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Mitochondria are highly dynamic organelles and important for a variety of cellular

functions. They constantly undergo fission and fusion events, referred to as mitochondrial

dynamics, which affects the shape, size, and number of mitochondria in the cell, as

well as mitochondrial subcellular transport, mitochondrial quality control (mitophagy),

and programmed cell death (apoptosis). Dysfunctional mitochondrial dynamics is

associated with various human diseases. Mitochondrial dynamics is mediated by a

set of mitochondria-shaping proteins in both yeast and mammals. In this review,

we describe recent insights into the potential molecular mechanisms underlying

mitochondrial fusion and fission, particularly highlighting the coordinating roles of

different mitochondria-shaping proteins in the processes, as well as the roles of the

endoplasmic reticulum (ER), the actin cytoskeleton and membrane phospholipids in

the regulation of mitochondrial dynamics. We particularly focus on emerging roles

for the mammalian mitochondrial proteins Fis1, Mff, and MIEFs (MIEF1 and MIEF2)

in regulating the recruitment of the cytosolic Drp1 to the surface of mitochondria

and how these proteins, especially Fis1, mediate crosstalk between the mitochondrial

fission and fusion machineries. In summary, this review provides novel insights into the

molecular mechanisms of mammalian mitochondrial dynamics and the involvement of

these mechanisms in apoptosis and autophagy.

Keywords: mitochondrial dynamics, fission, fusion, apoptosis, mitophagy

INTRODUCTION

Mitochondria are double membrane-bound organelles present in most eukaryotic cells. They
are traditionally considered to function as the powerhouses of the cell, generating adenosine
triphosphate (ATP) through oxidative phosphorylation, used for cellular chemical energy.
Mitochondria have their own genome, known as mitochondrial DNA (mtDNA), which in
mammalian cells contains 37 genes that are essential for normal mitochondrial function. The
mitochondrial genome encodes 2 rRNAs, 22 tRNAs, and 13 protein subunits that are essential
for the oxidative phosphorylation process. A reason why these particular genes are found in
the mitochondrial genome is that the encoded proteins are highly hydrophobic and thus would
have a problem entering the mitochondria (1–3). Besides these proteins, however, most (99%)
of mitochondrial proteins in mammalian cells are encoded by nuclear genes, synthesized in the
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cytoplasm, and imported into mitochondria (4–7). In addition
to producing ATP, mitochondria are involved in regulating
numerous cellular activities, including cell-cycle progression and
cell proliferation, the maintenance and differentiation of cells,
mitophagy, and autophagy, the mitochondria-mediated intrinsic
cell-death pathway and transduction of calcium signaling.
Additionally, mitochondria are the major organelles generating
and detoxifying reactive oxygen species (ROS) to adjust cellular
redox homeostasis (8).

Mitochondria are highly dynamic and constantly alter their
shape through fusion and fission events. The balance of fission
and fusion events is termed mitochondrial dynamics, which
is controlled by a number of mitochondria-shaping proteins
encoded by genes in the nuclear genome. In addition to
mitochondrial morphology, mitochondrial dynamics regulates
the size, number, distribution, quality control, and transport of
mitochondria in cells. Activated fission and/or inhibited fusion
can lead to fragmented mitochondria, whereas active fusion
and/or inhibited fission conversely can cause mitochondrial
elongation (9–11). Over the last decades, emerging evidence
indicates that deregulation of mitochondrial dynamics causes
mitochondrial dysfunction, impacting on a broad range of
cellular functions, and associated with a number of human
diseases (11–17).

In this review, we discuss how mitochondrial fusion and
fission is regulated by the mitochondria-shaping proteins, and
by other co-factors such as the endoplasmic reticulum (ER) and
the actin cytoskeleton, as well as how mitochondrial dynamics
influences a variety of cellular biological processes such as
apoptosis and mitophagy.

THE MITOCHONDRIAL FUSION
MACHINERY

The Yeast Mitochondrial Fusion Machinery
Mitochondrial dynamics has been studied in yeast for many
years. Themitochondrial fusionmachinery characterized in yeast
is composed of three key proteins, Fzo1p and Ugo1p, which
are anchored in the mitochondrial outer membrane (MOM),
and Mgm1p, localized in the mitochondrial inner membrane
(MIM) (Figure 1). Depleting any of these proteins results in
mitochondrial fragmentation (18–20).

Fzo1p, a large dynamin-related GTPase, is integrated in the
MOM through two adjacent transmembrane (TM) domains near
its C-terminus, and with a highly conserved N-terminal GTPase
domain facing the cytoplasm. A functional Fzo1p is a prerequisite
for fusion of the MOM (21, 22). Mgm1p is also a dynamin-
related GTPase, anchored in the MIM via an N-terminal TM
domain and a GTPase domain and two hydrophobic segments
close to the C terminus, which are exposed in the intermembrane
space. Mgm1p is required for both mitochondrial outer and
inner membrane fusion, and disruption of the MGM1 gene can
result in mitochondrial fragmentation and loss of mtDNA in
a Dnm1p-dependent manner (23–25). Both Fzo1p and Mgm1p
are evolutionally conserved from yeast to human. There are two
homologs of Fzo1p in mammalian cells, termed mitofusin 1

(Mfn1) and mitofusin 2 (Mfn2), and the mammalian homolog
of Mgm1p is known as OPA1 (26, 27).

Ugo1p was initially identified through the screening for yeast
mutants that lost mtDNA in Dnm1p-dependent mitochondrial
division (28). Ugo1p is a mitochondrial outer membrane-
anchored protein and contains three TM domains in the
middle region. The N-terminus faces the cytosol interacting
with Fzo1p directly and the C-terminal domain is exposed
to the intermembrane space for Mgm1p binding; thus Ugo1p
acts as a molecular bridge between Fzo1p and Mgm1p in
mitochondrial fusion (29, 30). Ugo1p is required for both
outer and inner mitochondrial membrane fusion (31), and loss
of Ugo1p causes mitochondrial fragmentation in yeast (28).
Two recent studies identified the nuclear-encoded mitochondrial
outer membrane protein SLC25A46 as the mammalian protein
most similar to the yeast Ugo1p, but knockdown of SLC25A46
results in mitochondrial hyperfusion, indicating an opposite
effect in human mitochondrial dynamics compared to the role
of Ugo1p in yeast (32, 33). Yet other proteins are involved in
the mitochondrial fusion process in yeast. For example, the F-
box protein Mdm30p is essential for Fzo1p ubiquitylation and
degradation after GTP hydrolysis in the late stage of outer
membrane fusion tomaintain fusion-competent mitochondria in
yeast, and this step requires Ugo1p (34–36). Pcp1p and Ups1p are
required for the processing of Mgm1p to control mitochondrial
morphology (37, 38).

The Mammalian Mitochondrial Fusion
Machinery
In mammals, there are three key dynamin-related proteins
controlling mitochondrial fusion, mitofusin 1 (Mfn1), mitofusin
2 (Mfn2) and optic atrophy 1 (OPA1) (Figure 1). All of them
are large dynamin-related GTPases and their activation proceeds
via a three-step mitochondrial fusion process: Two mitochondria
are tethered and form a docking ring structure around the
contact point between the outer membranes. Then, the two
outer membranes fuse together triggered by GTP hydrolysis,
followed by a final fusion of the two inner membranes [(39, 40);
Figure 2A].

Both mammalian Mfn1 and its paralog Mfn2 reside in
the outer mitochondrial membrane. They are homologs of
Drosophila fzo, and similar to the fusion protein Fzo1p in yeast.
Based on the topology from the ortholog Fzo1p in yeast, it is
generally accepted that both Mfns have a bipartite TM domain,
with the N-terminal and C-terminal domains of the protein
exposed toward the cytoplasm and with a GTPase domain close
to the N-terminus (26). However, it has been demonstrated
recently that Mfns in mammals only have a single TM domain,
which makes the N-terminal GTPase and HR1 domains face
the cytoplasm and the C-terminus with HR2 domain reside
in the mitochondrial intermembrane space [(41); Figure 1].
Crystal structure studies prove that both Mfn1 and Mfn2 can
form stable homodimers through their GTPase domains, which
are critical for outer membrane fusion (42–44). Mfn1 and
Mfn2 can also form heterodimers via GTPase domains in a
nucleotide-dependent manner (42). Overexpression of either
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FIGURE 1 | Schematic representation of structures, domains, and locations of key mitochondria-shaping proteins in yeast and human cells. Data were compiled from

UniprotKB (http://www.uniprot.org). Yeast: Fzo1p (855aa, P38297), Ugo1p (502aa, Q03327), Mgm1p (881aa, P32266), Dnm1p (757aa, P54861), Mdv1p (714aa,

P47025), Caf4p (643aa, P36130), Fis1p (155aa, P40515). Homo sapiens: Mfn1 (741aa, Q8IWA4), Mfn2 (757aa, O95140), OPA1 (960aa, O60313), Drp1 (736aa,

O00429), Fis1 (152aa, Q9Y3D6), MIEF1/MiD51 (463aa, Q9NQG6), MIEF2/MiD49 (454aa, Q96C03), Mff (342aa, Q9GZY8). Literature references are provided in the

main text.

Mfn1 or Mfn2 can induce perinuclear mitochondrial clustering,
whereas Mfn1/2-deficient cells contain severely fragmented
mitochondria. Furthermore, Mfn1 and Mfn2 can form homo-
and hetero-oligomers, and these three types of complexes can
work in concert to tether the outer mitochondrial membranes
of adjacent mitochondria (45). In spite of that both proteins
are essential for the maintenance of mitochondrial morphology,
Mfn1 has considerably higher GTPase activity than Mfn2

(46). In addition to controlling mitochondrial morphology,
Mfn2 has other specific functions not observed for Mfn1. For
instance, Mfn2 is involved in ER-mitochondria connections
(47), energy metabolism and insulin signaling (48), mitophagy
(49), and apoptosis (50). Strikingly, mutations in MFN2 but
not MFN1 can cause Charcot-Marie-Tooth disease type 2A
(CMT2A), a peripheral neuropathy characterized by axonal
degeneration (51). However, Mfn1 (but not wild-type Mfn2) has
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FIGURE 2 | The mitochondrial fusion machinery and canonical Drp1-dependent mitochondrial fission machinery in mammals. (A) The mitochondrial fusion machinery.

Two mitochondria are tethered and the MOM fused together by Mfn1/Mfn2, followed by fusion of the IMM by OPA1. (B) The canonical Drp1-dependent mitochondrial

fission machinery in mammalian cells. Mitochondria are pre-constricted by the ER, together with actin filaments associated with mitochondria and the ER via Spire1C

and INF2, respectively. At the ER constriction site, Drp1 is recruited by its receptors to mitochondria and assembled to form higher-order oligomers around the

mitochondrial surface. Then mitochondria are further constricted by Drp1 oligomerization, and Dyn2 is instantly recruited to the constricted site to finalize the scission

of mitochondria through GTP hydrolysis.

been shown to compensate for mitochondrial fusion deficiency
caused by MFN2 mutations through the formation of Mfn1-
Mfn2 heterooligomeric complexes (52) and rescues axonal

degeneration induced by Mfn2 mutations (53). Along these lines,
it is further shown that increased levels of Mfn1 expression in
the nervous system prevents axonal degeneration in a CMT2A
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mouse model, suggesting a potential therapeutic strategy for
this disease (54). Together, these data suggest that the two
mammalian mitofusin proteins, Mfn1 andMfn2, are functionally
correlated but non-redundant.

OPA1 is the mammalian homolog of yeast Mgm1p. It
is also a dynamin-related GTPase localized in the MIM
and essential for fusion of the MIM. OPA1 was originally
discovered by gene mutation screening of autosomal dominant
optic atrophy (27). There are at least eight mRNA variants
identified from the OPA1 gene through alternative splicing,
generating long and short isoforms (55). Membrane–anchored
long forms of OPA1 (L-OPA1) undergo proteolytic cleavage
at the S1 or S2 sites by a group of proteases residing in
the mitochondrial intermembrane space (e.g., PARL, PRELI,
Yme1L, and OMA1), resulting in soluble short forms of OPA1
(S-OPA1) (13, 56–58). Recently, crystal structures of short
Mgm1p (S-Mgm1) from C. thermophilum (59) and S. cerevisiae
(60), orthologs of S-OPA1, have been determined, providing
a mechanistic platform for understanding the functions of
Mgm1/OPA1 during mitochondrial inner membrane fusion. It
has been suggested that both long and short forms of OPA1
are required for inner membrane fusion (57). In contrast,
there are reports suggesting that long forms of OPA1 are
sufficient for mediating mitochondrial fusion when expressed
in Yme1l−/−and Oma1−/−cells. This may indicate that Opa1
processing is not necessary for fusion, and that overexpression
of short OPA1 forms trigger mitochondrial fragmentation in
Yme1l−/− cells (61). However, recent studies show that S-OPA1
play a role in MIM fusion, and cryo-electron microscopy (cryo-
EM) studies reveal that S-OPA1 has a dynamin-like structure and
employs dynamin-like power stroke membrane remodeling for
MIM fusion (62). Moreover, moderate levels of S-OPA1 together
with L-OPA1 are required for efficient and fast membrane
pore opening during the fusion process, but excess levels of S-
OPA1 inhibit fusion activity (63). OPA1 processing can also be
affected by mitochondrial membrane potential and proapoptotic
stimuli. For example, Caspase-3 can lead to N-terminal cleavage
of OPA1 resulting in mitochondrial fragmentation (64), and
CCCP treatment is also known to induce cleavage of long
OPA1 forms by OMA1 (65, 66). Knockdown of OPA1 causes
mitochondrial fragmentation (67), and overexpression of OPA1
induces mitochondrial elongation (68). Although Mfn1, Mfn2,
and OPA1 are all essential for controlling mitochondrial fusion,
overexpression of OPA1 can counteract the effect of Mfn2
knockout but not the effect of Mfn1 loss on mitochondrial
morphology (68). This confirms that there is a functional
difference between Mfn1 and Mfn2.

THE MITOCHONDRIAL FISSION
MACHINERY

The Yeast Mitochondrial Fission Machinery
In yeast, four key proteins are involved in the mitochondrial
division process: Dnm1p, Fis1p, Mdv1p, and Caf4p (Figure 1).
The dynamin-related GTPase Dnm1p is a central component in
the mitochondrial fission machinery, and was initially discovered

by screening yeast mutants with defective mitochondrial
morphology (69, 70). The re-localization of Dnm1p from the
cytosol to mitochondria is a key step in mitochondrial fission.
Fis1p is the mitochondrial receptor recruiting Dnm1p to the
surface of mitochondria via one of the adaptors Mdv1p or
Caf4p, which act as protein bridges between Fis1p and Dnm1p.
Then Dnm1p self-assembles around the mitochondrial surface
forming spiral-like structures at constriction sites leading to
mitochondrial scission (71–74).

Fis1p is anchored in the MOM via the C-terminal tail
and the N-terminal domain is facing the cytosol (75). The
cytoplasmic domain of Fis1p contains a tetratricopeptide repeat
(TPR) domain forming a concave surface, and a short N-terminal
helix, which is required for binding and recruiting Mdv1p to
the concave surface (76). Both Mdv1p and its paralog Caf4p are
soluble cytosolic proteins containing an N-terminal extension, a
middle coiled-coil domain, and a C-terminal WD repeat domain.
Acting as molecular adaptors and bridges between Dnm1p and
Fis1p, these proteins can bind to Dnm1p through the WD repeat
domain and then associate with Fis1p through the N-terminal
extension (74, 77).

In Dnm1p-null cells, when mitochondrial fission is blocked,
mitochondria form long tubular networks and mitochondrial
membranes collapse to one side of the cell (69). Fis1p-
null mutation also causes mitochondrial reticular formation
(75), indicating that both Dnm1p and Fis1p are critical for
mitochondrial division in yeast. In yeast cells where only one
of the Mdv1p or Caf4p genes has been deleted, mitochondrial
morphology is similar to wild type, but in cells with both
genes deleted, like in Fis1p-null mutant cells, mitochondria show
an elongated and net-like morphology, and most of Dnm1p
stays in the cytosol. Interestingly, overexpression of Mdv1p or
Caf4p can also inhibit mitochondrial fission, possibly because
overexpressedMdv1p or Caf4p blocks the recruitment of Dnm1p
to mitochondria (74, 78). Mdv1p and Caf4p are also endowed
with unique functions. For instance, Mdv1p is more active than
Caf4p in promoting fission, whereas Caf4p but not Mdv1p in
association with Fis1p can determine the polarized localization
of Dnm1p clusters on the mitochondrial surface after Dnm1p
recruitment (79). Furthermore, a truncated form of Mdv1p
lacking the N-terminal extension (that binds with Fis1p), fused
with the TM domain of Tom20, can be tethered to the outer
mitochondrial membrane, and this is sufficient to recruit Dnm1p
to mitochondria and trigger fission in the absence of Fis1p (80).

The Canonical Mitochondrial Fission
Machinery in Mammals
Drp1—A Central Regulator of the Canonical

Mitochondrial Fission Machinery
In mammals, the regulation of mitochondrial fission is
considerably more complicated than in yeast. The dynamin-
related protein 1 (Drp1) is the ortholog of yeast Dnm1p and
shares 42% homology with Dnm1p (81). Structural analysis
demonstrates that Drp1 exists in a dynamic equilibrium between
multiple oligomeric states in cells, and the minimal functional
assembly subunit is a dimer (82). Like its yeast ortholog, Drp1
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acts as themaster regulator and plays a central role inmammalian
mitochondrial fission. In mammalian cells, Drp1 is primarily
present in the cytosol, but can be recruited via any of its
mitochondrial receptors (such as Fis1, Mff, MIEF1/MiD51, and
MIEF2/MiD49, see Figure 1) to the mitochondrial surface, where
it is assembled into higher-order complexes that wrap around the
mitochondrial surface triggering mitochondrial fission through
its GTPase activity (83). Thus, Drp1 and its four mitochondrial
receptors Fis1, Mff, and MIEFs (MIEF1 and MIEF2) constitute
the core components of the canonical mitochondrial fission
machinery in mammals. In contrast to the strong evolutionary
conservation betweenDrp1 andDnm1p, their interacting factors,
i.e., Mdv1p and Caf4p in yeast vs. Mff and MIEFs in mammals,
are quite evolutionarily diverged: The yeast Mdv1p and Caf4p
proteins have no mammalian homologs, whereas counterparts
of mammalian Mff and MIEFs have not yet been identified in
yeast (13). Even though mammalian Fis1 has been identified as
the homolog of yeast Fis1p (84, 85), a growing body of evidence
suggests that Fis1p and Fis1 have become functionally diverged
in yeast and mammals (80, 86–88). Mammalian Fis1 is no longer
an essential mitochondrial receptor responsible for recruitment
of the cytosolic Drp1 to the mitochondrial surface. Instead, three
additional mitochondrial proteins, Mff, MIEF1, and MIEF2,
have been identified as major receptors for translocation of
Drp1 to mitochondria in mammals (89–92). Another member
of the dynamin-related family, Dynamin 2 (Dyn2) promotes
membrane remodeling of multiple organelles (93). Recently, it
was reported that Dyn2 is recruited tomitochondrial constriction
sites transiently after Drp1 puncta accumulation and acts in
the final step of Drp1-mediated mitochondrial division (94).
However, a recent study suggests that although Dyn2 plays a role
in mitochondrial fission, it is not essential for Drp1-mediated
fission (95). Further supporting this notion, Drp1 is shown to
be essential for mitochondrial and peroxisomal fission, whereas
Dnm1, Dnm2 (Dyn2), and Dnm3 are dispensable (96).

Overall, during the mitochondrial fission process, Drp1
recruitment to mitochondria is a critical step, but the
mechanisms underlying this process are not fully understood.
A number of issues remain to be elucidated, for instance, why
multiple mitochondrial receptors of Drp1 simultaneously exist
in the cell; whether these receptors work independently of each
other or in a coordinating way; and how the post-translational
modifications and the oligomeric state of Drp1 impact on the
process of mitochondrial division. Below, the different Drp1
receptors in mammals will be discussed in further detail.

The Mitochondrial Receptors for Drp1
In mammalian cells, the recruitment of Drp1 to mitochondria
is mediated by four MOM-anchored proteins: fission protein
1 (Fis1), mitochondrial fission factor (Mff), mitochondrial
elongation factor 1 (MIEF1/MiD51), and mitochondrial
elongation factor 2 (MIEF2/MiD49).

Fis1
Mammalian Fis1 is the ortholog of yeast Fis1p and was initially
identified as the receptor for the recruitment of Drp1 to
mitochondria in mammals based on the studies of Fis1p. Like

yeast Fis1p, mammalian Fis1 is localized to the MOM via its
C-terminal TM domain, and with the N-terminal region of
Fis1 facing the cytosol (84, 85). Structural analysis shows that
the N-terminal region contains a TPR-like core domain, which
is different from the typical TPR motif, but still important
for binding to other proteins (97). In yeast, Fis1p acts as the
receptor for the recruitment of Dnm1p (Drp1 in mammals) to
mitochondria through the adaptors Mdv1p or Caf4p, thereby
regulating mitochondrial morphology (98, 99). Since Fis1 is
evolutionarily conserved from yeast to human, mammalian
Fis1 was initially believed to have similar functions to its
ortholog Fis1p in yeast, i.e., serving as the receptor for the
recruitment of Drp1 to mitochondria, promoting fission. In
keeping with a pro-fission role, several early studies showed
that overexpression of human Fis1 (hFis1) results in extensive
mitochondrial fragmentation, whereas knockdown of hFis1
causes mitochondrial elongation (84, 85, 100–102). However, due
to the absence of yeast adaptors Mdv1p and Caf4p in mammals,
whether hFis1 promotes mitochondrial fragmentation through a
similar mechanism as in yeast has remained quite controversial.
For example, it was reported that depletion of hFis1 induces
mitochondrial elongation in HeLa cells and in Fis1-null mouse
embryonic fibroblasts (MEFs) (86, 103, 104), but does not affect
mitochondrial morphology in HCT116 cells (90). Furthermore,
increased or decreased levels of Fis1 do not seem to affect
the subcellular distribution of Drp1 between the cytosol and
mitochondria in mammalian cells. For instance, elevated levels
of hFis1 in 293T cells do not affect the subcellular distribution of
Drp1, but promote mitochondrial fragmentation (91). Likewise,
knockdown of hFis1 in HeLa and HCT116 cells does not reduce
levels of Drp1 on mitochondria (90, 104). However, in Fis1-
null MEFs, Drp1 puncta on mitochondria are reduced to some
extent (86). Taken together, these studies suggest thatmammalian
Fis1 is not essential for Drp1 recruitment and Drp1-mediated
mitochondrial fission, but might play specific roles in some
physiological processes or certain types of mammalian cells.

In spite of the facts presented above, however, it is found
that overexpression of Fis1 can induce extensive mitochondrial
fragmentation in all mammalian cells analyzed. Given the
absence of Mdv1p and Caf4p in mammals as well as a
minor role of Fis1 in Drp1 recruitment and Drp1-dependent
fission, the molecular mechansms underlying mammalian Fis1-
induced mitochondrial fragmentation have remained enigmatic.
Moreover, human Fis1 cannot rescue the mutant phenotype in
yeast cells lacking Fis1p (100), while yeast Fis1p, when expressed
in human HeLa cells, is targeted to mitochondria, but does not
affect mitochondrial morphology (101). These data support the
notion that despite similarities in protein structure, membrane
topology andmitochondrial localization, Fis1p in yeast and hFis1
in humans have functionally diverged during evolution. Thus,
the precise roles of hFis1 in regulating mitochondrial dynamics
remain to be clarified.

However, despite the fact that hFis1 is dispensable for
Drp1 recruitment to mitochondria in many conditions,
it should be emphasized that hFis1 does play a role in
regulating mitochondrial fission by recruiting Drp1 to
mitochondria, especially in response to cell stress-induced
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mitochondrial fragmentation, such as mitophagy/apoptosis-
related fission, or pathophysiology-associated fission (105–109).
In normal conditions, the interaction between Fis1 and
Drp1 is weak in mammalian cells, but the interaction can
be enhanced after treatment with different apoptotic or
autophagic stimuli, and is accompanied by mitochondrial
fragmentation (91, 106, 110–112).

Mff
Mff was originally identified through a small interfering RNA
(siRNA) screen in Drosophila melanogaster cells, and it exists
in metazoans but not in yeast. The Mff gene generates at least
nine different isoforms by alternative splicing (89). Similar to
Fis1, Mff has a C-terminal TM domain, by which it is anchored
in the MOM, while its N-terminal region facing the cytosol
contains three short amino acid repeats (R1-R3 motifs) and a
coiled-coil domain. The first 50 N-terminal residues containing
R1 and R2 motifs are essential for Drp1 recruitment, and this
is also the minimal region required for Drp1-Mff interaction
(89, 90, 113). Depletion of Mff in HeLa cells (89, 90) or MEFs
(86) severely inhibits mitochondrial fission and largely abrogates
Drp1 recruitment to mitochondria, whereas overexpression of
Mff in HeLa cells recruits most of Drp1 from the cytosol to
mitochondria and induces extensive mitochondrial fission (90).
It has become increasingly clear that Mff is the major receptor
for Drp1 recruitment tomitochondria and thus actively promotes
mitochondrial fission in mammals.

MIEF1 and MIEF2
MIEF1 and its paralog MIEF2 (also known as MiD51 and
MiD49) were initially characterized by us and others as novel
mitochondrial receptors for Drp1 recruitment to mitochondria
in mammals (91, 92, 114). MIEF1 and MIEF2 are highly
conserved vertebrate-specific mitochondrial proteins, not yet
identified in invertebrates and plants (91, 114). Similar to
the mitochondrial receptor Mff (89, 90), overexpression of
either MIEF leads to extensive recruitment of the cytosolic
Drp1 to mitochondria in a hFis1- and Mff-independent
manner (91, 115). In contrast, MIEF overexpression induces
mitochondrial elongation rather than fission in most of cells.
Most likely, MIEFs act as Drp1 inhibitors sequestering it
on the surface of mitochondria and inhibiting its GTPase
activity (91, 92, 114, 115).

MIEF1 and MIEF2 are highly similar with respect to protein
sequence, sharing 45% amino acid identity in human. Unlike
hFis1 and Mff, both MIEF1 and MIEF2 have an N-terminal
TM domain to anchor them in the MOM (91, 92, 114).
Additionally, MIEF1 and MIEF2 can form homodimers and
heterodimers (114). MIEF1 and MIEF2 however also differ in
some aspects. For example, biochemical analysis shows that in
addition to the monomeric form, MIEF1 appears predominantly
as dimers, whereas MIEF2 appears as oligomers. Importantly, the
first 1–49 residues including the TM domain are required for
oligomerization of MIEF2, whereas the region between residues
109–154, but not the TM domain, is crucial for dimerization
of MIEF1 (114). Moreover, their different crystal structures also
indicate distinct functions. Both proteins have a nucleotidyl

transferase domain, butMIEF1 can bind nucleotide diphosphates
(ADP and GDP), while MIEF2 does not, and MIEF1 binding
to ADP can stimulate Drp1 oligomerization, self-assembly
and its GTPase activity (116–118). Interestingly, treatment of
MIEF1- or MIEF2-overexpressing cells with antimycin A, an
inhibitor of complex III of the electron transport chain, leads to
mitochondrial fragmentation in cells overexpressing MIEF1 but
not in cells overexpressing MIEF2. Moreover, MIEF1-induced
fission requires ADP binding to MIEF1 in this process (86, 117).
A recent cryo-EM structural analysis has revealed four interfaces
of Drp1 that mediate the interaction with MIEFs, providing a
structural basis for Drp1 recruitment to mitochondria (119).

INTERPLAY BETWEEN DIFFERENT DRP1
RECEPTORS IN MITOCHONDRIAL
DYNAMICS

An increasing number of studies have suggested that Mff and
MIEFs play a significant role in recruitment of the cytosolic
Drp1 to mitochondria in mammals, but the action of MIEFs
seems to be more complicated than that of Mff in regulating
mitochondrial fission and fusion. In general, it is observed
that Mff overexpression leads to the extensive recruitment of
Drp1 onmitochondria promotingmitochondrial fission, whereas
depletion of Mff reduces Drp1 on mitochondria resulting
in mitochondrial elongation. In contrast, the mechanisms by
which MIEFs can regulate mitochondrial morphology remain
puzzling with discordant results. For example, in 293T and
HeLa cells, expression of exogenous MIEF1 or MIEF2 induces
mitochondrial elongation. Both MIEF1 and MIEF2 can interact
with and recruit Drp1 to mitochondria and distribute in a
punctate manner on the mitochondrial surface (91, 114). In
Cos-7 monkey cells, expression of exogenous MIEF1 or MIEF2
also leads to mitochondrial elongation and accumulation of
Drp1 on mitochondria, however, at low levels of the MIEF
protein, mitochondrial morphology is relatively normal (92).
Further studies show that long-term expression of MIEF1 results
in a variety of morphological changes of mitochondria from
fragmentation to a network state, suggesting that low levels of
exogenous MiD51/MIEF1 can increase fission events, whereas
at high expression levels, fission events are inhibited, resulting
in mitochondrial fusion (120). On the other hand, knockdown
of MIEF1 and MIEF2 by siRNA leads to inconsistent effects
on mitochondrial morphology. It was reported that in Cos-
7 cells, knockdown of both MIEF genes is required to cause
a mitochondrial fusion phenotype (92). In line with this,
knockdown of both MIEFs or either of the two genes similarly
induces mitochondrial elongation in MEFs (86). However, it was
also reported that in HeLa cells, down-regulation of MIEF1 by
siRNA resulted in mitochondrial fission (91), while complete
knockout of either MIEF alone, or double-knockout of both
MIEF1/2 in HeLa cells caused mitochondrial elongation (121).
The reasons for these inconsistent results can be that the different
cell types used for experiments might have different endogenous
levels of the fission/fusion proteins. Furthermore, it has been
experimentally shown that introduction of low/intermediate or
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high levels of MIEF receptor proteins in cells can lead to
opposite effects as described in detail below, possibly due to
competitive Drp1 binding to the different receptor populations
available (122).

It should be stressed, however, that the four Drp1
receptors Mff, MIEF1, MIEF2, and hFis1 are usually expressed
simultaneously in mammalian cells. Moreover, each receptor
is able to independently interact with and recruit Drp1 to
mitochondria. This seems to imply a redundant mode of
action for the Drp1 receptors in mammals, but these receptors
appear to have an additive effect on Drp1 accumulation
on mitochondria. However, whether these receptors work
coordinately in the process of Drp1 recruitment is largely
unclear. A recent study by Yu et al. reports that MIEFs can
interact with both Drp1 and Mff and act as adaptors linking
Drp1 and Mff in a trimeric protein complex, thereby facilitating
a direct interaction between Mff and Drp1 (122). Ablation of
both MIEFs largely reduces the association of endogenous Mff
with Drp1, and also greatly impairs the Drp1 recruitment and
accumulation on mitochondria mediated by Mff overexpression
(122). This indicates that endogenous MIEFs regulate Mff-
mediated mitochondrial recruitment of Drp1, although Mff
also can serve as an independent receptor for Drp1. In contrast,
depletion of endogenous Mff does not affect the association
of MIEFs with Drp1 and neither has any evident impact on
MIEF overexpression-induced recruitment and accumulation
of Drp1 on mitochondria, indicating that Drp1 recruitment by
MIEFs occurs independently of Mff (122). However, increased
levels of MIEFs can decrease the association between Drp1 and
Mff, and conversely, elevated expression of Mff reduces the
interaction of MIEFs with Drp1. These results suggest that Mff
and MIEFs compete for the binding to Drp1. Based on this, we
have proposed a working model to illustrate how MIEFs and
Mff coordinately balance mitochondrial dynamics (Figure 3).
When higher levels of MIEFs exist in cells, Drp1 is sequestered
in Drp1-MIEF-Mff and/or Drp1-MIEF complexes, inhibiting
a direct Drp1-Mff binding and resulting in mitochondrial
fusion (Figure 3A). When MIEFs are present at moderate
levels in cells, Mff can receive sufficient Drp1 via MIEFs
acting as a molecular bridge facilitating a direct interaction
between Mff and Drp1, thereby maintaining normal and
balanced mitochondrial morphology (Figure 3B). However, in
the absence of MIEFs, Mff cannot directly capture sufficient
Drp1 from the cytosol by itself, thus the balance shifts to
mitochondrial fusion, resulting in mitochondrial elongation
(Figure 3C).

In addition to the interplay betweenMIEFs andMff regulating
Drp1 recruitment as mentioned above, accumulating evidence
suggests that MIEFs play a role in regulating hFis1-induced
mitochondrial fragmentation (91, 114). It is reported that
MIEFs exhibit a robust interaction with hFis1, in a manner
independent of the interaction between MIEFs and Drp1.
Thus, elevated levels of MIEFs partially reverse hFis1-induced
mitochondrial fragmentation, whereas increased levels of hFis1
reduce the interaction between Drp1 and MIEF1 or MIEF2,
respectively, and also partially reverse MIEF overexpression-
induced mitochondrial elongation (91, 114). However, it is still

FIGURE 3 | Different levels of MIEFs coordinate with Mff to regulate the

balance of mitochondrial dynamics. (A) At high levels of MIEFs, Drp1 is

sequestered in Drp1-MIEF-Mff and/or Drp1-MIEF complexes on mitochondria,

inhibiting a direct Drp1-Mff interaction and resulting in mitochondrial fusion. (B)

At moderate levels of MIEFs, Mff receives sufficient Drp1 facilitating a direct

Drp1-Mff interaction via MIEFs acting as a molecular bridge, and a normal

balance of mitochondrial dynamics is maintained. (C) In the absence of MIEFs,

Mff cannot directly capture sufficient Drp1 from the cytosol by itself, thus the

balance shifts to mitochondrial fusion, resulting in mitochondrial elongation.

largely unclear howMIEFs and hFis1 can regulate mitochondrial
morphology via their mutual interactions.

Overall, the recruitment of cytosolic Drp1 to mitochondria
is a key step in Drp1-mediated fission. Due to the simultaneous
existence of four Drp1 receptors on mitochondria, the regulation
of Drp1 recruitment and subsequent fission induction appears
to be subject to a much more complex regulation in mammals
than in yeast. Therefore, it will be an important topic for future
research to further explore the molecular mechanisms mediating
the interplay between different Drp1 receptors, in order to better
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understand their functions in the regulation of mitochondrial
dynamics in mammals.

CROSSTALK BETWEEN THE
MITOCHONDRIAL FISSION AND FUSION
MACHINERIES

Mitochondrial morphology is dynamically regulated through
the two counteracting apparatuses on mitochondria, i.e., the
fission and fusion machineries. It is generally believed that
the pro-fission proteins (such as Drp1, Fis1, Mff, and MIEFs)
and the pro-fusion proteins (such as Mfn1, Mfn2, and OPA1)
separately work in the fission and fusion machineries. However,
emerging evidence suggests a crosstalk between the fission and
fusion machineries. For example, it was reported that Drp1
colocalizes with Mfn2 and Bax at mitochondrial fission sites
during apoptosis (123). Interestingly, another study suggests
that Drp1 can interact with Mfn2 on the mitochondrial
surface and overexpression of Drp1 facilitates mitochondrial
tethering and fusion in Mfn2- or Mfn1-deficient cells, indicating
that Drp1 participates in mitochondrial fusion in addition to
acting as a pro-fission protein (124). Anand et al. provide
additional evidence for a crosstalk between the fission and
fusion machineries through studying the actions of the long
and short forms of OPA1 in mitochondrial dynamics. The short
forms (produced by processing) of OPA1 are found to trigger
mitochondrial fragmentation and colocalize with the fission
machinery, suggesting that the processing of OPA1 can regulate
the balance of mitochondrial fission and fusion (61).

It was recently observed that hFis1 overexpression can induce
extensive mitochondrial fragmentation even in the absence of
Drp1 or/and Dyn2 (88). This indicates that Drp1/Dyn2 is largely
dispensable for hFis1-induced mitochondrial fragmentation, i.e.,
the existence of Fis1-dependent but Drp1/Dyn2-independent
mitochondrial fission pathways in mammals. hFis1 was found
to robustly interact with the pro-fusion GTPases Mfn1, Mfn2,
and OPA1 at endogenous levels, which supports the idea that
hFis1 regulates mitochondrial dynamics via affecting the fusion
machinery. In line with this notion, hFis1 reduces the GTPase
activity of Mfn1, Mfn2, and OPA1 in vitro. Overexpression
of hFis1 reduces mitochondrial fusion, whereas knockdown
of hFis1 enhances exchange of the matrix content between
mitochondria regardless of whether Drp1 is present or absent
in cells. Disruption of the fusion machinery by CRISPR-
Cas9 genome editing-based knockout technology phenocopied
the hFis1 overexpression-induced mitochondrial fragmentation
phenotype. Overall, several lines of evidence suggested that
hFis1 can induce mitochondrial fragmentation by inhibiting the
activity of the mitochondrial fusion machinery (88). This work
emphasizes the importance of hFis1 in bidirectional regulation of
the mitochondrial fission and fusion machineries and highlights
that hFis1, known as a pro-fission factor, is not limited to
promoting mitochondrial fission; it can also actively inhibit
mitochondrial fusion (Figure 4).

Collectively, all these data provide evidence for a functional
crosstalk between the mitochondrial fission and fusion

FIGURE 4 | Fis1-mediated crosstalk between the mitochondrial fission and

fusion machineries in mammals. Fis1, as a pro-fission factor, is not limited to

promoting mitochondrial fission, simultaneously inhibiting the activities of

pro-fusion GTPases to shift the balance to fission.

machineries, and suggest that proteins known as components
of the fission machinery may act concurrently in the fusion
machinery, and likewise, fusion proteins may also affect the
fission machinery. While many details remain largely unknown,
the bidirectional regulation of mitochondrial morphology
through functional interactions between fission and fusion
proteins represents an emerging field of research in mammalian
mitochondrial dynamics. Supporting this notion, a recent study
reveals that the fission and fusion machineries are present at
the same ER-mitochondria membrane contact sites to regulate
mitochondrial morphology (125).

ROLES OF THE ENDOPLASMIC
RETICULUM IN MITOCHONDRIAL
DYNAMICS

The endoplasmic reticulum (ER) communicates with
mitochondria through mitochondria-associated ER membranes
(MAMs) in yeast andmammals, and these connections have been
shown to participate in different physiological functions, such
as phospholipid synthesis, Ca2+-mediated signal transduction,
protein import, mitochondrial distribution and mitophagy
(126–128). It is reported that some of the mitochondria-shaping
proteins are involved in this ER-MAM intercommunication.
The mitochondrial profusion protein Mfn2 is localized on both
mitochondria and the ER, and Mfn2 on the ER associates with
Mfn1/2 on mitochondria and tethers the ER and mitochondria
together to maintain efficient mitochondrial Ca2+ uptake, which
is essential for ATP production (47).

The ER also plays an active role in mitochondrial division.
ER tubules were observed to wrap around mitochondria,
mark the prospective sites of mitochondrial division and
reduce the mitochondrial diameter by about 30% before Drp1
recruitment. The ER tubules mainly occur at positions of
Drp1 and Mff foci on mitochondria. In fact, ER tubules also
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mark positions of mitochondrial constriction in the absence
of Mff or Drp1 (129). In addition to Drp1 and Mff, two
other receptors of Drp1, i.e., MIEF1 and MIEF2, are also
observed at mitochondria-ER contact sites, and co-localized
with other fission proteins, such as Drp1 and Mff. However,
<40% of observed mitochondria-ER contacts at MIEF foci are
constriction sites, implicating that MIEFs are not the essential
factors to determine ER-mitochondria constriction sites (120).
Furthermore, MIEFs require the presence of Drp1 to form foci,
whereas Mff can form foci in cells lacking Drp1 (118, 129).
Another known Drp1 receptor, Fis1, has been shown in C.
elegans to enter into a complex containing Drp1, Mff, and ER
proteins at the ER-mitochondrial interface during stimulation
of mitophagy (112). Strikingly, it is recently reported that
endoplasmic reticulum–associated degradation (ERAD), an ER
quality control mechanism, regulates mitochondrial dynamics
(130). Additionally, in human cells, a subset of ER-mitochondria
contacts spatially couple mtDNA replication with downstream
mitochondrial division (131). However, it is still unclear to
what extent ER tubules are essential for mitochondrial fission
and fusion.

ROLES OF THE ACTIN CYTOSKELETON IN
MITOCHONDRIAL DYNAMICS

Besides the ER, the actin cytoskeleton is also involved in
regulating mitochondrial fission (40, 132). The cycling of actin
assembly and disassembly around mitochondrial subpopulations
efficiently promotes local Drp1-dependent mitochondrial
fission. However, inhibiting Drp1 activity by transfection of
Drp1-K38A does not affect actin cycling onto mitochondrial
subpopulations as observed through live-cell imaging (133).
Furthermore, some actin-related proteins play important roles
in mitochondrial fission. An ER-localized actin regulator,
INF2 (inverted formin 2) induces actin filaments to drive the
initial mitochondrial constriction and then promotes Drp1
recruitment to ER-mitochondria constriction sites (134). An
isoform of the actin-nucleating protein Spire1C, localized to
the MOM, interacts with INF2, promoting actin assembly at
the mitochondrial surface. Disturbing Spire1C or its formin-
binding activities can affect mitochondrial constriction and
further mitochondrial fission (135). Myosin II plays similar
roles in mitochondrial fission, it is enriched at mitochondrial
constriction sites, and deletion of Myosin II reduces Drp1
accumulation on mitochondria (136). Interestingly, silencing
of the cytoskeletal component septin 2 (Sept2) also decreases
the association of Drp1 with mitochondria and increases the
average distance between Drp1 clusters (137). In addition,
knockdown of the actin-regulating factors cortactin, cofilin,
or the Arp2/3 complexes results in elongated mitochondria
and disassembles mitochondrial F-actin around mitochondrial
subpopulations (133, 138).

The proposed models of mitochondrial fission in mammalian
cells are summarized in Figure 2B. Mitochondria are pre-
constricted by the ER, together with actin filaments that associate
with mitochondria by the action of Spire1C and with the ER
by INF2. At the ER constriction site, Drp1 is recruited by its

receptors to mitochondria and assembled to form higher-order
oligomers around the mitochondrial surface. Then mitochondria
are further constricted by Drp1 oligomers, and Dyn2 is recruited
to the constricted site instantly to finalize the scission of
mitochondria through GTP hydrolysis. In summary, it is a great
challenge to understand how the ER, actin cytoskeleton and
Drp1 receptors interplay and coordinate their actions to mediate
mitochondrial division.

ROLES OF MEMBRANE PHOSPHOLIPIDS
IN MITOCHONDRIAL DYNAMICS

In addition to the roles of the ER and actin cytoskeleton in
regulating mitochondrial dynamics, mitochondrial membrane
phospholipids also communicate with the fusion/fission
machinery. Phospholipids are the fundamental building blocks
of mitochondrial membrane bilayers. Emerging evidence
indicates that at least two types of phospholipids, phosphatidic
acid (PA) and cardiolipin (CL), play important roles in
mitochondrial dynamics. PA is transported mainly from the
ER to the mitochondrial inner membrane, where PA can be
converted to CL via multiple enzymatic reactions (139). Some
of the CL synthesized in the inner membrane can also be
transported to the outer membrane. It has been reported that
the pro-fission GTPase Drp1 on the outer membrane directly
interacts with CL, and the B insert (also called the variable
domain) of Drp1 is responsible for its interaction with CL
(140, 141). This interaction between Drp1 and CL stimulates
both oligomerization and GTPase activity of Drp1, enhancing
mitochondrial division (82, 142, 143). In the outer membrane,
CL can be converted back to PA by the MOM-localized
phospholipase D (MitoPLD) (144). Drp1 also interacts with PA
in the outer membrane, which restrains Drp1 activity, leading
to mitochondrial fusion (142). Along these lines, MitoPLD
interacts with Drp1, Mfn1, and OPA1, inhibiting Drp1-
mediated fission and promoting mitofusin-dependent fusion
(142, 144). There is evidence showing that CL located in the
inner membrane is directly involved in OPA1-mediated fusion
(145), while PA that is generated through the cleavage of CL by
MitoPLD in the outer membrane participates in Mfn-mediated
fusion (144). Moreover, overexpression of MitoPLD induces
mitochondrial fusion, while its knockdown inhibits fusion
resulting in mitochondrial fragmentation (144). In line with this,
overexpression of lipin 1b [a phosphatase that dephosphorylates
PA to form diacylglycerol (DAG)] results in mitochondrial
fragmentation (142, 146). Similarly, overexpression of PA-
PLA1 (PA-preferring phospholipase A1), which hydrolyzes
PA to produce lysoPA, triggers mitochondrial fragmentation,
whereas knockdown of PA-PLA1 induces elongation (147).
CerS6-derived sphingolipids interact with Mff and promote
mitochondrial fragmentation (148).

Overall, it has become increasingly clear that the interactions
between the fusion/fission proteins and the phospholipids in
mitochondrial membranes add another layer of complexity
to the regulation of mitochondrial fusion-fission dynamics
and contributes significantly to our understanding of this
process (149–151).
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DRP1-INDEPENDENT MITOCHONDRIAL
FISSION PATHWAYS IN MAMMALS

Accumulating data suggest that apart from the canonical
Drp1-dependent mitochondrial fission, there may be
additional Drp1-independent mechanisms that contribute
to mitochondrial division in mammalian cells, as partly
described above (Figure 5). Several previous studies show that
Fis1 is involved in such a Drp1-independent mitochondrial
fission pathway. Onoue et al. reports that Fis1 interacts
with TBC1D15 (a GTPase activating protein for the small
GTPases Rab7 and Rab11) and recruits the cytosolic TBC1D15
to mitochondria. Fis1, together with TBC1D15, regulates
mitochondrial morphology independently of Drp1 (152). This
finding is further supported by a recent study showing that
Fis1 mediates crosstalk between mitochondria and lysosomes
via recruiting TBC1D15 to the mitochondrial surface, and in
turn TBC1D15 interacts with lysosomal GTP-bound Rab7 at
mitochondria-lysosome contact sites to drive hydrolysis of
Rab7-GTP, thereby regulating both mitochondrial and lysosomal
dynamics independently of Drp1 (87, 153). Although these
findings that the Fis1-TBC1D15-Rab7 interaction involves
mitochondria-lysosome contact sites can largely promote our
understanding of how Fis1 functions in regulating mitochondrial
dynamics, it still seems difficult to fully understand the
mechanisms by which Fis1 overexpression induces extensive
mitochondrial fragmentation.

In amore recent studymentioned above, hFis1 overexpression
was reported to induce extensive mitochondrial fragmentation
regardless of the presence or absence of Drp1 (88), further
suggesting that Drp1 is dispensable for hFis1-mediated
mitochondrial fragmentation. Further analysis showed that hFis1
binds to and inhibits the pro-fusion GTPases Mfn1/2 and OPA1,
thereby reducing the activity of the fusion machinery in Drp1-
deficient cells, shifting mitochondrial morphology to a fission
phenotype (88). Given the importance of the Fis1-TBC1D15-
Rab7 involvement in a Drp1-independent mitochondrial fission
pathway, ablation of TBC1D15 would be expected to rescue
the hFis1 overexpression-induced fragmentation phenotype,
but this still remains to be explored. Thus, the underlying
mechanisms by which hFis1 can induce mitochondrial
fragmentation in the absence of endogenous Drp1 remains to be
further explored.

The ER and the actin cytoskeleton have been reported
to be involved in mitochondrial dynamics in cooperation
with Drp1 (129, 132, 134), but whether the ER and actin
cytoskeleton play a role in Drp1-independent fission is
unknown. Emerging evidence, however, suggests that F-actin
depolymerization significantly prevents hFis1 overexpression-
induced mitochondrial fragmentation in a Drp1-independent
manner, implying that the actin cytoskeleton plays a Drp1-
independent role in regulating mitochondrial fission (88). The
ER is generally considered to be the first step of Drp1-mediated
mitochondrial fission, promoting mitochondrial constriction
before Drp1 recruitment (129), but whether the ER induces
mitochondrial scission directly, independently of Drp1 needs to
be further explored.

Dyn2 has been reported to work at the final step of
Drp1-dependent mitochondrial scission (94), but another study
suggests that Drp1-mediated mitochondrial division still occurs
in Dyn2-deficient cells (95), indicating Dyn2 is not essential
for Drp1-dependent fission. However, a recent report presents
that Dyn2 knockdown partially reversed the mitochondrial
fission phenotype that was induced when both fission and
fusion machineries had simultaneously been destroyed by double
knockout of Drp1 and OPA1 through CRISPR/Cas9 technology
(88), indicating that Dyn2 may act via a separate mechanism
to promote mitochondrial fission when Drp1-mediated fission
is blocked.

Collectively, it is becoming increasingly clear that there
may be multiple Drp1-independent mechanisms regulating
mitochondrial division in mammalian cells. Although
substantial progress has been achieved through studies of
Drp1-mediated mitochondrial fission, little is known about the
regulation of mitochondrial division in mammalian cells lacking
Drp1. Undoubtedly, elucidating the underlying mechanisms
that drive Drp1-independent mitochondrial division is of
fundamental importance to fully understand mammalian
mitochondrial dynamics.

CROSSTALK BETWEEN MITOCHONDRIAL
DYNAMICS AND OTHER CELLULAR
PROCESSES

Accumulating evidence indicates that the carefully orchestrated
balance of mitochondrial fusion and fission is critical for
maintaining a healthy population of mitochondria. Fission
allows the exclusion of damagedmitochondria viamitophagy and
mitochondrial biogenesis, whereas fusion allows mitochondria
to exchange their substance including proteins and mtDNA
among individual mitochondria (154). Abnormal mitochondrial
dynamics is directly associated with mitochondrial dysfunction,
which impacts on a wide range of cellular processes, such as
mitochondrial transport and biogenesis, cell-cycle regulation,
cell proliferation and differentiation, energy metabolism,
ROS production, Ca2+ signaling, mtDNA maintenance,
mitochondrial quality control via autophagy (mitophagy), and
ultimately programmed cell death (155–160). Moreover, some
mitochondrial fission and fusion proteins are known to be
critical for embryonic development in mice (45, 161–163),
further emphasizing that functions of mitochondrial dynamics
go beyond the appearance of mitochondria and have important
physiological consequences. In this review, we will focus on
the potential roles of mitochondrial dynamics in apoptosis
and mitophagy.

Mitochondrial Dynamics and Apoptosis
Apoptosis, a programmed cell death, occurs in physiological and
pathological conditions, and can be activated through intrinsic or
extrinsic mechanisms. It is well-established that the Bcl-2 protein
family plays crucial roles in the regulation of apoptosis. The
Bcl-2 family includes both pro-apoptotic proteins (such as Bax,
Bak, Bid, Bad, and Bik) and the anti-apoptotic proteins (such as
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FIGURE 5 | Proposed potential mechanisms driving mammalian mitochondrial fission, including Drp1-dependent and Drp1-independent mitochondrial fission. (Left)

The Drp1-dependent mitochondrial fission as described in Figure 2B, including Drp1 and its four mitochondrial receptors Fis1, Mff, MIEF1, and MIEF2. (Right) Apart

from the canonical Drp1-dependent mitochondrial fission, there may be multiple Drp1-independent mechanisms contributing to mitochondrial division in mammals

although little is known about their details in the regulation of mitochondrial division. Emerging evidence implies that the Drp1-independent mitochondrial fission may

involve: (1) Fis1 together with TBC1D15 and Rab7 regulate both mitochondrial and lysosomal dynamics, which likely is important in mitophagy; (2) Fis1 binds to the

pro-fusion GTPases Mfn1/2 and OPA1 and inhibits the activity of the fusion machinery, thereby shifting mitochondrial morphology to a fission phenotype, probably via

Drp1-dependent and -independent mechanisms (the details in this process still remain poorly understood); (3) The actin cytoskeleton and Dyn2, as well as the ER may

have Drp1-independent functions in regulating mitochondrial division (the details are unclear).

Bcl-2, Bcl-XL, Bcl-W, and MCL1), which promote and inhibit
programmed cell death, respectively (164–167).

Mitochondria have been shown to be involved in the
intrinsic apoptotic pathway (168). Emerging data indicate that
mitochondrial dynamics participates in the regulation of cell
death pathways and remodeling of the mitochondrial network
takes place in response to cellular stress, such as hypoxia,
drug treatments, and in various pathological conditions. During
apoptosis, mitochondria undergo extensive fragmentation and
some proteins of the mitochondrial fusion/fission machinery
are directly involved in the regulation of apoptosis (169, 170).

In general, the prevalent idea is that elongated mitochondria
confer cellular resistance to apoptosis, whereas fragmented
mitochondria make cells sensitive to apoptotic stimuli (169,
171). For example, knockdown of the pro-fission proteins
hFis1 or Drp1 leads to mitochondrial elongation and resistance
to different apoptotic stimuli, whereas depletion of the pro-
fusion proteins Mfn1, Mfn2, or OPA1 leads to mitochondrial
division and makes cells more sensitive to apoptosis (170, 172).
Conversely, Mfn2 overexpression reduces sensitivity of cells to
radical-induced apoptosis (173). Upon apoptotic stimulation,
Drp1 is recruited to the mitochondrial outer membrane, where
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it co-localizes with Bax and Mfn2 at fission sites, and Drp1
is required for apoptotic mitochondrial fission (104, 123, 174).
In agreement with the notion that mitochondrial dynamics
regulates the sensitivity of cells to apoptotic stimuli, it was
reported that overexpression of MTGM/ROMO1 (a MIM
anchored fission protein) results in fragmented mitochondria
and triggers a significant release of the death factor Smac/Diablo
from mitochondria to the cytosol, but not of other death factors
(for instance cytochrome c, AIF, or Omi/HtrA2), and does
not lead to spontaneous apoptosis. However, down-regulation
of MTGM results in elongated mitochondria and increases
cell proliferation as well as resistance of cells to apoptotic
stimuli (175). Furthermore, it was reported that MIEFs are
also involved in the regulation of apoptosis and autophagy.
Expression of exogenous MIEF1 induces elevated autophagic
activity and decreases the sensitivity of cells to apoptotic stimuli.
Conversely, human cells depleted of MIEF1 are more sensitive
to apoptotic stimuli (91, 176). However, loss of both MIEF1
and MIEF2 together with Mff in MEFs confers resistance
to apoptosis (115). Additionally, Drp1-mediated mitochondrial
division controls cristae remodeling through MIEF1/2 during
intrinsic apoptosis (121). Moreover, the OMM-associated E3
ubiquitin ligase MARCH5 coupled with MIEF2 controls Drp1-
dependent mitochondrial fission and cell sensitivity to stress-
induced apoptosis (177).

In healthy cells, Bax is normally localized predominantly in
the cytosol, but during apoptosis, Bax translocates from the
cytosol to the surface of mitochondria (178), where Bax, in
coordination with Bak, results in mitochondrial outer membrane
permeabilization (MOMP) (179). Several lines of evidence show
that some mitochondria-shaping proteins participate in the Bax
translocation. For example, hFis1 is required for translocation of
Bax from the cytosol to the surface of mitochondria (104), Drp1
is required for activation and oligomerization of Bax (180, 181),
and OPA1 regulates cristae remodeling and triggers the release
of cytochrome c to the cytosol (182, 183). More recently, MIEF1
was reported to regulate the mitochondrial translocation and
oligomerization of Bax via BCL2L1 (also a member of Bcl-2
family), but independently of Drp1 (176).

On the other hand, extensive data suggest that the Bcl-2 family
alsomodulates mitochondrial fusion/fission dynamics (184, 185).
Bax/Bak are not just involved in Drp1-mediated mitochondrial
fission during apoptosis (186–188), but also regulate normal
mitochondrial fusion by affecting Mfn2 in healthy cells (189).
Intriguingly, it is reported that Bak can induce mitochondrial
fragmentation during apoptosis by differentially interacting with
Mfn1 and Mfn2 (190). Bcl-XL interacts with Drp1 to promote
Drp1-mediated fission and increases the rates between fission
and fusion in normal neurons (191, 192). MCL1 is known to
have two splice isoforms, and the long isoform (MCL1L) is
anchored to the MOM as an anti-apoptotic protein binding to
Drp1, while the short isoform (MCL1S) acts as a pro-apoptotic
factor. A lower MCL1L/S ratio inhibits Drp1 translocation
from the cytosol to mitochondria, leading to mitochondrial
elongation (193).

In addition, mitochondrial membrane phospholipids have
been suggested to play a role in the regulation of apoptosis

(194), and accumulating evidence suggests that CL acts as an
interaction platform to recruit apoptotic factors such as tBid
and Bax (195–198). CL is also essential for promoting the
association between BAX dimers, hence CL plays an important
role in controlling the formation of active BAX oligomers (199).
Ceramide and sphingolipid are also reported to be critical for
the formation of Bax oligomers during apoptosis (200, 201). A
recent study further shows that ceramides interact directly with
the voltage-dependent anion channel VDAC2, a mitochondrial
platform for Bax/Bak translocation, and trigger mitochondrial
apoptosis (202).

Furthermore, emerging evidence implicates that
mitochondrial dynamics influences appearance, distribution
and stability of mtDNA nucleoids in mitochondrial networks
(203). For instance, loss of Drp1 function results in severe
mtDNA nucleoid clustering and loss of mtDNA (204–206),
and disruption of mitochondrial fusion leads to mtDNA
instability (207–209). Interestingly, a recent study reported
that increased mitochondrial fission by Drp1 overexpression
triggers the release of mtDNA into the cytosol, resulting in
cytosolic mtDNA stress in hepatocellular carcinoma (HCC) cells
(210). There is also evidence that Bak/Bax macropores facilitate
mtDNA release from mitochondria during apoptosis regardless
of mitochondrial fusion/fission dynamics (211). Obviously,
more work is needed to understand the role of mitochondrial
dynamics in these processes.

In summary, mitochondrial fragmentation occurs in most
forms of apoptosis through activation of the mitochondrial
fission machinery and/or inhibition of the fusion machinery
in various physiological and pathophysiological conditions.
However, how this process is regulated and the precise
mechanisms by which the mitochondria-shaping proteins take
part in apoptotic progression is largely unclear. Furthermore,
whether Drp1-mediated fission is necessary during apoptosis
is still controversial. There are reports suggesting that
Drp1-mediated fission is an early step during apoptosis,
since Drp1 depletion delays the cytochrome c release and
subsequent apoptosis (212–214). Conversely, it is suggested
that mitochondrial fission and apoptosis are two separate
processes, because mitochondrial hyper-fusion caused by
down-regulation of Drp1/Fis1 does not prevent cell death after
apoptotic stimuli (215, 216). Moreover, it is reported that the
mitochondrial network in DRP1−/− MEFs undergoes extensive
fragmentation during apoptosis (162). Consistent with these
data, apoptotic mitochondrial fragmentation still occurs during
Bax/Bak-dependent apoptosis in Drp1-deficient cells albeit loss
of Drp1 results in mitochondrial network super-fusion (211).
Mechanistically, these data suggest that Drp1-independent
fission might be involved in mitochondrial fragmentation during
apoptosis in addition to canonical Drp1-dependent fission.

Mitochondrial Dynamics and Mitophagy
The mitochondrial quality control is executed through
mitophagy, which selectively removes senescent or damaged
mitochondria and balances the overall mitochondrial mass
between biogenesis and degradation. Mitophagy is regulated
mainly by Parkin and PINK1 in mammals, and mutations in the
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genes encoding these proteins are associated with Parkinson’s
disease (217, 218). While Parkin normally exists in the cytosol,
when cells lose themitochondrial membrane potential, such as by
carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment,
PINK1 accumulates at the surface of impaired mitochondria
and recruits Parkin from the cytosol to mitochondria. Parkin,
recruited by PINK1 to the surface of damaged mitochondria,
ubiquitylates certain mitochondrial proteins (e.g., Mfn1/2) and
promotes engulfment of damaged mitochondria by lysosomes
(218, 219). There are a number of Parkin ubiquitylation
substrates on the MOM and in the cytosol (220, 221). The
mitochondrial outer membrane protein Miro1 (Mitochondrial
Rho GTPase 1), essential for mitochondrial transport (222),
interacts with Parkin and functions as a Ca2+-sensitive docking
site for Parkin during mitochondrial damage. Knockdown
of Miro1 reduces Parkin translocation to mitochondria and
suppresses mitophagy (223).

In addition to the canonical Parkin-dependent mitophagy
pathway mentioned above, increasing evidence shows that
mitophagy can occur through Parkin-independent pathways,
such as other ubiquitin ligase- and receptor-mediated mitophagy
processes as well as mitochondrial lipid-mediated mitophagy
(224). In addition to Parkin, several other E3 ligases have
been shown to be involved in mitophagy, e.g., MUL1, ARIH1,
and MARCH5 (225–227). Several mitophagy-specific receptors,
such as FUDNC1, NIX, BNIP3, PHB2, and BCL2L13, have
been reported to recognize damaged mitochondria, interact with
LC3 and recruit autophagosomes decorated by LC3 (228–230).
NLRX1 has recently been identified as a new mitophagy receptor
in L. monocytogenes (231).

Additionally, mitochondrial membrane lipids also play
important roles in regulating mitophagy. For instance, ceramide
(a bioactive sphingolipid) in the MOM is found to interact
with LC3B-II and trigger lethal mitophagy through the
selective targeting of LC3B-II-containing autophagosomes
to mitochondria (232). It has also been shown that CL
externalization (i.e., CL is translocated from the MIM to the
MOM) plays an important role in modulating mitophagy.
During mitophagic stimulation, the externalized CL can form
an essential platform on the surface of mitochondria where CL
binds to LC3, and initiates autophagosome formation, ultimately
resulting in mitophagy (233). The role of CL in mitophagy is
supported by the findings that Beclin 1, a central regulator of
mitophagy, directly interacts with CL on the MOM, regulating
mitophagy (234). Another study suggests that LC3B, a structural
protein of autophagosomal membranes, is translocated to the
MOM by interaction with externalized CL (235).

Hypoxia-induced/FUNDC1-mediated mitophagy and
mitochondrial dynamics are likewise important. It has been
reported that the MOM-anchored protein FUNDC1 drives
hypoxia-induced mitophagy through interacting with the key
autophagy factor LC3 in mammals (236). Upon mitophagy
induced by hypoxia or treatment with FCCP, FUNDC1
binds and recruits ULK1 (a Ser/Thr kinase required for early
autophagosome formation) to damaged mitochondria, where
FUNDC1 is phosphorylated by ULK1, inducing mitophagy
(237). FUNDC1 also interacts with Drp1 and OPA1, and

increased association of FUNDC1 with Drp1 and less interaction
with OPA1 promote mitochondrial fission and mitophagy (238).
FUNDC1 is also found to accumulate at the mitochondria-
associated ER membranes (MAMs) and interact with the
ER membrane protein calnexin. Under hypoxic conditions,
FUNDC1 associated more with Drp1 accompanied with less
interaction with calnexin, triggering mitochondrial fission and
mitophagy (239). Additionally, Bcl-2 family protein Bcl-xL also
participates in FUNDC1-mediated mitophagy. Bcl-xL but not
Bcl-2, can inhibit the dephosphorylation of FUNDC1 to block
further mitophagy (240).

Growing evidence links mitochondrial dynamics with
mitochondrial quality control via selective removal of damaged
mitochondria (i.e., mitophagy). The mitochondrial fusion
factors OPA1, Mfn1, and Mfn2 are involved in the regulation
of Parkin/PINK1-mediated mitophagy. OPA1 mutations
or impaired cleavage of OPA1 affect mitophagy and Mfn1
and Mfn2 are ubiquitinated in a PINK1/Parkin-dependent
manner upon mitophagic stimulation (241–243). Mfn2, but
not Mfn1, was reported to mediate Parkin recruitment to
damaged mitochondria. PINK1 can phosphorylate Mfn2,
thereby promoting the interaction of Mfn2 with Parkin, the
translocation of Parkin to mitochondria and Parkin-mediated
ubiquitylation of mitochondrial proteins. Loss of Mfn2 prevents
the translocation of Parkin to mitochondria (49). Emerging
data suggest that Drp1 and its four receptors also participate
in mitophagy. For example, overexpressing exogenous hFis1 in
MEF cells triggers mitophagy (244), whereas cells lacking one
or more Drp1 receptors (Fis1, Mff, and MIEFs) are resistant to
CCCP-induced mitochondrial fragmentation to different degrees
(86, 115). However, the resistance to apoptosis resulting from
Fis1/Mff depletion can be reversed through overexpression of
MIEF1 or MIEF2 (86). Of note, knockdown of MIEF1 by RNAi
triggers and overexpression of MIEF1 blocks Parkin recruitment
to mitochondria at the early stages of CCCP treatment (176).
Interestingly, transient transfection of exogenous MIEF1 without
CCCP treatment still leads to elevated expression of LC3B-II,
implicating increased mitophagic activity (91). Additionally,
some apoptotic factors in the Bcl-2 family are reported to be
involved in the Parkin/PINK1-mediated mitophagic process.
Bcl-xL, MCL1, and Bcl-W, but not Bcl-2, Bax, and Bak can
inhibit this type of mitophagy (167).

Additionally, the SNARE protein syntaxin 17 (STX17), which
is involved in the process of autophagy, is shown to cooperate
with mitochondria-shaping proteins in mitophagy (245, 246).
Intriguingly, it is reported that loss of Fis1 leads to aberrant
accumulation of STX17 on mitochondria and induces mitophagy
in Fis1-deficient cells in a way independent of Parkin/PINK1
(247). Furthermore, STX17 also localizes at the ER-mitochondria
contact sites and regulates the localization and GTPase activity
of Drp1 (248, 249). These data support the notion of an intricate
crosstalk between autophagy factors and mitochondria-shaping
proteins during mitophagy. Overall, although a number of
mitochondria-shaping proteins are implicated in mitophagy, the
detailed roles of these proteins in the process remain poorly
understood. A deeper understanding of these mechanisms will be
of major importance especially in the field of neurodegeneration.
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IN SUMMARY

In the past 20 years, considerable progress has been made in
terms of identifying core components and regulatory factors of
the mitochondrial fission/fusion machineries in mammals, and
huge efforts have been made to elucidate the potential molecular
mechanisms that control and regulate mitochondrial fission and
fusion events. One outcome of these efforts is a shift from
the view that the mitochondrial fission and fusion machineries
are evolutionarily conserved from yeast to human, to an
understanding that these processes are much more complicated
in mammals than in single-cell yeast. So far, at least four
Drp1 receptors (Fis1, Mff, MIEF1, and MIEF2) in mammalian
cells are responsible for recruitment of Drp1 to mitochondria
with an additive effect, although they are not functionally
redundant. Increasing evidence indicates that these receptors
also coordinately work in Drp1-mediated mitochondrial fission.
Thus, further research is warranted to elucidate the interplay
between these Drp1 receptors in health and disease. Although
the pro-fission and pro-fusion proteins are thought to regulate
mitochondrial fission and fusion events separately, emerging data
suggest that there is also extensive crosstalk between the fission
and fusionmachineries. It is also becoming increasingly clear that
there are additional Drp1-independent mechanisms that drive
mitochondrial division in mammalian cells. Finally, research into
themechanisms of apoptosis andmitophagy has excitingly placed

the mitochondrial fission and fusion machineries at the center
of these physiological processes. Elucidation of the underlying
molecular mechanisms involved in these processes will be critical
for better understanding ofmammalianmitochondrial dynamics.
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