
REVIEW
published: 14 July 2020

doi: 10.3389/fendo.2020.00377

Frontiers in Endocrinology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 377

Edited by:

Leo T. O. Lee,

University of Macau, China

Reviewed by:

Elena Gonzalez-Rey,

Instituto de Parasitología y

Biomedicina López-Neyra

(IPBLN), Spain

Hirokazu Ohtaki,

Showa University, Japan

*Correspondence:

Dora Reglodi

dora.reglodi@aok.pte.hu

Specialty section:

This article was submitted to

Neuroendocrine Science,

a section of the journal

Frontiers in Endocrinology

Received: 12 February 2020

Accepted: 12 May 2020

Published: 14 July 2020

Citation:

Toth D, Szabo E, Tamas A, Juhasz T,

Horvath G, Fabian E, Opper B,

Szabo D, Maugeri G, D’Amico AG,

D’Agata V, Vicena V and Reglodi D

(2020) Protective Effects of PACAP in

Peripheral Organs.

Front. Endocrinol. 11:377.

doi: 10.3389/fendo.2020.00377

Protective Effects of PACAP in
Peripheral Organs

Denes Toth 1, Edina Szabo 2, Andrea Tamas 2, Tamas Juhasz 3,4, Gabriella Horvath 2,

Eszter Fabian 2, Balazs Opper 2, Dora Szabo 5, Grazia Maugeri 4, Agata G. D’Amico 6,

Velia D’Agata 4, Viktoria Vicena 2 and Dora Reglodi 2*

1Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary,
2Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary,
3Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,
4Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania,

Catania, Italy, 5Heart Institute, Medical School, University of Pécs, Pécs, Hungary, 6Department of Drug Sciences, University

of Catania, Catania, Italy

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely

distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP

is also expressed in peripheral organs but its peripheral protective effects have not been

summarized so far. Therefore, the aim of the present paper is to review the existing

literature regarding the cytoprotective effects of PACAP in non-neuronal cell types,

peripheral tissues, and organs. Among others, PACAP has widespread expression in the

digestive system, where it shows protective effects in various intestinal pathologies, such

as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in

both the exocrine and endocrine pancreas as well as liver where it reduces inflammation

and steatosis by interfering with hepatic pathology related to obesity. It is found in

several exocrine glands and also in urinary organs, where, with its protective effects

being mainly published regarding renal pathologies, PACAP is protective in numerous

conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the

respiratory system. In the skin, it is involved in the development of inflammatory pathology

such as psoriasis and also has anti-allergic effects in a model of contact dermatitis.

In the non-neuronal part of the visual system, PACAP showed protective effects in

pathological conditions of the cornea and retinal pigment epithelial cells. The positive role

of PACAP has been demonstrated on the formation and healing processes of cartilage

and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The

protective role of PACAP was also demonstrated in the cardiovascular system in different

pathological processes including hyperglycaemia-induced endothelial dysfunction and

age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative

stress, and cardiomyopathies. PACAP is also involved in the protection against the

development of pre-senile systemic amyloidosis, which is presented in various peripheral

organs in PACAP-deficient mice. The studies summarized here provide strong evidence

for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP

depend on a number of factors which are also shortly discussed in the present review.
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INTRODUCTION

Pituitary adenylate cyclase activating polypeptide (PACAP) was
discovered more than 30 years ago by Arimura et al. (1). The
discovery was based on the ability of the hypothalamus-derived
peptide to increase cAMP levels in cultured pituitary cells.
Several studies following its isolation showed that PACAP exerts
several distinct effects in the hypothalamo-hypophyseal system
and other central regulatory pathways (2–7). PACAP belongs
to the glucagon/secretin/vasoactive intestinal peptide family of
peptides and it exists in two forms, with 38 and 27 amino
acids. PACAP acts on G protein coupled receptors. The specific
PAC1 receptor only binds PACAP, while the VPAC1 and VPAC2
receptors also bind vasoactive intestinal peptide with similar
affinity (8–12). Early studies already pointed out the robust
neuroprotective effects of PACAP in vitro and in vivo through a
combination of antiapoptotic, antiinflammatory, and antioxidant
effects (8–12). Neuroprotective actions have been shown, among
others, in cerebellar granule cells, neuroblastoma cells, cortical
neurons, and ganglionic cells against different toxic substances
and harmful stimuli, mainly through the PAC1 receptors (9).
In vivo, numerous animal models have been used to establish
the potential neuroprotective effects of PACAP in pathological
conditions (8–12). Although originally isolated in the central
nervous system and early studies showed highest concentration
in the brain, PACAP has a very widespread occurrence also
in peripheral organs. Numerous studies have provided proof
that PACAP exerts protective effects not only in the nervous
system but also in many peripheral cell types and organs. The
neuroprotective effects have been reviewed several times (8–16)
but the peripheral protective effects of the neuropeptide have not
been summarized in a review so far. Therefore, the aim of our
present paper is to review the general cytoprotective effects of
PACAP in non-neuronal cell types, peripheral tissues and organs
(summarized in Figure 1, Tables 1, 2).

DIGESTIVE SYSTEM

Intestines
PACAP has widespread expression in the gastrointestinal system
(98–101). PACAP acts on different intestinal processes including
motility (102), intestinal secretion of growth factors (103), and
activity of interstitial Cajal cells (104). In vitro investigations
of PACAP in small intestine were carried out using INT407
cells originally obtained from human embryonal jejunum and
ileum (17). PACAP showed protective effects against oxidative
stress, but it was not effective in CoCl2-induced in vitro hypoxia.
Surprisingly, if cells were exposed to gamma irradiation, PACAP
acted negatively on clone-forming ability, but this might be due
to a function in reducing the number of damaged cells (17).
Furthermore, Adcyap1 small interfering RNA transfection led to
higher vulnerability in INT407 cells suggesting a protective role
of endogenously present PACAP (17).

In vitro experiments using HCT-8 human colonic tumor
cells revealed proliferation-enhancing effect of PACAP (105).
The authors detected PACAP and specific PAC1 receptor in the

HCT-8 cell line. In addition, PACAP-38 was shown to suppress
Fas receptor, suggesting a possible role of PACAP in cell survival
(105). Lelievre et al. tested the effect of PACAP-27 in four
human colonic adenocarcinoma cell lines (HT29, SW403, DLD-
1, Caco-2). They found that long-term treatment with PACAP
or VIP reduced cell proliferation (106). Bacterial adhesion plays
a crucial role in gastrointestinal infections. Illes et al. (107)
examined the effect of PACAP on bacterial adhesion in small
and large intestinal cell lines. PACAP influenced colony numbers
of investigated bacteria neither in small intestinal INT407 nor
in large intestinal Caco-2 cells. On the other hand, PACAP was
able to act on expression of certain cytokines: it induced IL-8 and
CXCL-1 activation (107).

Previous studies aimed to investigate the possible effect of
PACAP in different models of intestinal pathologies. Protective
effect of PACAP in a rat model of duodenal ulcer was investigated
by Yagi et al. (54). Rats treated with mepirizole showed increased
gastric acid secretion and hemorrhagic lesions in proximal
duodenum. The applied intravenous PACAP-27 treatment led
to increased HCO3- secretion thus it could significantly reduce
the severity of duodenal lesions with no effect on gastric
acid secretion (54). Other studies have targeted to explore the
effect of PACAP in ischemia/reperfusion. Ferencz et al. (55–
57) described protective effect of PACAP in a rat model of
small bowel autotransplantation, modeling cold ischemia injury.
Small bowel was removed and stored in standard preservation
solution with or without additional PACAP. The histological
damage caused by cold ischemia was ameliorated by PACAP:
changes in mucous layer were reduced and crypt morphology
was better preserved (55). Besides preserving the morphology,
authors found that PACAP did not change lipid peroxidation but
kept the endogenous scavanger capacity. Effects of endogenously
present PACAP against cold ischemic injury were investigated
using PACAP deficient mice (58). Cold preservation injury was
established with removing small bowel from PACAP deficient
and wild type animals. Histological analysis showed more severe
destruction of mucous, submucous layers, and crypts in PACAP
deficient mice compared to wild type animals (58). Furthermore,
the effect of endogenous PACAP was also tested in warm
intestinal ischemia (59). Warm intestinal ischemia was evoked
by occlusion of the superior mesenteric artery. The intestinal
injury indicated by tissue damage was more severe in case of mice
lacking PACAP. Oxidative stress markers, like malondialdehyde
have also shown significant differences between PACAP deficient
and wild type animals (59).

Protective actions of PACAP were also studied in small
and large intestinal inflammations (98). Heimesaat et al. (60)
described protective effect of PACAP against Toxoplasma gondii-
induced acute ileitis. Both PACAP prophylaxis and treatment
were effective, mice obtaining PACAP prophylaxis or treatment
showed a higher survival rate (60). Authors have extended
their experiments in order to investigate whether PACAP could
alleviate subacute ileitis induced by low-dose Toxoplasma gondii
in mice having human gut microbiota (61). PACAP treatment
led to less distinct apoptotic responses in ileal and colonic
epithelia. Furthermore, not only intestinal but extraintestinal
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FIGURE 1 | Summary of the main cytoprotective effects of PACAP. (Graphics are adapted from Servier Medical Art under a Creative Commons Attribution 3.0

Unported License.)

sequelae of low-dose Toxoplasma gondii infection were
suppressed (61).

Effect of PACAP in large intestinal inflammation can be
presumed from changes of PACAP immunoreactivity in different
large intestinal pathologies in the pig (108). A considerable

upregulation of PACAP mRNA level and downregulation of
VPAC1 receptor were detected in transient receptor potential
Ankyrin type 1 (TRPA1) knockout mice in DSS-induced colitis
(109). In addition, PACAP expression was significantly reduced
in transient receptor potential cation channel subfamily V
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TABLE 1 | In vitro studies showing protective effects of PACAP.

Damaging insult/disease model Cell line References

INTESTINES

Oxidative stress Human embryonic intestinal cells (17)

PANCREAS

Streptozotocin-induced cell death Rat insulinoma (18)

Cytokine-induced apoptosis Mouse insulinoma (19)

Gluco- and lipotoxicity Mouse pancreatic beta cells (20)

LIVER

Oxidative stress Mouse hepatocytes (21)

Tumor necrosis factor-alpha/actinomycin D-induced apoptosis Mouse hepatocytes (21)

KIDNEY

Oxidative stress Rat kidney cells (22)

Mineral oil evoked hypoxia Mouse proximal tubular cells (23)

Oxidative stress Mouse kidney cells (24)

CoCl2-induced hypoxia Mouse kidney cells (25)

Cisplatin toxicity Mouse proximal tubular cells (26)

Cisplatin toxicity Human proximal tubular cells (27)

Gentamicin toxicity Human proximal tubular cells (28)

Cyclosporine A toxicity Human proximal tubular cells (29)

Radiocontrast media toxicity Human proximal tubular cells (30)

Myeloma kappa-light chain toxicity Human proximal tubular cells (31)

Lipopolysaccharide-induced inflammation Mouse podocytes (32)

RESPIRATORY TRACT

Cigarette smoke Rat alveolar cells (33)

CORNEA AND PIGMENT EPITHELIAL CELLS

Hyperosmotic and oxidative stress (diabetic macular edema) Human (adult) RPE cells (34, 35)

UV-B exposure Human corneal endothelial cells (36)

Oxidative stress Human (adult) RPE cells (37, 38)

Hyperosmotic and oxidative stress-induced neovascularisation Human (adult) RPE cells (39)

Growth factor deprivation Human corneal endothelial cells (40)

Increased permeability (macular edema) Human (adult) RPE cells (41)

IMMUNE CELLS AND THYMUS

UV irradiation Peripheral T cells and T cell hybridomas (42, 43)

Glucocorticoid-induced apoptosis Rat thymocytes (44)

SKELETAL SYSTEM: CARTILAGE AND BONE

Oxidative stress Chicken chondrogenic cells (45)

Osteoarthritis Rat chondrocytes (46)

Oxidative and mechanical stress Chicken chondrogenic cells (47)

CARDIOVASCULAR SYSTEM: VESSELS AND HEART

Oxidative stress6 Mouse hemangioendothelioma (48)

TNF-α-induced apoptosis Human endothelial cells (49)

Ischemia/reperfusion Rat cardiomyocytes (50, 51)

Oxidative stress Rat cardiomyocytes (52, 53)

RPE, retinal pigment epithelium; TNF, tumor necrosis factor.

member 1 (TRPV-1) knockout mice, which together with
reduced expression of VIP can contribute to local pro-
inflammatory environment in these animals (110). Horvath
et al. (98) investigated the possible role of PACAP in
human inflammatory bowel diseases. PACAP expression was
significantly higher in samples obtained from patients suffering
from ulcerative colitis, while this increase could be suppressed

by antibiotic therapy. Role of endogenously present PACAP
was tested in dextran sulfate sodium (DSS)-induced colitis by
two research groups (62, 63). Azuma and colleagues found,
based on the histological analysis and the determination of
disease activity index of PACAP knockout mice, that mice
lacking PACAP had a significantly higher vulnerability than
wild type controls (62). Investigations of Nemetz and coworkers
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TABLE 2 | In vivo studies showing protective effects of endogenous or exogenous PACAP.

Damaging insult/disease model Species Exogenous or endogenous PACAP References

INTESTINES

Mepirizole-induced duodenal ulcer Rat Exogenous (54)

Small bowel cold ischemia Rat Exogenous (55–57)

Small bowel cold ischemia Mice Endogenous (58)

Small bowel warm ischemia Rat Exogenous (56)

Small bowel warm ischemia Mice Endogenous (59)

T. gondii-induced acute and subacute ileitis Mice Exogenous (60, 61)

Dextran sulfate sodium-induced colitis Mice Endogenous (62)

Inflammation-associated colorectal cancer Mice Endogenous (63)

PANCREAS

Cerulein induced-acute panreatitis Mice Endogenous (64)

LIVER

Warm liver ischemia Mice Both (21, 65)

Obesity-induced liver steatosis Mice Exogenous (66)

SALIVARY AND OTHER EXOCRINE GLANDS

Salivary gland apoptosis Snail Exogenous (67)

URINARY SYSTEM

Warm renal ischemia Mice exogenous (23, 68)

Warm renal ischemia Rat exogenous (69–71)

Cisplatin-induced acute kidney injury Mice Exogenous (26, 27)

Gentamicin-induced nephrotoxicity Rat Exogenous (72)

Cyclosporine-A-induced nephrotoxicity Mice Exogenous (29)

Contrast agent-induced nephropathy Mice Exogenous (30)

Myeloma nephropathy Rat Exogenous (31)

Streptozotocin-induced nephropathy Rat Exogenous (73, 74)

Presenile kidney amyloidosis Mice Endogenous (75)

Nephrotic syndrome Zebrafish Exogenous (76)

RESPIRATORY TRACT

Tracheal neurogenic inflammatory response Rat Exogenous (77, 78)

LPS-induced subacute inflammation Mice Endogenous (79)

Ozone-induced airway hyperresponsiveness Rat Exogenous (80)

Ammonium vanadate-induced airway hyperresponsiveness Guinea pig Exogenous (81)

Smoke inhalation-induced lung injury Mice Exogenous (82)

SKIN

Neurogenic skin edema Mice Endogenous (83)

Oxazolone-hypersensitivity skin reaction Mice Endogenous (84)

Presenile skin amyloidosis Mice Endogenous (75)

Cornea and retinal pigment epithelial cells

Corneal keratinization Mice Both (85, 86)

Physical corneal injury Mice Exogenous (87, 88)

Physical corneal injury Rabbit Exogenous (88)

RPE cells in diabetic retinopathy Rat Exogenous (89)

IMMUNE CELLS AND THYMUS

S. aureus enterotoxin B-induced T cell death Mice Exogenous (42, 43)

Cyclophosphamide-induced thymus atrophy Mice Exogenous (90)

CARTILAGE AND BONE

Disturbed callus formation Mice Endogenous (91)

Serum transfer-induced immune arthritis Mice Endogenous (92)

CARDIOVASCULAR SYSTEM

Ischemia/reperfusion Pig Exogenous (93)

Diabetic vascular complications Mice Exogenous (94)

Presenile vessel amyloidosis Mice Endogenous (75)

Doxorubicin-induced cardiomyopathy Mice Endogenous (95)

Mitoxantrone-induced cardiomyopathy Mice Exogenous (96)

Irradiation-induced heart diseases Mice Exogenous (97)

RPE, retinal pigment epithelium; TNF, tumor necrosis factor.
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supported these findings. Mice lacking PACAP displayed more
severe symptoms of colitis and significantly stronger colonic
inflammation. Moreover, 60% of DSS-treated PACAP deficient
mice developed aggressive-appearing colorectal cancer (63). An
altered microbiota composition can also be in the background
of the increased vulnerability of PACAP knockout mice, as
investigations of intestinal microbiota composition in wild type
and PACAP deficient mice showed that Bifidobacteria were
virtually absent in PACAP deficient mice, even when they were
still breastfed (111).

Pancreas
PACAP is present in both the exocrine pancreas and in the
endocrine islets of Langerhans and it is thought to be a
potent intra-pancreatic regulator of beta cells under physiological
and pathological conditions (112–114). Interestingly, cerulein-
induced pancreatitits was aggravated in PACAP deficient mice
(64), but pancreatic beta cells derived from rat insulinoma, key
elements in pathogenesis in diabetes mellitus, were prevented
from streptozotocin-induced cell death (18). Han and Wu (19)
found that Adcyap1 overexpression reduced cytokine-induced
apoptosis in a mouse insulinoma cell line. Moreover, pancreatic
islets prepared from PACAP knockout and wild type mice
showed significant differences in defense against glucotoxicity
and lipotoxicity (20). Pancreatic islets cultured with high glucose
or palmitate displayed severely impaired glucose-induced first
phase Ca2+ increase and insulin secretion in PACAP deficient
mice, but not in wild type animals (20). PACAP overexpression
in KKAγ mice suffering from diabetes type II attenuated
hyperinsulinaemia and islet hyperplasia without alteration of
plasma glucose, glucose tolerance and insulin tolerance (115).
This was observed both in animals on normal diet and in
mice kept on high-fat diet suggesting that PACAP regulates
abnormal increase in islet mass and hyperinsulinaemia in type
II diabetes (115, 116).

Liver
Few data indicate that PACAP is also protective in some
pathological liver conditions. Although no effects on survival
were reported in normal or tumorous human hepatocyte cells in
vitro exposed to oxidative stress (22), PACAP showed protection
in mouse hepatocytes in vitro exposed to oxidative stress by
H2O2 or subjected to apoptosis-inducing TNF-α/actinomycin
D treatment (21). In vivo protection was also described
in ischemia/reperfusion liver injury (21). Pretreatment with
PACAP27 or 38 1 h before the onset of ischemia diminished
serum alanine aminotransferase levels, reduced the accumulation
of neutrophils and macrophages, suppressed inflammatory
chemokines (CXCL-1, CCL-2, CXCL-10) and cytokines (TNF-
α, IL-1β, IL-6, and IFN-β). The histological structure of the
liver was better preserved after PACAP treatment: necrosis and
apoptosis was reduced, caspase-3 activity was decreased along
with increased antiapoptotic molecule expression of bcl-2 and
bcl-xL via cAMP/PKA activation. The phosphorylation, thus
activation, of IκBα/NF-κB p-65 proteins was reduced and toll-like
receptor four immune response was inhibited (21).

The role of endogenous PACAP in liver protection was
examined in PACAP deficient mice. Ischemia/reperfusion injury
was augmented in animals lacking endogenous PACAP: serum
alanin aminotransferase levels were increased and more severe
tissue damage, indicated by edema, hemorrhage, congestion,
and hepatocellular necrosis, was observed compared to wild
type mice (21). In wild type mice, ischemic injury followed
by reperfusion led to a transient drop in endogenous PACAP
mRNA expression followed by a progressive increase. Similarly,
ischemic reperfusion injury triggered changes in the receptor
expression: VPAC receptor expression was also increased after
an initial drop, while PAC1 receptor expression was increased
from the onset of the ischemic period (21). A follow-up study
demonstrated that the protective effects of PACAP in hepatic
ischemia/reperfusion are partially mediated by induction of Yes-
associated protein, a cellular modulator of tissue regeneration
(65). The ischemia-induced induction of this protein was absent
in mice lacking endogenous PACAP, while PACAP substitution
enhanced its expression.

A recent paper showed that PACAP can alleviate
inflammation and steatosis, thus it can be protective in
obesity-related hepatic pathology and can ameliorate glucose
and lipid metabolism (66). These effects were mainly mediated
by the specific PAC1 receptor, involving Fas apoptosis inhibitory
molecule (FAIM), proven both in vitro and in vivo. Lower
PACAP expression was found in leukocytes isolated from obese
human patients, and levels were lower in livers of obese mice.
PACAP treatment of obese mice not only increased FAIM levels,
but also decreased serum triglycerides and total cholesterol
and reduced body weight (66). Liver triglycerides were also
reduced after PACAP treatment. Systemic inflammatory markers
were decreased, including MCP-1, IL-6, and TNF-α. Examining
fat tissue revealed that PACAP treatment reduced the size of
adipocytes and attenuated liver steatosis. Altogether, these
data indicate that PACAP ameliorates hepatic metabolism and
inflammation in obesity (66). An indirect mechanism has also
been suggested to play a role in the regeneration-stimulating
effect of PACAP: the PACAP-regulated selenoproteine expression
is strongly stimulated in liver cells during the regenerative
process that occurs after partial hepatectomy (117).

Salivary and Other Exocrine Glands
Occurrence of PACAP and receptors has been shown in
several exocrine glands and their secretions, including salivary,
mammary and lacrimal gland (85, 114, 118–121). Among
others, PACAP enhances salivary and lacrimal gland secretion,
increases salivary gland blood flow, and is implicated in breast
cancer growth (85, 118, 122–125). In contrast to the general
cytoprotective effects of PACAP, in MCF-7 breast cancer cell
line PACAP induced reactive oxygen species through H2O2

production, induced calcium release, and promoted apoptosis
by increasing Bax and decreasing bcl-2 expression (126). The
evolutionarily conserved nature of the antiapoptotic effect has
been proven in molluscan salivary gland (67). PACAP induced
a significant elevation of cAMP level in salivary gland extracts
and attenuated the apoptosis-inducing effect of dopamine and
colchicine, shown by the reduced caspase-positive cells (67).
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URINARY SYSTEM

Widespread distribution of PACAP and its receptors has been
described in the kidney and lower urinary tract (127, 128),
where PACAP plays distinct roles in the micturition pathways,
blood supply, hormone production and inflammation (128–130).
Direct protective effects of PACAP have mainly been described
in the kidney, its nephroprotective actions have been widely
studied. Its protective effects could be observed in different
models of renal pathological conditions (131). It shows protective
effects both in vitro and in vivo. In vitro data are available
proving the renoprotective effect of PACAP in different models
of cellular damage. It was shown to decrease the cell survival
worsening effect of oxidative stress in primary renal cell cultures
(22). In addition, Li et al. described its protection against
mineral oil evoked in vitro hypoxia in proximal tubule epithelial
cells obtained from wild type and MyD88 deficient mice (23).
Furthermore, its endogenous action against oxidative stress and
hypoxia can also be observed using PACAP deficient mice,
responding with higher vulnerability to oxidative stress leading
to decreased survival rate (24). Similarly, this susceptibility could
also be detected when renal cells were exposed to CoCl2-evoking
in vitro hypoxia (25). Experiments investigating the effect of
PACAP against proteinuria mimicking albumin treatment in
human proximal tubule cells showed that PACAP could not
influence cell viability either positively or negatively (132). It was
not able to change the increased TGF-β1 expression either.

In vivo observations were obtained from a series of
experiments modeling renal ischemia/reperfusion injury. The
first experiments proving PACAP’s renoprotective effect in
ischemia/reperfusion were performed by Riera et al. (69).
They found that continuous PACAP infusion improved renal
function, attenuated morphological damage, and influenced
inflammatory cellular infiltration. In addition, Szakaly et al.
performed experiments, in which PACAP was able to ameliorate
tubular damage and the level of oxidative stress, thus to decrease
mortality of rats that underwent ischemia/reperfusion (70).
PACAP was shown to reverse the cytokine expression profile
after ischemic injury (133). Such renoprotective effect was also
detected in mice (23, 26, 27). Khan et al. (68) performed
experiments to investigate the involvement of toll-like receptors.
Dozens of toll-like receptor genes changed after ischemia, while
PACAP was able to reverse these changes. Gender-dependence
was investigated in a recent study comparing renoprotective
effect of PACAP in male and female rats (71). Tubular alteration
was markedly less severe in female rats. Female animals
showed better results in both PACAP-treated and vehicle-treated
experimental groups indicating the presence of several additional
protective factors in females.

Actions of PACAP have also been studied in different models
of drug-induced nephropathies. PACAP was able to diminish
the nephrotoxic effect of gentamicin both in vitro and in vivo.
In vitro experiments showed its cell survival enhancing effect in
human proximal tubule cell line (HK-2) assessed by cytotoxicity
assay (28). In the same experimental model, it could counteract
the downregulating effect of gentamicin on dipeptidyl peptidase
IV and vascular endothelial growth factor (28). In accordance

with in vitro data, in vivo investigations have also explored its
protective effect in gentamicin-induced nephropathy. Tubular
damage caused by the accumulation of gentamicin could be
attenuated by repeated intravenous administration of PACAP
in rats, as indicated by the decreased TNF-α production (72).
Chemotherapeutic agents, like cisplatin, can also lead to renal
injury (134). In vitro studies using human HK-2 cells proved that
PACAP protected against cisplatin-induced injury, decreased
the cisplatin-induced TNF-α activation, influenced signaling
pathways activated by cisplatin (27). Li et al. examined primary
mouse renal proximal tubular epithelial cell culture (26). In
accordance with results in human cells, PACAP’s protective
effect was detectable. In vitro results were supported by in
vivo renoprotection in a mouse model of cisplatin-induced
nephrotoxicity (26). Mice treated with PACAP showed less severe
decrease of renal function. Furthermore, PACAP treatment
was able to alleviate morphological damage and reverse the
cisplatin-induced p53 activation. A further drug, cyclosporine
A has also been widely studied. Cylosporine A, a potent
immunosuppressant used for preventing allograft rejection and
in treatment of autoimmune diseases, can also lead to impaired
renal function (135). Khan et al. (29) investigated the effect of
PACAP against cyclosporine A both in vitro and in vivo. PACAP
was able to improve morphological changes and attenuate
TGF-β activation caused by cyclosporine A treatment in HK-
2 cells. In vitro data were further supported by their in vivo
findings. PACAP could improve the impaired renal function with
normalizing serum creatinine level. In addition, tubulointerstitial
damage was diminished and changes in cell junctional markers
were restored by PACAP treatment (29). Protective effect of
PACAP against contrast-induced nephropathy was also tested
by Khan et al. (30). PACAP could decrease the proliferation-
inhibiting effect of both ionic and non-ionic contrast media in
HK-2 cells. If added prior to urografin, it was able to enhance
cell survival of HK-2 cells. Furthermore, PACAP decreased the
elevated kidney injury molecule-1 (KIM-1) expression evoked
by contrast medium (30). In vivo findings complete the in vitro
data. Mice pretreated with PACAP before contrast agent did not
show severe tubular damage, apoptosis, increased oxidative stress
or inflammatory reactions unlike animals receiving only contrast
agent. A kidney biomarker assay further supported these data, as
numerous markers associated with kidney injury were decreased
in PACAP-treated mice (30).

Arimura et al. studied the actions of PACAP in myeloma
kidney injury both in vitro and in vivo (31). In vitro myeloma
kidney injury was generated with kappa light chains isolated
from the urine of a patient suffering multiple myeloma. Human
renal proximal tubule cells exposed to kappa light chains were
protected by PACAP: it could mitigate the cellular injury and
elevated expression of IL-6 and TNF-α. In vivo investigations
in rats were in accordance with in vitro results. Rats receiving
both PACAP and myeloma light chain showed reduced cytokine
activation compared to animals treated only with light chain
(31). In addition, effectiveness of PACAP was also examined in
a single patient case study, in which it was shown to reduce free
lambda light chains in urine indicating its possible therapeutic
use in the future (136). Another target of investigations exploring
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renoprotective effect of PACAP is diabetic nephropathy, the
leading cause of renal insufficiency (137). Sakamoto et al. used
podocytes to model inflammation in diabetic nephropathy (32).
PACAP was able to reduce the lipopolysaccharide-induced
proinflammatory cytokine activation, ERK phosphorylation and
NF-κB transnuclear localization. In vivo studies revealed
protection in streptozotocin-induced diabetes in rats
(73). Intraperitoneal PACAP treatment led to less severe
morphological changes and reduced proinflammatory cytokine
activation (73). Li et al. (72) applied continuous PACAP
infusion for 2 weeks and they found that PACAP reduced the
diabetic changes like proteinuria and glomerular enlargement.
Molecular mechanism of PACAP-exerted protective effects was
also examined in streptozotocin-induced diabetes (74). Results
showed that PACAP could decrease the activation of apoptotic
signaling pathways.

Investigating PACAP deficient mice, it was revealed that
animals lacking endogenously present PACAP suffer from
presenile systemic amyloidosis (75). Severe amyloidosis can be
observed in several organs including the kidney. Kidney was one
of the most affected organs, amyloid deposits were found in renal
corpuscles. Level of renal function was also in accordance with
amyloid deposits: serum creatinine level was increased in aging
PACAP-deficient mice (75, 138).

PACAP suppression experiments in zebrafish of Eneman
et al. revealed that nephrin depletion, a model of nephrotic
syndrome is associated with adcyap1a and vip downregulation
(76). Using adcyap1a and adcyap1b morpholinos the authors
decribed more severe sequelae of nephrin depletion. In addition,
administration of human PACAP38 could rescue the phenotype
of zebrafish embryos injected with PACAP morpholino, but it
was not able to save them in case of nephrin depletion. Nephrotic
syndrome was also modeled by adriamycin exposure, when
only adcyap1a gene was downregulated. Furthermore, nephrotic
fishes showed reduced protein expression of PACAP. PACAP
morpholinos worsened the change in phenotype induced by
adriamycin exposure, which could be attenuated by addition of
human PACAP38 (76).

RESPIRATORY TRACT

Although the role of PACAP in the respiratory tract is not as
widely studied as that of VIP, PACAP and is receptors occur
in the entire length of the respiratory tract (139–141) and
several effects have been described in airway smooth muscle
contraction and mucous secretion (142–144). It has been
reported that PACAP increases allergic reactions in the human
nasal mucosa by increasing resistance and plasma leakage
(145), but PAC1 receptor is implicated in anti-inflammatory
reactions and mediates alleviation of bronchial hyperreactivity
(146). Exogenous PACAP diminished both capsaicin- and
electric field stimulation-evoked sensory neuropeptide
release in a concentration-dependent manner in trachea
preparations (77, 78), showing that PACAP is able to diminish
neurogenic inflammatory response in vivo. The protective role
of PACAP has also been demonstrated in a lung inflammation

model of mice (79). In endotoxin-induced subacute airway
inflammation, airway hyperreactivity, histopathological changes,
and myeloperoxidase activity were markedly higher in mice
lacking endogenous PACAP, pointing to the anti-inflammatory
role of endogenous PACAP in the lungs (79). In another
rat model, in vanadate-induced airway hyperresponsiveness,
PACAP inhalation alleviated the increase in bronchial resistance,
reduced the increased inflammatory chemokine, and cytokine
release and improved the antioxidant status, also pointing
to the potential of PACAP treatment in inflammatory and
allergic respiratory conditions (80). Similar results were found
in ozone-induced airway hyperresponsiveness, which was
suppressed by PACAP without affecting plasma extravasation
(81). Furthermore, Yu et al. (82) have described that PACAP,
bound to a traversing-enhancing TAT peptide, can alleviate
smoke inhalation-induced condition. They found that both
PACAP and PACAP-TAT decreased mortality, led to a body-
weight increase, alleviated edema and vascular permeability
increase, and decreased oxidative stress as indicated by reduced
myeloperoxidase activity, interleukin-6, and malondyaldehyde
levels while increased catalase levels in the lungs of mice
that were exposed to repeated smoke inhalation (82). PACAP
and PACAP-TAT treatments also resulted in decreased cell
infiltration and bronchial epithelial hyperplasia. These data
indicate that PACAP can alleviate smoke inhalation-induced
damage of the lungs. These data confirmed earlier results
showing that PACAP protected rat alveolar L2 cells from
cytotoxicity of cigarette smoke by reducing caspase activity
resulting in reduced apoptotic cell death (33). PACAP has
also been implicated in lung cancer cell growth (147). PACAP
stimulates colony formation and nuclear oncogene expression in
NCI-N417 lung cancer cells, while PACAP antagonist treatment
slows down small cell lung cancer growth (148, 149) and lower
levels of PACAP were described in human lung cancer biopsies
in comparison with neighboring healthy tissue (150). PACAP
induces vasodilation, including pulmonary vessels. The absence
of its specific receptor PAC1 causes pulmonary hypertension and
right heart failure after birth (151). These findings demonstrate
the crucial importance of PAC1-mediated signaling for the
maintenance of normal pulmonary vascular tone during early
post-natal life (151).

SKIN

The presence of PACAP and receptors has been shown in the
skin (83, 152, 153). Potent vasodilatory and edema-building
effects have been attributed to cutaneous PACAP treatment soon
after its discovery (154, 155). Recent studies have shown that
PACAP stimulates sweat gland activity (156). PACAP in the
skin is implicated as a protective factor in the development
of inflammatory dermatological conditions, such as psoriasis
(153, 157) and neurogenic skin inflammation (83). Although
both stimulatory and inhibitory actions on skin edema formation
have been described, PACAP deficient mice show increased
delayed-type of hypersensitivity reaction induced by oxazolone
(84). Mice lacking endogenous PACAP had increased edema
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formation, moderately enhanced cellular inflammatory reactions,
and increased levels of the inflammatory cytokine monocyte
chemoattractant protein-1 levels (84). These results point to the
anti-allergic effects of PACAP in a model of contact dermatitis.
We have already mentioned above the presenile appearance of a
systemic type of amyloidosis in PACAP deficient mice (75, 138).
The amyloid deposition was markedly present in the skin, under
the epidermis. In the skin, the main location of the deposits was
the dermal papillary layer, continuous with the homogeneous
mass in the connective tissue surrounding appendages (hair
follicles and sebaceous and sweat glands) and vessel walls. While
in wild type mice occurrence of amyloidosis was observed in 57%
of the animals at old age, and only 14% young mice, already in
67% of young PACAP KO mice and nearly 90% of old PACAP
KO mice exhibited amyloid deposits (75) in the skin. This shows
that PACAP deficiency can be an attributing factor in skin aging.

NON-NEURONAL PARTS OF THE VISUAL
SYSTEM: CORNEA AND RETINAL
PIGMENT EPITHELIAL CELLS

The effects of PACAP in the visual system have been widely
investigated and numerous reports have shown the effects of
PACAP in the neural parts, especially in the retina. Both in
vitro and in vivo studies have demonstrated that PACAP is a
potent neuroprotective agent in different retinal pathologies.
These effects have been reviewed in several papers (86, 158,
159). Other, non-neuronal parts of the eye have also been
investigated for the actions of PACAP. Among others, PACAP
influences sphincter and dilator pupillary muscle contractility
(160), increases cAMP in the ciliary epithelium (161) and is
involved in ocular inflammatory reactions (162). Regarding
cytoprotective effects, several studies have described that PACAP
protects the cornea. The cornea consists of 5 layers, the outer
epithelium building the barrier toward the outside and the inner
endothelium serves as a barrier toward the aqueous humor.
Both inner and outer epithelial layers play an important role in
maintaining the hydration and transparency of the main stromal
layer, which is separated from the outer and inner epithelial layers
by outer and inner limiting membranes, respectively. PACAP
receptors have been described on the surface of the cornea (85).
It is thought that the peptide produced by the lacrimal gland
and present in the lacrimal fluid can act on the surface of the
cornea and can play a role in the regeneration of the corneal
surface epithelial cells. Indeed, PACAP eye drops prevent corneal
keratinization in PACAP deficient mice (85). A PACAP-derived
peptide has been shown to promote corneal wound healing
(87, 88). PACAP given in form of eye drops not only acts directly
on the surface but also passes ocular barriers and is able to induce
protective effects in the retina (163, 164).

Recent studies have reported that PACAP is protective in
corneal endothelial cells, where PACAP and all three receptors
are expressed (34, 35). In isolated human corneal endothelial cells
PACAP protected growth factor deprivation-induced decrease in
cellular viability and restored transepithelial electrical resistance
(34). Furthermore, PACAP increased the expression of tight

junction proteins and stimulated corneal endothelial repair
demonstrated in a wound healing assay (34). Noteworthy,
PACAP exerted a protective effect on corneal endothelium
against ultraviolet B (UV-B) radiation, by reducing the activation
of apoptotic pathway through a down-regulation of bax and
cleaved caspase-3 and up-regulation of bcl-2 protein. Moreover,
PACAP preserved corneal endothelium integrity following UV-
B exposure by increasing transepithelial electrical resistance
and the expression of ZO-1 and claudin-1 proteins (36). The
same authors investigated the involvement of epidermal growth
factor receptor involvement in PACAP-induced protection of
corneal endothelial cells (35). They found that PACAP, through
PAC1 receptor, induced epidermal growth factor receptor
phosphorylation and MAP kinase/ERK1/2 activation. These
results are also in accordance with data obtained in retinal
pigment epithelial cells where PACAP restored cell viability in
pigment epithelial cells exposed to different stressors, induced
ERK and epidermal growth factor receptor phosphorylation and
ameliorated junctional protein damage (37–40).

The retinal pigment epithelium is the outermost, non-neural
layer of the retina. The apical surface of the cells is in contact
with the outer segments of the photoreceptor cells, while the
basolateral surface attaches to the Bruch’s membrane, which
separates the pigment cells from the choriocapillary layer. Tight
junctions interconnecting retinal pigment cells are the main
components of the outer blood-retina barrier, which has essential
roles in the maintenance of the retinal homeostasis. Dysfunction
of the tight junctions has been observed in diabetes and
ischemia, leading to leakage of macromolecules into the retina,
contributing to the development of retinopathies (165). Retinal
pigment epithelial cells are likely to undergo hyperosmotic stress
during the development of macular edema, resulting in reduction
in aquaporin-4 expression (166). Moreover, hyperosmolarity
was observed to induce transcription of bFGF and HB-EGF
genes and secretion of bFGF from the pigment cells (167).
One of the most important factors secreted by the pigment
epithelial cells is vascular endothelial growth factor, VEGF (168–
172). Overexpression of VEGF is one of the major inducers
of age related macular degeneration and proliferative diabetic
retinopathy, which are among the leading causes of blindness
worldwide (173).

All three PACAP receptors (PAC1, VPAC1, and VPAC2)
mRNAs were detectable in the pigment epithelium (174).
According to Mester et al. (37) adult retinal pigment epithelial
cells (ARPE-19) exposed to H2O2 could be rescued with PACAP
in a dose-dependent manner. In a subsequent study it was
also proved that PACAP could inhibit the expression of pro-
apoptotic factors (Bad, Bax, and Hif1α) and elevate the levels of
anti-apoptotic factors such as ERK1/2 and CREB (38). Besides
its general cell protective, pro-survival, and anti-inflammatory
effects, PACAP possesses protective effects on tight junctions of
endothelial and epithelial cells (175). PACAP was shown to have
a protective effect on the barrier properties of the cells of the
outer-blood-retinal barrier in the presence of factors accounting
for diabetic macular edema (34, 35, 41, 89).

PACAP could also reduce the concentration of VEGF
in ARPE-19 cells. Moreover, PACAP was able to attenuate
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the levels of some other pro-angiogenic proteins (uPA,
angiogenin, and endothelin-1). As a conclusion, PACAP
is among the emerging molecules to fight diabetic
complications and macular degeneration, similarly to VEGF
antagonists, antioxidants, anti-inflammatory agents, and other
neuropeptides (39).

IMMUNE CELLS AND THYMUS

PACAP is a well-established modulator of innate and acquired
immunity and exerts protective functions in immunological
diseases, although the presence of both anti- and pro-
inflammatory roles of PACAP depending on the immune
status, disease, age, and pathological conditions complicate the
immunological role of PACAP (176, 177). As there are several
reviews on the immunomodulatory roles of PACAP (177–179),
the present review summarizes only data regarding direct cellular
protection in lymphatic organs and cells. Activation induced
cell death in T lymphocytes is an important mechanism in
peripheral tolerance, initiated by antigen reengagement, and
mediated through Fas/Fas ligand (FasL) interactions. PACAPwas
found to inhibit this induced cell death in vivo and in vitro in
peripheral T cells and T cell hybridomas (42, 43). Both forms
of PACAP, PACAP27 and PACAP38, can protect CD4+CD8+
thymocytes from glucocorticoid-induced apoptosis, suggesting
an involvement of PACAP in thymic T-cell maturation (44).
The expression of PAC1 receptor and PACAP increased in the
degenerative thymus induced by cyclophosphamide (90). The
authors have also described that while high dose PACAP had
no protective effects against cyclophosphamide-induced thymus
atrophy, low dose PACAP promoted the thymus index, inhibited
apoptosis, enhanced oxidative status, and decreased caspase
activity (90).

SKELETAL SYSTEM: CARTILAGE AND
BONE

Neuropeptides have important functions in the development
of skeletal elements and also in regeneration processes (180,
181). Detailed analysis of PACAP receptors has been performed
in chondrogenic cell cultures (45) and osteogenic cell lines
(182, 183). The specific PAC1 receptor has been identified in
bone and cartilage (45, 183) and the activation of PAC1 by
PACAP has positive effect on cartilage and bone formation
(45, 184) via the activation of protein kinase A (PKA)-
regulated pathways. PACAP also positively regulates matrix
expresssion of both musculoskeletal elements. Addition of
PACAP to chondrogenic cell cultures increases the activation
of Sox9 (SRY-related HMG-BOX gene) and regulates the
expression of HAS2 and HAS3 (hyaluronan synthase) expression
(45). In bone PACAP increased the activation of alkaline
phosphatase (ALP) and elevated the expression of collagen
type I (184).

In degenerative cartilage diseases increasing number of
experiments have been performed in the last decade to prove
that PACAP plays a protective role. First, it was shown that

the expression of PAC1 receptor was altered in specific layers
of cartilage in osteoarthritis (OA) (46) and reduced during
oxidative stress (45). On the other hand, the neuropeptide has
a preventive function in pathological processes. In cartilage, the
antagonist PACAP6-38 behaves as an agonist and administration
of both PACAP1-38 and 6-38 protected against the harmful
effect of oxidative stress in high density chondrogenic cell
cultures via the elevation of collagen type II, aggrecan and
hyaluronic acid expression (45). PACAP elevated the activation
of PP2B (protein phosphatase 2B) and subsequently triggered
the activation of NFAT (Nuclear factor of activated T-
cells). In oxidative stress PACAP administration prevented the
phosphorylation processes of chondrogenic signaling pathways
in chicken high density cultures. The administration of the
neuropeptide was able to defend cartilage formation during
mechanical overload via decreasing the expression of collagen
type X, a characteristic sign of OA cartilage. On the other
hand, it increased collagen type II expression inducing a
chondrogenic phenotype formation (185). PACAP signaling
also communicates with the hedgehog pathways leading to
decreased expression of SHH (sonic hedgehog) and IHH
(Indian hedgehog) (185). The reduced activation of hedgehog
pathways kept cartilage in a prehypertrophic condition (185)
suggesting an important role of PACAP in cartilage degradation
processes. Furthermore, mechanical overload and presence
of reactive oxygen species trigger the activation of several
matrix degrading enzymes such as matrix metalloproteinases,
hyaluronidases, and aggrecanases in OA. PACAP was able
to reduce the activation of matrix metalloproteinases and
aggrecanases in chondrogenic cell cultures exposed to forced
physical stress and oxidative stress, further strengthening the
preventive function of the neuropeptide in cartilage diseases
(47). In OA patients concentration of PACAP is decreased
(186) and the administration of PACAP with hyaluronic acid
injection increased the synovial fluid PACAP concentration
and prevented the cartilage degradation processes (186).
Moreover, PACAP addition during anterior cruciate ligament
related OA formation can be an adjuvant therapy to prevent
the physiological structure of articular cartilage (187). Taken
together application of PACAP as a potential therapeutic target
of OA formation is likely as it was discussed by Grassel
et al. (188).

Some data point to the possible importance of PACAP
in bone regeneration processes. First of all, the presence of
PACAP is needed for proper bone architecture formation (184).
In the lack of PACAP the long bones are more fragile and
their organic and inorganic extracellular matrix balance and
distribution are disturbed (184). In callus formation PACAP is
proven to have important function via the activation of BMP
(bone morphogenetic protein) signaling pathway and balance
the ALP expression (91). In mice lacking endogenous PACAP,
callus formation after tibia fracture was disturbed with several
alterations in compensatory pathways (91). Furthermore, PACAP
has an important function in bone turnover and inflammation
(92). On the other hand, the presence of PACAP inhibited
osteophyte formation and had a preventive role in rheumatoid
arthritis development (92).
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CARDIOVASCULAR SYSTEM: VESSELS
AND HEART

PACAP is a well-known vasodilator peptide (189–191). Receptors
are found in vessel walls and PACAP-induced vasodilatory effects
have been demonstrated in various vessels in vitro and in
vivo. This perfusion-increasing potency has beneficial effects
in several organs, but can also trigger migraines through this
activity in meningeal arteries (192, 193). PACAP has also
been described to preserve post-ischemic cerebrovascular
reactivity in pigs, independent of its vasodilatory effect (93).
As there are several original and review papers published in
the recent years regarding this vasodilatory effects of PACAP
(191–196), now we focus more on the protective effects of
PACAP exerted directly on the vascular wall, especially on
endothelial cells. First results showed protective effects against
oxidative stress: exposure of mouse hemangioendothelioma
cells to hydrogen peroxide resulted in a robust reduction of
viability and an increase of apoptotic cells, while co-incubation
with PACAP increased cell viability and reduced the number
of apoptotic cells (48). PACAP treatment also ameliorated the
reduced level of ERK phosphorylation and counteracted the
increased phosphorylation of the pro-apoptotic JNK and p38
MAP kinases. PACAP also exerts a cytoprotective effect on
endothelial colony forming cells exposed to TNF-α and partially
rescues their proliferation potential inhibited by prolonged
TNF-α exposure (49). In a more recent study, ameliorating
effect of PACAP has been described in hyperglycaemia-induced
endothelial dysfunction, an important factor contributing
to diabetes-related vascular pathology (94). PACAP reduced
the hyperglycaemia-induced elevation of fibroblast growth
factor basic, matrix metalloproteinase 9 and nephroblastoma
overexpressed gene proteins, implicating a protective role
of PACAP in vascular complications of diabetes (94). PACAP
deficient mice are susceptible to develop a systemic form of senile
apolipoprotein IV-predominant amyloidosis, characterized by
typical perivascular deposits in most organs (75, 138), pointing
to the role of PACAP in age-related vascular changes. This has
been also confirmed in a study where angiogenic capacity was
examined in cerebromicrovascular endothelial cells (197). In
aged cells, expression of PACAP was decreased, associated with
reduced capacity to form capillary-like structures, impaired
adhesiveness to collagen, and increased apoptosis (caspase3
activity). Overexpression of PACAP in aged endothelial cells
resulted in increased tube-formation capacity. Treatment
with recombinant PACAP also increased tube formation and
inhibited apoptosis in aged cells. In young cerebromicrovascular
endothelial cells, knockdown of endogenous PACAP expression
impaired tube formation capacity, mimicking the aging
phenotype (197).

PACAP and its receptors occur in the heart and the
neuropeptide exerts various different cardiac functions. Several
studies examined the potential effects of PACAP in the
cardiovascular system. The presence of this polypeptide and
its PAC1 receptor have been demonstrated in cardiomyocyte
cell cultures, mouse heart tissue and also in human heart

samples (150, 198–200). PACAP has direct positive chronotrop,
inotrop, dromotrop, and vasodilatator effects and exerts robust
cardioprotective actions due to its antiapoptotic and antioxidant
properties (201). The cardioprotective effects of PACAP were
first identified in cardiomyocyte cell cultures against different
ischemia/reperfusion injuries. In these experiments, exogenous
PACAP treatment lead to decreased level of pro-apoptotic factors
(Bad, caspase-3) and elevated levels of anti-apoptotic proteins
(cleaved caspase-8, Bcl-xl) inducing significantly increased
cell viability (50, 51). Moreover, several in vitro experiments
have already proven that PACAP provides effective protection
against oxidative stress induced apoptosis due to higher Bcl-
2 and phospho-Bad expression and lower caspase or Jun N-
terminal kinase and p38 mitogen activated protein (MAP) kinase
activation (51–53).

Besides in vitro researches, different animal studies also
examined the cardioprotective effects of PACAP. Alston et al.
detected significantly higher endogenous PACAP levels and
mRNA expression in mice after myocardial infarction (202).
Furthermore, examining doxorubicine induced cardiomyopathy,
significantly more severe DNA damage and apoptotic cell
death were detected in PACAP-deficient mice compared to wild
types (95). In another study, PACAP treatment had protective
effect against mitoxandron induced cardiotoxicity (96).
PACAP attenuated body weight reduction of mice, prevented
mitoxantrone-induced left ventricular dilation resulting in
diminished functional deterioration shown by the ejection
fraction and fractional shortening (96). A recent study provided
both in vitro and in vivo evidence that PACAP attenuates
radiation-induced heart disease, a common consequence of
thoracic irradiation therapy (97). PACAP enhanced viability and
colony-forming efficiency, while reduced generation of reactive
oxygen species in cardiomyocytes exposed to radiation. PACAP
exposure suppressed myocardial apoptosis and G2/M arrest
through blunting the radiation-induced down-regulation of
Bcl-2, CyclinB1 and CDC2, and inhibiting the up-regulation of
Bax (97). Pre-treatment with PACAP also protected mice from
radiation-induced histological damage including myocardial
apoptosis and fibrosis (97).

In addition to the several in vitro and animal experiments,
a few human studies have also been performed that raise the
possibility of PACAP being cardioprotective also in the human
heart. Szanto et al. examined human right auricle tissue samples
from coronary artery bypass or heart valve implantation surgery.
They found significantly higher PACAP concentration in patients
with ischemic heart disease compared to valvular abnormalities
emphasizing the protective role of PACAP in ischemic heart
diseases (150). Remarkable differences were detected in plasma
PACAP levels of ischemic and primary dilated cardiomyopathy
patients. A significant negative correlation was observed between
the severity of ischemic heart failure and plasma PACAP levels
suggesting that PACAP might play an important role in the
pathomechanism and progression of ischemic heart failure
(203). Lack of PAC1-mediated signaling has been shown to
be associated with pulmonary hypertension and right heart
failure in PAC1 deficient mice, indicating the crucial importance
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of PACAP in the maintenance of normal pulmonary vascular
tone (151).

REPRODUCTIVE ORGANS

PACAP and its receptors have widespread and stage-specific
occurrence in the gonads and their presence have been shown
in several other reproductive organs (100, 204, 205). PACAP has
been described as a follicle-surviving factor due to suppression
of apoptosis in a dose-dependent manner in rat ovaries (206).
Although PACAP has been detected in the human ovarian
follicular fluid, its exact role in the human ovary is not known
(207). In the testis, PACAP plays a role in spermatogenesis
and is supposed to be involved in tumor growth (100, 208,
209). Interestingly, in spite of PACAP deficient mice displaying
disturbed spermatogenesis and altered testicular immunity (100,
210), they also show delayed testicular aging supposedly due
to the stimulatory effect of PACAP on testosterone production,
which, in turn, accelerates aging due to increased oxidative
stress (211). The involvement of PACAP has been described
in numerous reproductive processes from fertilization to
implantation (212–214). However, its direct cytoprotective effects
have only been shown in a few cases. PACAP protects human
trophoblast cells against oxidative stress, but has no effect against
methotrexate-induced cell death and in contrast, it potentiates
cell death in choriocarcinoma cells (205, 215, 216). Similar tumor
cell growth inhibiting effects have been described in cervical
cancer cells (217). These data demonstrate that while in many
tissues PACAP is clearly a pro-survival factor, no such clear effect
has been found in the reproductive tissues, where PACAP seems
to play a more complex regulatory role in reproductive processes
and during tumor growth.

OTHER CELL TYPES

One study described that PACAP was able to attenuate
apoptosis of human hypophysis adenoma cell line HP75
induced by transforming growth factor-β1 (218). In PC-
3 human prostate cancer cells PACAP inhibited apoptosis
induced by serum starvation (219). PACAP alone did not
influence cell survival in cultured pinealocytes, but could
attenuate the toxic effect of H2O2. However, co-incubation
of pinealocytes with PACAP promoted survival only in the
dark phase, PACAP during the light phase did not result
in significant differences in the percentage of living cells.
This suggests that the time of day can also influence the
protective effects of PACAP (220). PACAP inhibited serum
depletion-induced apoptosis of megakaryocytes via VPAC1
stimulation (221).

CONTRADICTORY ASPECTS

Based on the studies summarized here PACAP is now considered
as a general cytoprotective peptide. However, its cell survival-
promoting effect depends on a number of factors. First of all,

it depends on the type of cell and developmental stage of a
cell type. Also, numerous other factors can influence whether
PACAP acts as a pro-survival factor, has no effect, or even on
the contrary, it induces cell death (222). For example, PACAP
has been described to counteract the cytotoxic effects of cisplatin
chemotherapy treatment in neurons, without affecting the toxic
effects in ovarian cells, thereby not influencing the therapeutic
effect of cisplatin on tumor cells (223). Glioblastoma cell invasion
is inhibited by PACAP under low oxygen tension (224), while
both pro- and anti-proliferative effects have been found in
different glioblastoma cell lines (225, 226). As we summarized
the cytoprotective effects of the peptide present in several cell
types, PACAP has also been described to exert cytotoxic effects
in high doses in certain tumor cells, like in retinoblastoma
cells (227). In certain cells, neither pro- nor anti-survival effects
could be found, like JAR cytotrophoblast cells with or without
methotrexate treatment (205) or in HEP-G2 hepatocellular
carcinoma cells subjected to oxidative stress (22). In contrast,
in several other tumor cell line, PACAP has been shown to
inhibit growth, like MCF-7 breast cancer cells (126), a negative
regulator of cervical carcinoma as overexpression of the PACAP
gene in cervical cancer cell lines lacking PACAP expression
significantly inhibited cell growth and induced apoptosis (217),
is a pro-apoptotic factor in choriocarcinoma cells (215), and
inhibits the growth of myeloma, leukemia and medulloblastoma
cells (228–230).

SUMMARY

In summary, PACAP has protective effects against various
harmful stimuli in a wide range of tissues in the periphery.
Numerous factors influence this protective effect, the detailed
mapping of which awaits further investigatons.
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