeptide superfamily is of ancient origin, already present in the last
common ancestor of cnidarians and protostomes (1). Depending on the species in which they
were studied, Wamides have been referred to as myoinhibitory peptide (MIP), allatostatin B
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(ASTB), prothoracicostatic peptide (PTSP), WWamide,
GLWamide, or metamorphosin A (MMA). Even the name
“Wamide” is not ideal for defining this neuropeptide family,
since neuropeptides from other families may also contain
a C-terminal amidated tryptophan residue. For example,
adipokinetic hormone (AKH) in some insect species, molluscan
APGWamides and echinoderm luqins, and some insect short
neuropeptide F’s (sNPF) also have C-terminal Wamide motifs,
but phylogenetic analyses indicate that these neuropeptides
belong to the AKH/corazonin/ACP/GnRH superfamily, the
RYa/luqin, and the sNPF/prolactin superfamilies, respectively
(2–5), therefore they are not considered here. In this mini review,
I aim to unite recent knowledge of Wamide expression and
function in diverse phyla to improve understanding of their
evolutionary history and identify remaining knowledge gaps
where future research could enlighten the evolution of Wamide
function and mechanism of action.

A BRIEF HISTORY OF WAMIDE
DISCOVERY

The first known Wamide discovered was locust myoinhibitory
peptide (LOM-MIP). LOM-MIP was identified as a suppressor
of visceral muscle contraction in hindgut and oviduct in 1991
(6). Subsequently, WWamide neuropeptide was identified
in the mollusc Achatina fulica (7) and the first cnidarian
GLWamide, known as metamorphosin A (MMA), was
identified in Anthopleura elegantissima (8). Initially, both
WWamide and MMA were considered novel peptides
unrelated to insect MIPs. The term allatostatin B was
used to describe MIPs which inhibited juvenile hormone
III synthesis in the cricket Gryllus bimaculatus (9). In the
silkworm Bombyx mori, MIPs were anointed “prothoracicostatic
hormone” (PTSP), due to their inhibition of ecdysone
synthesis in this species (10), although cricket ASTBs were
also found to inhibit ovarian ecdysteroid synthesis prior
to this (11). The first crustacean Wamide was identified
in crab in 2005 and was noted to be related to insect
ASTBs (12).

Fifteen years after the discovery of LOM-MIP, the term
“Wamides” was first used to describe this neuropeptide
superfamily in the construction of a metazoan neuropeptide
database by Liu et al. (13), who grouped Arthropod
MIP/ASTB/PTSP, cnidarian GLWamides, molluscanWWamides
and nematode MIPs within the Wamide family. Annelid
Wamides were identified in 2011 by Veenstra (14), who
noted their link to insect and mollusc Wamides. Genome
analysis of the gastropod Lottia gigantea reinforced the
link between molluscan WWamides and insect ASTB
(15). Largescale similarity-based clustering of metazoan
neuropeptides revealed that Wamides form part of the ancient
central cluster of repetitive proneuropeptides that give rise to
short, amidated peptides, with representative sequences from
annelids, molluscs, platyhelminths, nematodes, arthropods, and
cnidarians (1).

PHYLOGENETIC DISTRIBUTION OF
WAMIDES

Following initial discoveries of Wamides through peptide
purification and sequencing, recent largescale genomic and
transcriptomic analyses have enabled a more complete view
of Wamide distribution throughout the animal kingdom
(Figure 1). Wamide neuropeptides also occur in brachiopods
(18), tardigrades and priapulids (19–21). Transcriptome
analysis of xenacoelomorph neuropeptides did not find
myoinhibitory peptide orthologs, although a putative MIP
receptor was found in an acoel (22). A transcript fragment
of a MIP can be found however in a Xenoturbella bockii
transcriptome dataset used to identify homeobox genes (21),
thus the presence of MIP signaling in xenacoelomorphs
remains uncertain for now. Extensive transcriptome analyses
recently confirmed the presence of Wamides in all molluscan
groups, but also supported the absence of Wamides (ASTB) in
phoronids, platyhelminths and rotifers, as well as ectoprocts and
entoprocts (23).

Despite extensive sequencing data, Wamides have not been
identified in deuterostomes, although phylogenetic analysis of
GPCRs identified orphan human GPCR139 and GPCR142
as potential MIP receptor orthologs (24). Ligands for these
receptors have not been confirmed in vivo but are suggested to
be small peptides or amino acids, such as L-Trp (W) and L-
Phe (F) (25, 26). Therefore, while a Wamide signaling system
arose early in metazoan evolution, in a cnidarian/bilaterian
ancestor, it appears to have been lost multiple times during
evolution, including in ambulacrarians and tunicates. This trend
also occurs within phyla, for example, although widespread
among insects, Wamides have not been found in the honey
bee, wasp, or leaf-cutting ants (27, 28). A precise picture of
Wamide gain and loss throughout metazoan evolution requires
further sequence data, particularly from lesser-studied spiralian
and ecdysozoan phyla.

Wamide distribution among early branching metazoan phyla
is of ongoing interest. Recent bioinformatic analyses indicate that
among cnidarians, GLWamides are absent in class Scyphozoa,
Staurozoa, and Octocorallia (29). The same analysis uncovers
new G{A/V/T}Wamides in Cubozoa, Scyphozoa, and Staurozoa.
How these new cnidarian Wamides relate to GLWamides
and the rest of the Wamide neuropeptide superfamily awaits
further investigation, however it is interesting to note that an
{A/V/T}Wamide C-terminal motif also occurs in arthropod,
mollusc and annelid Wamides (Figure 2). In the placozoan
Trichoplax adhaerens, an RWamide precursor was found through
bioinformatic prediction (30). Placozoan RWamide has strong
resemblance to cnidarian GLWamides (Figure 2), however since
some luqin/RYamide and sNPF/prolactin family neuropeptides
also show a conserved RWamide C-terminal motif (4, 5), it is
currently unclear to which superfamily the placozoan RWamide
belongs. Similarly, although putative neuropeptide precursors
were found in ctenophores these did not have homology to
other metazoan neuropeptides. However, since the cross-phylum
conservation of neuropeptides can be limited to just a few
residues (1, 31), the existence of Ctenophore Wamides remains a
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FIGURE 1 | Phylogenetic distribution of Wamide neuropeptides. In “Genome” column, black boxes indicate the presence of both genome and transcriptome data,

gray boxes indicate the presence of transcriptome data only, without a published genome. In “Wamide” column, black boxes indicate confirmed presence of Wamide

neuropeptide, gray boxes indicate putative Wamide sequence (partial sequence, sequence evidence only from transcriptome shotgun assembly), striped gray box

indicates uncertainty of Wamide superfamily orthology, white boxes indicate lack of Wamide according to currently available sequence data. “Motif” column indicates

conserved structure of Wamides within each phyla. In “GPCR” column, black boxes indicate presence of MIP/sex peptide receptor GPCR ortholog confirmed by

receptor deorphanization assay, white boxes indicate currently no orthologous biochemically confirmed GPCR. Phylogeny and presence of genome based on Bezares

et al. (16), Figure 6, with authors’ permission. Tree structure based on a phylogenomic study with Bayesian inference under the CAT + GTR + γ4 model to suppress

long-branch attraction artifacts (17).

possibility. No neuropeptide-like precursors have been identified
in poriferans to date, despite neuropeptide-processing enzymes
being present in the Amphimedon queenslandica genome (32).
Further peptide and receptor characterization through mass
spectrometry, largescale receptor deorphanization and functional
studies are needed to clarify the occurrence and evolution
of Wamide signaling in poriferans, ctenophores, placozoans,
and cnidarians.

WAMIDE RECEPTORS

The most well-described Wamide receptor is a rhodopsin family
G-protein-coupled receptor (GPCR). This was initially called the
sex peptide receptor (SPR) after its first characterized ligand, the
Drosophila sex peptide (33). Whereas sex peptides only occur in
the family Drosophilidae and specifically activate the Drosophila
receptor, Drosophila MIPs can activate orthologous receptors
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FIGURE 2 | Alignment of subset of mature Wamide consensus sequences

from representative species of each phyla. Conserved N- and C-terminal

tryptophan residues are highlighted (blue). The terminal glycine (green) is

modified to provide an amide group during posttranslational modification.

Sequences used to generate consensus are contained in

Supplementary Data and available through NCBI.

from other insect groups and from Aplysia californica, a mollusc
(34). Following this discovery, it was deduced that the sex peptide
receptor’s ancestral ligands were in fact MIPs (34, 35), causing
a reassignment of name to myoinhibitory peptide receptor. Sex
peptides differ significantly from MIPs in their primary amino
acid sequence; they are larger (36aa cf. 9-12aa), lack C-terminal
amidation, and contain a disulfide bridge. Like MIPs, however,
sex peptides contain a pair of tryptophan (W) residues which
are predicted to stabilize a beta-turn secondary structure adopted
by both peptides (34). The conserved tryptophans are required
for receptor binding in both sex peptide and MIPs, indicating
that they may interact with a common binding site on the
receptor (34).

Orthologs of the MIP receptor have been biochemically
characterized in insects [fruitfly, mosquito (34), tick (36), kissing
bug (37), silkworm (35)], a mollusc (34), nematode (38), and
annelids (39). Receptor deorphanization assays with modified
peptides show that the two conserved tryptophan residues are
important for receptor activation. The C-terminal tryptophan
residue is especially critical for receptor activation; when this
residue is replaced with an alanine, all receptor activity is lost in
both annelids and insects (34, 37, 39, 40).

Unlike protostomes, a cnidarian Wamide receptor has not yet
been identified. Receptor identification based on phylogenetic
analyses alone may prove difficult, as most cnidarian GPCRs
are more closely related to each other than to specific
nephrozoan receptors (22). A largescale combinatorial receptor
de-orphanization approach, such as that used to identify
several novel peptide-receptor pairs in Platynereis dumerilii
(41), would be useful in this endeavor. Without a known
receptor, cnidarian Wamides can not be definitively confirmed
as orthologs of protostome Wamides. However, sequence
similarity clustering (1), the conservation of the C-terminal
GLWamide motif in nematode and some insect MIPs (Figure 2
and Supplementary Data), the greater importance of the C-
terminal tryptophan for receptor binding (see above), and the
occasional occurrence of an N-terminal tryptophan in cnidarian
GLWamides (e.g., Hydra vulgaris, Supplementary Data) are in
support of orthology.

The presence of multiple Wamide receptors in the same
organism is emerging as a common theme. Caenorhabditis
elegans has three receptors related to arthropod MIP receptors
(38). In Drosophila melanogaster, loss of the MIP/SPR GPCR
does not affect the function of MIP in appetite control
or female mating behavior, indicating that MIP may act
through one or more additional receptors (42, 43). In the
hydrozoan Hydra magnipapillata, the GLWamide Hym-248
activates both endodermal muscle contraction and sphincter
muscle contraction, whereas other GLWamides activate only
sphincter muscle contraction (44). This additional function of
Hym-248 suggests that a receptor specific only to this peptide
is expressed in endodermal muscle, while a more generalist
GLWamide receptor is expressed in sphincter muscle (45).
These findings indicate that a common evolutionary strategy for
the diversification of Wamide peptide function is through the
addition of receptors with varying binding specificities.

A new family ofWamide receptors has recently been identified
in the marine worm Platynereis dumerilii (46). These receptors
are peptide-gated ion channels from the degenerin/epithelial
sodium channel family. The MIP-gated ion channel (MGIC)
receptor is paralagous to the FMRFamide-gated sodium channels
found in snails and cnidarians (47, 48). The mechanism of MIPs
binding to the MGIC receptor is similar to that of binding to
the MIP GPCR in that the conserved tryptophans are essential
for receptor activation. As with the MIP GPCR, replacement
of the N-terminal tryptophan with an alanine reduced MGIC
receptor activity, while replacement of the C-terminal tryptophan
abolished MGIC receptor activity (46). Although all eleven
mature MIP peptides from the same precursor activate both
the MIP GPCR and the MGIC receptor, each mature peptide
preferentially activates one of the receptor types, suggesting a
mechanism for diversification of peptide function. Comparison
of in vivo concentrations of the different mature MIPs to
receptor activation concentrations determined in vitro would
indicate whether different mature MIPs really activate both
MGIC and GPCR receptor types in vivo. Phylogenetic analysis
of peptide-gated ion channels identified nematode, amphioxus,
and cnidarian sequences related to MGIC/FaNaC peptide-gated
ion channels (46), however these putative peptide-gated ion
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channels are yet to be assigned a peptidergic ligand through
physiological assays.

KNOWN FUNCTIONS OF WAMIDES

Throughout metazoans, Wamides have a wide variety of
functions and often carry out multiple functions within the
same organism. One known function of Wamides shared
between cnidarians and protostomes is the regulation of life
cycle transitions. Cnidarian GLWamides induce larval settlement
and metamorphosis in the hydroid Hydractinia echinata, as
well as the larvae of several coral species, and the hydrozoan
Clytia hemisphaerica (8, 49–52). Knockdown of the GLWamide
precursor gene inNematostella vectensis showed that GLWamide
is not necessary for metamorphosis, at least in this species, but
plays a modulatory role in determining metamorphic timing
(53). Similar to cnidarians, treatment of larvae of Platynereis
dumerilii with synthetic MIP peptide induces settlement (39).
Both cnidarian and P. dumerilii Wamide-expressing cells are
sensory-neurosecretory, suggesting that this neuropeptide plays
a role in activating a settlement and metamorphosis program
in response to specific environmental cues, however the nature
of the environmental cues that trigger Wamide peptide release,
and the downstream signaling pathways activated or repressed by
Wamides require further characterization. Microarray and RNA-
Seq studies of GLWamide-treated branching coral Acropora
millepora identified significant changes in transcription after
peptide exposure (54, 55). These studies may be useful
for identifying candidate genes and pathways for functional
investigations of Wamide signaling networks acting in coral
metamorphosis, now that tools for genome editing are available
for coral (56). Curiously, the Hydra GLWamide, Hym-248,
also promotes settlement and metamorphosis in two species
of sponge (57). This suggests that although Wamides haven’t
been identified in sponges, there may be some overlap
between the signal transduction pathways involved in sponge
and cnidarian metamorphosis, particularly at the level of
neuropeptide receptors.

Similar to regulatingmarine invertebrate larval settlement and
metamorphosis, in some insect species, Wamides regulate levels
of metamorphic hormones. In the silkworm, PTSPs suppress
ecdysteroidogenesis in the prothoracic glands (10, 35, 58), while
in crickets, allatostatin B inhibits juvenile hormone production
(59, 60). MIPs also regulate aspects of the behavioral sequence
underlying ecdysis in D. melanogaster and Manduca sexta, as
part of a peptidergic signaling cascade initiated by ecdysis
triggering hormone (61–64). However, functions of Wamides
during insect larval development and how Wamides regulate
hormone production or release still require further investigation.
Do Wamides also regulate hormones similar to juvenile
hormone or ecdysone in the induction of marine invertebrate
metamorphosis? Juvenile hormone and its precursor, methyl
farnesoate, can regulate larval metamorphosis in polychaetes and
barnacles (65, 66) and ecdysone signaling may play a role in
crustacean and mollusc metamorphosis (67), however Wamide
function in mollusc and crustacean larval stages has not yet
been reported, nor has the effect of Wamides on specific marine
invertebrate hormones.

Perhaps the most widely conserved function of Wamides
is the regulation of muscle contraction. In arthropods, MIPs
inhibit muscle contraction in the hindgut, oviduct and
heart/pyloric system (6, 68–72). Contrary to their name,
MIPs promote muscle contractions in annelid gut muscles
(73). Cnidarian GLWamides also promote muscle contractions
in the longitudinal (ectodermal) muscles and circumferential
(endoderm) muscles (44). A specialization of the muscle
contraction function of some Hydra GLWamides is in inducing
the contraction of sphincter muscles, which causes detachment
of buds from a parental polyp, thereby linking Wamides to
the regulation of asexual reproduction in Hydra (74). Mollusc
WWamides inhibit the phasic contractions of the anterior byssus
retractor muscle in mussel, but potentiate contractions of the
penis and radula retractor muscles in land snail, as well as
inducing contractions of the radula protractor muscle in a
gastropod (7). Studies of the effects of Wamides on muscle
contraction have revealed that Wamide effects are dependent
on the current physiological state of the system (71), the
concentration of peptide applied (7, 75), the type of receptor
activated (45), and whether the peptide acts pre- or post-
synaptically (7).

Additional to the regulation of muscle contraction in the
digestive system, Wamides have been implicated in a variety
of feeding-related functions, primarily in insects. In the kissing
bug and ticks, MIP expression in the salivary glands suggests
a role in salivation (36, 37, 76, 77). Activating MIP neurons
in D. melanogaster adults decreased food intake and body
weight and reduced the sensitivity of starved flies toward food
(42). Also in D. melanogaster, MIPs modulate attraction to
polyamine food odors in mated females (78). This sex-specific
modulation is through an autocrine signaling mechanism, with
MIP and the MIP/sex peptide receptor both expressed in taste
and olfactory neurons. Recent findings from C. elegans show a
role for MIP in aversive gustatory short-term learning, and long-
term learning of salt avoidance behaviors (38). MIP’s function
in sensing specific food cues in adult fly and nematode shows
interesting parallels with the role of MIP in regulating marine
invertebrate metamorphosis. In both cases, MIP is expressed
in neurons with chemosensory morphology and detection of
specific cues and release of MIPs activates a switch in states. Cues
for marine invertebrate metamorphosis are also often associated
with preferred food sources of their future adult stages (79).

Beyond the regulation of life cycle transitions, muscle
contraction and feeding/digestive, MIPs may also play a role in
diverse biological systems, including reproductive, visual, and
circadian systems. In female D. melanogaster, MIP-expressing
abdominal interneurons enhance mating receptivity in mated
females (43). Additionally, MIP-expressing interneurons in the
central brain form part of a mechanosensory circuit that informs
femalemating decisions (80). Also inD.melanogaster, some optic
lobe neurons express MIP, although it is not yet clear if these
regulate signaling in the visual or circadian system, or both (81).
MIP expression in D. melanogaster cycles with circadian rhythm,
in line with the role of MIP in maintaining a sleep-like state in
adults (82). Spatial expression of MIP in cockroach brains also
suggests a role in the circadian system (83, 84). MIP expression in
insects has some similarities to GLWamide expression in jellyfish.

Frontiers in Endocrinology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 344

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Williams Wamide Function and Distribution

For example, GLWamide expression is seen in the gonadal
ectoderm cells of Clytia hemisphaerica and Cytaeis uchidae
(85, 86), as well as the photoreceptive organs of the jellyfish
Cladonema radiatum, Aurelia aurita, and Tripedalia cystophora
(87). In both insects and cnidarians, further functional studies
are needed to reveal the function of Wamides in reproduction,
vision or circadian rhythm. These previous studies of spatial
expression highlight the usefulness of detailed expression atlases
that encompass different life cycle stages, sexes and whole-
body analyses for additional species and phyla, to provide initial
indications of Wamide function in distinct biological systems.

CONCLUSIONS AND FUTURE
DIRECTIONS

Wamides are clearly neuropeptides of significant importance
to nervous system signaling, with a role in diverse biological
systems throughout an organism’s life cycle. The fact that
Wamide signaling is lost in some species or phyla indicates
that Wamides function within more complex networks of
neuropeptide signaling, sometimes playing a modulatory but
non-essential role, and their functionmay be taken on or replaced
by other neuropeptides. Several similarities are seen in both
the function and spatial expression of Wamides in cnidarians
and protostomes, supporting the definition of this neuropeptide
superfamily, however the identification of cnidarian Wamide
receptors will further enlighten the evolution of Wamide
signaling in metazoans.

The most detailed studies of Wamide signaling to date have
been carried out in model organisms D. melanogaster and C.
elegans and these studies show that subsets of MIP-expressing
neurons are likely different cell types (e.g., sensory neurons
vs. interneurons) responsible for different aspects of Wamide
function. It is therefore important for future studies aiming to
uncover mechanisms of Wamide signaling to develop methods
for manipulating specific subsets ofWamide-expressing neurons.
One approach to this is through the development of libraries of
reporter constructs driven by different promoters with a range of
cell-specificities. Further understanding ofWamide signaling can
also be achieved by analysis of genes co-expressed in Wamide-
and Wamide receptor-expressing cells and more widespread
analyses of Wamide receptor expression. These analyses can

indicate mechanisms of signaling, such as autoregulation in
cells expressing both Wamide and receptor, or association
with specific neurotransmitters, such as GABA or acetylcholine.
They can also be used to generate maps of potential signaling
cascades, as in insect ecdysis (61), through the comparison of
expression of other neuropeptides and receptors. Receptor-ligand
expression mapping based on single cell transcriptome data, as
in (88), which should then be functionally tested, will facilitate
these analyses.

Another aspect of Wamide signaling of importance for
future studies is the identification of signaling cascades activated
following Wamide release and receptor binding, in terms of
which class of G protein is recruited, if indeed theWamide signal
is GPCR-mediated, and which downstream signaling pathways
are activated or repressed. Again, single cell RNA-Seq analyses
or precise spatial expression mapping can be used to identify
which elements of the signaling pathway are present in the target
cells of Wamide signaling. With both distinctive and conserved
functions, the Wamide superfamily is an excellent model for
studying the evolution of neuropeptide signaling and patterns of
peptide-receptor coevolution in animal nervous systems.
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