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Osteocytes are the most abundant (∼95%) cells in bone with the longest half-life (∼25

years) in humans. In the past osteocytes have been regarded as vestigial cells in bone,

since they are buried inside the tough bone matrix. However, during the last 30 years

it has become clear that osteocytes are as important as bone forming osteoblasts

and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell

body and dendritic processes reside in bone in a complex lacuno-canalicular system,

which allows the direct networking of osteocytes to their neighboring osteocytes,

osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing

of osteocytes translates the applied mechanical force on bone to cellular signaling

and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly

efficient in transferring external mechanical force on bone to the osteocyte cell

body and dendritic processes via displacement of fluid in the lacuno-canalicular

space. Osteocyte mechanotransduction regulates the formation and function of the

osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a

variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts,

DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity.

Various genetic abnormality-associated rare bone diseases are related to disrupted

osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic

rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during

the last 15 years on disrupted osteocyte function in rare bone diseases guided

for the development of various novel therapeutic agents to treat bone diseases.

Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van

Buchem disease revealed a role for sclerostin in bone homeostasis, which led to

the development of the sclerostin antibody to treat osteoporosis and other bone

degenerative diseases. The mechanism of many other rare bone diseases and the

role of the osteocyte in the development of such conditions still needs to be

investigated. In this review, we mainly discuss the knowledge obtained during the

last 30 years on the role of the osteocyte in rare bone diseases. We speculate
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about future research directions to develop novel therapeutic drugs targeting osteocyte

functions to treat both common and rare bone diseases.

Keywords: osteocyte, rare bone disease, mechanotransduction, bone remodeling, niche, sost/sclerostin,

phosphate-homeostasis, RANKL

INTRODUCTION

Bone mainly contains three types of cells, i.e., osteocytes,
osteoblasts, and osteoclasts. The osteocytes are the most
abundant cells comprising 95% of the total cell population in
bone with an average half-life of 25 years (1, 2). The bone-
forming osteoblasts and bone-resorbing osteoclasts account for
only ∼5% of the total bone cell population, and live for
only a few days to weeks. The characteristics and function of
osteoblasts and osteoclasts during physiological bone remodeling
and bone diseases have been extensively studied (3–6). However,
the cellular and molecular mechanisms of osteocyte-mediated
effects on skeletal health have not been fully elucidated. Five
decades ago the osteocytes were still regarded as inert cells
buried alive inside the bone matrix, despite the fact that the
healthy human skeleton contains ∼42 billion osteocytes (7). The
mechanosensing property of osteocytes has been reported for the
first time about three decades ago (8). With the advancement
of new technologies in molecular and cellular mechanisms,
imaging, transgenic approaches, and RNA sequencing, important
functions of osteocytes and their role in bone homeostasis
and vital systemic functions have become clear in the last
two decades (1). Osteocytes are descendants of osteoblasts.
During the bone mineralization process, some osteoblasts bury
themselves in the bone matrix. They regulate mineralization,
develop connective dendritic processes, and become osteocytes.
Although osteocytes are buried deep inside the bone matrix,
their dendritic processes are well-connected with neighboring
osteocytes, osteoblasts, blood vessels, nerve cells, and bone
marrow. The osteocyte cell body resides in a lacunar space inside
the bone matrix. From the cell body 50–60 dendritic processes
radiate in canaliculi space, forming a complex osteocyte lacuno-
canalicular system (9). Mechanical loading of bone triggers
interstitial fluid flow in this lacuno-canalicular system. Osteocyte
dendritic processes sense the fluid flow, resulting in cellular
signaling (10–12). In response to mechanical stimuli, osteocytes
release nitric oxide (NO), prostaglandins (PGs), and ATP
(within milliseconds), which affects many other cellular signaling
pathways including interleukin-6 (IL-6), receptor activator
of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG),
Wnt/β-catenin, and calcium signaling pathways (10, 11, 13–
15). During the last 30 years various mechanisms of osteocyte
mechanotransduction have been reported. Calcium oscillation
in osteocytes has been shown to be a critical regulator of
osteocyte mechanotransduction (16–18). Recently, mechanical
loading-induced Ca2+ oscillation has been shown to cause the
release of extracellular vesicles from osteocytes and to promote
bone regeneration (19). Loading-induced Ca2+ oscillation
in osteocytes triggers the release of downstream signaling
molecules, e.g., NO (14, 20–22), prostaglandin E2 (PGE2) (23),

matrix extracellular phosphoglycoprotein (MEPE), insulin-like
growth factor-1 (IGF-1) (24), and β-catenin (25). Similarly,
primary cilia on the osteocyte cell body as well as the dendritic
processes play a regulatory role in the mechanotransduction
process in osteocytes (26). Focal adhesions are macromolecular
complexes consisting of multiple actin-associated proteins, such
as paxillin, vinculin, connexin-43, integrins, and talin, that
serve as physical linkages between a cell’s cytoskeleton and the
ECM. The mechanism of focal adhesion-mediated osteocyte
mechanotransduction has been partly unraveled (27–30).

Osteocytes produce various signaling proteins such as
sclerostin, WNT1, WNT3a, Dickkopf-related protein 1 (DKK1),
phosphate regulating endopeptidase homolog X-linked (PHEX),
RANKL, MEPE, fibroblast growth factor-23 (FGF23), sclerostin,
and vascular endothelial growth factor (VEGF) (31–34). These
proteins and growth factors not only play a crucial role in
bone biology, but also in other organs such as kidney, and
in fat metabolism (34, 35). Disruption of the production of
these proteins by impaired osteocyte function causes bone
diseases, including rare bone diseases (36–40). Osteocyte-specific
release of growth factors and signaling molecules is disturbed
during long-term unloading, such as occurs in astronauts
during space traveling and long-term bed rest (11). Similarly,
inflammatory conditions caused by various inflammatory
diseases also affect osteocyte function and signaling (41, 42).
Various genetic abnormality-associated rare bone diseases are
related to disrupted osteocyte functions.

Wnt signaling plays a vital role in skeletal health, mainly via
osteogenic differentiation of precursor cells, osteocyte viability,
and osteocyte signaling to other bone cells (43, 44). Wnt/β-
catenin activation in osteocytes mainly contributes to the
anabolic effect in bone (45). Mechanical loading-induced early
release of PGE2 causes rapid activation of Wnt/β-catenin
signaling in osteocytes (46, 47). Wnt ligand co-receptor LRP5
is essential for osteocyte mechanotransduction and mechanical
loading-induced bone formation (43, 48–50). This suggests
a crucial role of osteocytic Wnt signaling in the process
of mechanotransduction. The consequence of disturbed Wnt
signaling in osteocytes is demonstrated by a mutation in the
WNT1 gene, which causes autosomal-recessive osteogenesis
imperfecta, a childhood rare bone disease (51). The osteocyte
is the main source of sclerostin, a negative regulator of
Wnt/β-catenin signaling. Mechanical loading reduces, while
proinflammatory cytokines enhance sclerostin production in
osteocytes (31, 41). Sclerostin deficiency in various rare genetic
bone diseases, such as sclerosteosis and van Buchem disease,
causes osteopetrosis, a high bone mass phenotype (36).

Parathyroid hormone (PTH) signaling contributes via PTH-
related protein (PTHrP)-derived peptides, to the mechanical
loading-induced osteocyte-mediated adaptation of bone tissue
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composition (52, 53). Inherited hypoparathyroidism is a rare
disease that reduces bone turnover causing higher bone mineral
density (BMD) and brittle bone (54). However, the osteocyte
mechanotransduction-mediated bone adaptation in inherited
hypoparathyroidism is still unknown. Similarly, mechanical
loading upregulates insulin growth factor-1 (IGF1) expression
in osteocytes, and IGF1 signaling plays an important role in
the osteogenic response to mechanical loading (24, 55, 56).
Moreover, IGF1 regulates PTH/PTHrP signaling in osteocytes,
and bone regeneration (57–61). Osteocytic IGF1 signaling in
rare bone diseases still needs to be investigated. Osteocytes
produce RANKL and OPG to regulate osteoclastogenesis
and osteoclast activity (6, 62). The RANKL/OPG ratio in
osteocytes is upregulated by proinflammatory cytokines
(31, 41, 63), but reduced by mechanical loading (64). Mechanical
loading of osteocytes downregulates the expression of most
proinflammatory cytokines, except IL-6. Interestingly,
mechanical loading upregulates IL-6 expression in parallel
with PGE2 production in bone cells (63, 65). However, the exact
role of mechanical loading-induced osteocytic IL-6 signaling
in bone biology and rare bone diseases is poorly understood.
Osteocytes not only regulate osteoblast and osteoclast formation
and activity, but also phosphate homeostasis and the function of
vital organs in an endocrine fashion (62, 66). Osteocytes respond
to PTH by inducing osteolysis that releases calcium in the
bloodstream to maintain the systemic mineral homeostasis (67).
During lactation, osteocytic sclerostin modulates the production
of the osteoclast markers tartrate-resistant acid phosphatase
(TRAP), cathepsin K, and carbonic anhydrase-2 in osteocytes
to regulate the release of calcium from bone (68). Mutation of
the cathepsin K encoding gene causes a rare autosomal recessive
osteochondrodysplasia (69). Although cathepsin K is mainly
required for osteoclastic bone resorption, osteocytes also release
cathepsin K and regulate mechanotransduction (70). Osteocytes
release FGF23, dentin matrix acidic phosphoprotein 1 (DMP1),
PHEX, and MEPE, and act as endocrine cells to regulate
phosphate metabolism (1, 71–73). Osteocytes release sclerostin
to control bone mineralization via the modulation of DMP1,
PHEX, MEPE, and FGF-23 expression (74, 75). The osteocyte is a
critical player in chronic kidney disease-associated adverse effects
on bone and heart (76). Osteocyte-derived DMP1 reduces FGF23
expression and enhances bone mineralization (35). Chronic
kidney disease reduces DMP1 expression in osteocytes, while
DMP1 supplementation prevents osteocyte apoptosis, lowers
FGF23 expression, increases serum phosphate, and prevents
the development of left ventricular hypertrophy in a chronic
kidney disease mice model (35, 76). PHEX indirectly regulates
FGF23, and PHEX gene mutation causes hypophosphatemic
rickets, a rare hereditary bone disease (39). The MEPE-PHEX
interaction regulates bone turnover, mineralization, and bone-
renal vascularization (77). MEPE is highly expressed in human
osteocytes embedded within mineralized bone (78). MEPE−/−

mice develop increased bone mass, hyperphosphatemia and
creatinine-clearence, and transgenic overexpression of MEPE
C-terminal acidic serine aspartate-rich MEPE-associated
(ASARM)-motif corrects these abnormalities (79). C-terminal
ASARM-motif plays a major role in regulation of bone mass and

renal function in aging mice showing the association of MEPE in
age-dependent osteoporosis. This unveils the endocrine function
of osteocytes affecting the function of distant organs such a
kidney and heart. Thus, osteocytes play a vital role in bone
homeostasis, and several osteocyte-specific proteins are involved
in the pathogenesis of rare bone diseases. In this review, we
mainly focus on the role of disturbed development and activity
of osteocytes in rare bone diseases. We will discuss the existing
insights on the role of osteocytes in the pathophysiology of rare
metabolic bone disorders as well as the consequences of these
rare metabolic bone disorders for the development and function
of osteocytes.

DISTURBED OSTEOCYTE FUNCTION CAN
CAUSE METABOLIC BONE DISEASES

Many factors, including aging, osteoporosis, inflammatory
diseases, and systemic diseases, disrupt osteocyte functions
(2, 41, 76, 80). Aging causes 15–30% reduction in lacunar
density or osteocyte numbers (81). Smaller and more round
osteocyte lacunae are common in aged mice compared to
young mice (82). The age-related decrease in lacunar density
is accompanied by osteocyte death, hypermineralization,
and micropetrosis (83). Aging also reduces the number of
osteocyte dendrites and canaliculi by ∼30% (80, 84). The
remarkable decrease in osteocyte lacunar density, canaliculi,
and dendrites number will reduce the entire osteocyte
network connectivity that affects osteocyte function and
bone homeostasis. Since the osteocyte lacuno-canalicular system
plays a crucial role inmechanotransduction, abnormalities in this
system might directly affect osteocyte mechanotransduction-
mediated bone adaptation and remodeling (85). Estrogen,
PTH, bisphosphonates, and muscle-derived irisin increase
osteocyte survival (86–88). Postmenopausal estrogen deficiency,
imbalance in PTH signaling, long-term glucocorticoid treatment,
and oxidative stress caused by disuse may cause osteocyte death
resulting in imbalanced bone remodeling and decreased
bone mass (89). Systemic inflammatory conditions, such as
periodontitis, rheumatoid arthritis, chronic kidney disease, and
cancer, affect osteocyte function mainly via elevated levels of
proinflammatory cytokines.

Advanced glycation end products (AGEs) are inflammatory
mediators in diabetes. AGEs induce osteocyte apoptosis and
upregulate osteocytic expression of IL-6 and VEGF (90,
91). Periodontitis-mediated inflammation causes sclerostin
production and NF-κβ activation in alveolar osteocytes (92).
Diabetic rats with periodontitis show a higher expression of
sclerostin, RANKL, tumor necrosis factor-α (TNFα), and IL-1β
in osteocytes, which affects osteoblast and osteoclast function
(93–95). Brucella abortus infection is a common cause of
osteomyelitis, which not only inhibits connexin-43 expression in
osteocytes, but also induces osteocyte apoptosis and upregulates
expression of inflammatory mediators RANKL, TNFα, and IL-
6 in osteocytes (96). Multiple myeloma, a cancer that directly
affects bone, induces osteocyte apoptosis and osteocyte-derived
sclerostin and RANKL expression (97). Osteocytic sclerostin
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and FGF23 expression are highly upregulated in chronic kidney
disease (98). In rheumatoid arthritis, a systemic inflammatory
disease, elevated levels of inflammatory cytokines enhance IL-
1β, TNFα, sclerostin (SOST), and DKK1 gene expression in
osteocytes (31).

RARE BONE DISEASES AND OSTEOCYTE
FUNCTION

Genetic defects cause various rare bone diseases such as
Paget disease, fibrous dysplasia, pycnodysostosis, sclerosteosis,
osteogenesis imperfecta, X-linked hypophosphatemia, and
hypophosphatasia. Osteocyte functions are disturbed in
many genetic defect-mediated rare bone diseases (99, 100).
Possible mechanisms of disrupted osteocyte functions in
rare bone diseases are depicted in Figure 1. An impaired
activity/function of osteoblasts, osteoclasts, and/or osteocytes
could lead to alterations in the mechanical environment of
osteocytes, variations in ECM structure, and de-regulation of
mechanotransduction-related pathways, resulting in disturbed
mechanotransduction possibly via primary cilium, calcium
channels, physical deformation of bone matrix, canalicular fluid
flow, shear stress, adhesion molecules, and/or cytoskeleton.

SCLEROSTEOSIS AND VAN BUCHEM
DISEASE

Sclerosteosis and van Buchem disease are autosomal recessive
skeletal dysplasia causing deficiency of sclerostin protein and
progressive skeletal growth (36). Sclerosteosis is primarily
reported in the descendants of Dutch settlers from the
seventeenth century in South Africa (101). Van Buchem disease
is mainly found in a Dutch population in The Netherlands (102,
103). Skeletal manifestations of sclerosteosis and van Buchem
disease are similar, including increased thickening of skull, jaw
bones, long bones, and ribs. Gigantism, and hand abnormalities
in sclerosteosis are distinguishing features between sclerosteosis
and gigantism (104). SOST, the gene responsible for sclerosteosis
and van Buchem disease, is localized on chromosome 17q12-q21,
and encodes sclerostin protein. A point mutation in the SOST
gene causes sclerosteosis, and a 52 kb deletion of the downstream
gene of SOST causes van Buchem disease (36, 37). A study on the
genetics and pathophysiology of sclerosteosis and van Buchem
disease led to the discovery of sclerostin and its function that
contributed to the development of an anti-sclerostin drug to
treat osteoporosis (105). Mature osteoblasts produce sclerostin
to some extent, but osteocytes are the primary source of
sclerostin (106). Activation of Wnt/β-catenin signaling enhances
osteogenic differentiation and bone formation (107). Sclerostin,
a potent Wnt inhibitor, controls osteogenic differentiation
of precursor cells and bone formation (108). On the other
hand, Wnt inhibition causes overexpression of RANKL and
deregulation of OPG resulting in osteoclastogenesis (38). Studies
on rare bone diseases, sclerosteosis, and van Buchem disease,
have unraveled the role of sclerostin in bone homeostasis (99). In
the case of sclerostin deficiency, osteocytes become like a “snake

without fang” and are unable to control new bone deposition by
osteoblasts (36, 37). Sclerostin deficiency results in excessive bone
formation (109), as observed in sclerosteosis and van Buchem
disease. Since both sclerosteosis and van Buchem disease are
genetic diseases caused by osteocytic sclerostin deficiency, the
osteocyte could be the possible target cell to treat these diseases.

HYPOPHOSPHATEMIC RICKETS

Hypophosphatemic rickets is a hereditary disease with a
prevalence of 1/20,000. PHEX genemutations have been reported
to cause hypophosphatemia and a hypomineralized bone
phenotype (39, 40). Hypophosphatemic rickets is characterized
by a generalized bone mineralization defect resulting in a
decreased total volumetric bone mineral density (vBMD) at the
radius and tibia, and lower cortical vBMD and cortical thickness
at the radius compared to healthy adults (110). However, the
exact mechanism of PHEX gene mutation-mediated FGF23
upregulation, hypophosphatemia, and development of rickets is
still unclear. Both PHEX and FGF23 are mainly produced by
osteocytes (111). One autosomal recessive hypophosphatemic
rickets family carried a mutation affecting the dentin matrix
protein (DMP1) start codon (112). DMP1 is essential for
osteocyte maturation, while DMP1 mutation leads to altered
skeletal mineralization and disturbed phosphate homeostasis
associated with increased FGF23 production via an effect
on the function of osteocytes (112). A combination of oral
phosphorous supplementation and active vitamin D analogs
is the conventional therapy to counteract the consequences of
excessive FGF23 in hypophosphatemic rickets (113). Anti-FGF23
antibody or gene therapy targeting DMP1, FGF23, or PHEX,
could be a future direction to treat hypophosphatemic rickets.
This has been demonstrated already in children with X-linked
hypophosphatemia, where treatment with anti-FGF23 antibody
Burosumab improved linear growth and physical function, and
reduced the pain and the severity of rickets (114).

WNT1 AND PLS3 MUTATION

WNT1 is a key ligand of the canonical WNT signaling pathway,
which is the most important signaling pathway in bone
(115). The WNT family contains a total of 19 WNT proteins,
including WNT1, which are essential for fetal bone development
and maintenance of postnatal bone health (38). The plastin
protein family belongs to the actin bundling proteins and is
ubiquitously expressed in solid tissue, including neurons in the
brain, osteoblasts and osteocytes in bone, hematopoietic cells,
and many cancer cell types (116). Plastin3 (PLS3) expression
in mesenchymal stem cells and osteoblasts increases during
osteogenic differentiation (117, 118). Missense mutation
c.652T>G (p.C218G) in WNT1, and an X-linked form resulting
from a splice mutation c.73-24T>A in PLS3 are associated with
osteoporosis in children (115, 119). The role of WNT1 and
PLS3 in the function of osteocytes is not yet fully understood.
WNT1 mutation affects WNT/β-catenin signaling that might
affect osteocyte function, and causes an imbalance in bone
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FIGURE 1 | Schematic showing the possible mechanism of disrupted osteocyte functions in rare bone diseases.

homeostasis resulting in osteoporosis (51). PLS3 has been
suggested to play a role in osteocyte dendrite function and
mechanotransduction (120). High FGF23 expression has been
reported in osteocytes of a patient with a WNT1 mutation
compared to a PLS3 mutation (121). The expression pattern of
DMP1, sclerostin, and phospo-β-catenin is similar in patients
with a WNT1 and PLS3 mutation (121). This suggests that
WNT1 and PLS3-mediated osteoporosis might have a similar
mechanism of disease progression. Osteocyte-derived WNT1
is a key regulator of osteoblast function and bone homeostasis
(122). Deletion of Wnt1 in osteocytes results in low bone
mass and increased fracture risk, similar as WNT1 mutation-
related osteoporosis (122). Interestingly,Wnt1 overexpression in
osteocytes stimulates bone formation by increasing the osteoblast
number and activity partly via activation of mTORC1 signaling
(122). Anti-sclerostin antibody robustly increases bone mass and
reduces the fracture rate in Wnt1 global knockout mice (122).
These findings suggest thatWNT1mutation-related osteoporosis
is caused in part by a loss ofWNT1 signaling in osteocytes, which

decreases mTORC1-dependent osteoblast formation and bone
regeneration. The sclerostin antibody has been suggested to
be an effective treatment option for WNT1 mutation-related
osteoporosis (122). However, osteocytic mechanotransduction
in patients with a WNT1 mutation is not yet fully understood.
Microgravity, or unloading, decreases WNT3a, WNT5a, DKK1,
cyclinD1, LEF-1, and CX43, but increases WNT1 and SOST
expression in osteocytes (11, 123). Microgravity dramatically
reduces the number of F-actin filaments in osteocytes (123).
This suggests a role for WNT1 in the formation of the osteocyte
cytoskeleton and in osteocyte mechanosensitivity. PLS3mutation
or deficiency causes low bone mass, possibly via hyperactivity
of osteoclasts. PLS3-deficient mice show no effect in trabecular
bone, but cortical bone mass is highly reduced (124). Normal
osteocyte morphology is observed in PLS3-deficient mice
(125). Bone marrow stem cells from PLS3-deficient mice
show compromised osteogenic differentiation with reduced
expression of osteocalcin, Wnt16, and Sfrp4 mRNA (125). This
indicates a role of PLS3 in bone regeneration via osteoblast
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differentiation and function (125). A lack of PLS3 has been
shown to decrease the expression of NFkB repressing factor,
thereby augmenting Nfatc1 transcription and osteoclastogenesis,
indicating osteoclast-mediated bone loss in PLS3-deficient
mice (124). The actin cytoskeleton and focal adhesions play an
important role in osteocyte mechanotransduction. Since the
plastin protein family belongs to the actin bundling protein,
plastin might have a direct or focal adhesion-mediated indirect
effect on osteocyte mechanotransduction. However, the role
of PLS3 in osteocyte functions, such as mechanotransduction,
osteocyte-to-osteoblast communication, and osteocyte-to-
osteoclast signaling, and its cellular and molecular influence on
bone remodeling has not been investigated yet.

OSTEOGENESIS IMPERFECTA

Osteogenesis imperfecta is mainly an autosomal dominant
disease of connective tissue that lowers bone mass and causes
fracture. Very few cases of recessive and X-chromosome-
linked forms of osteogenesis imperfecta have been reported
so far. Osteogenesis imperfecta is one of the most common
bone fragility disorders with an incidence of about 1/15–
20,000 (126). It is a brittle bone disease directly related
to abnormalities of type I collagen primary posttranslational
modification, folding, structure, strength, and quantity (127).
Mutations in the COL1A1 or COL1A2 gene, encoding the
α1(I) or α2(I) chain of type I collagen, are associated with
∼85% of osteogenesis imperfecta cases (128).Mutation-mediated
alteration in processing, structure, and secretion of type I
collagen, as well as ER stress causes a subclinical to lethal
skeletal phenotype. Loss-of-function mutations in WNT1 lead
to moderately severe and progressive forms of osteogenesis
imperfecta (119, 129). Since osteocytes are embedded in
the bone ECM, ECM-to-osteocyte interaction plays a vital
role in bone homeostasis. The effect of deregulated collagen
matrix-to-osteocyte interaction in osteogenesis imperfecta could
influence the severity of bone fragility. However, the role of
osteocytes in osteogenesis imperfecta disease progression has
rarely been investigated yet. Future studies focusing on the
role of the collagen matrix-to-osteocyte interaction in osteocytes
function, including mechanotransduction, and osteoblast-to-
osteoclast communication could guide in the development of
new therapeutic targets to treat osteogenesis imperfecta.

PYCNODYSOSTOSIS

Pycnodysostosis (OMIM 265800) is a rare autosomal recessive
osteochondrodysplasia with a prevalence rate of 1–1.7/million
and without gender specificity (130). Pycnodysostosis is
characterized by a short stature with increased bone mineral
density and an increased bone fragility phenotype (105, 131).
Cortical and trabecular osteosclerosis with increased cortical
width and high bone mineral density is observed in patients
with pycnodysostosis (11, 12). Gelb et al. reported mutation of
the gene encoding cathepsin K in chromosome 1q21 in patients
with pycnodysostosis (69). Cathepsin K degrades bone matrix

proteins, including collagen type I, and is therefore essential
for osteoclastic bone resorption (132). A study on the genetics
and pathophysiology of pycnodysostosis revealed the role of
cathepsin K in osteoclast activity that led to the development
of cathepsin K inhibitors to treat osteoporosis by inhibiting
osteoclastic bone resorption (105). Unfortunately cathepsin K
inhibitors did not lead to new osteoporosis medication because
of serious side effects (stroke). In pycnodysostosis the number
of osteoclasts is not affected, but bone resorption is highly
reduced (133). Osteoclastic bone resorption is essential for bone
homeostasis, as old and cracked bone is removed as well as the
fibrous extracellular matrix that provides the signal to osteoblasts
to deposit new bone and increase bone strength. Cathepsin
K is also produced by osteoblasts and osteocytes (70, 134).
Osteocytic cathepsin K is responsible for lactation-induced bone
loss (135). Mechanical loading increases cathepsin K expression
in cortical bone of wild type mice (70). Globally knocking out
of cathepsin K enhances mechanotransduction signals resulting
in cortical bone formation (70). Cathepsin K regulates bone
remodeling not only by enhancing osteoclast activity, but also
by inhibiting osteogenic differentiation via modulation of Wnt
signaling (70). Cathepsin K deficiency in osteoclasts increases
sphingosine kinase 1 (Sphk1) that catalyzes the phosphorylation
of sphingosine to sphingosine-1-phosphate (S1P) (136, 137).
S1P promotes osteoblast differentiation, bone regeneration
(136), and osteocytic mechanotransduction (138). New research
approaches reducing the mechanosensitivity of osteocytes by
inhibiting S1P could be important to develop therapeutics for
the treatment of cathepsin K deficiency-mediated high bone
mass phenotype.

Cathepsin K regulates bone remodeling and cortical bone
formation by degrading periostin (139). Periostin is mainly
expressed in the periosteum and in osteocytes, and enhances
bone formation via activation ofWnt signaling (70). Bonnet et al.
nicely depicted the role of osteoblastic and osteocytic periostin
in cathepsin K-mediated bone modeling and remodeling
(70). Osteocyte-mediated periostin could be a possible target
in pycnodystostosis.

ANALYSIS OF OSTEOCYTE FUNCTION

Multiple approaches have been developed to analyze osteocyte
morphology (80). Confocal laser scanning electron microscopy
(CLSM) (140), scanning electron microscopy (SEM) (141), ultra-
high voltage electron microscopy, tomography on silver stained
bone sections (117, 142), and SEM of acid-etching technique
of non-decalcified bone samples (143) have been developed to
visualize osteocyte density, morphology, and osteocyte lacuno-
canalicular network in bone biopsies from patients. Van Hove
and colleagues nicely show differences in osteocyte morphology
in patients with osteoarthritis, osteopenia, and osteopetrosis
using CLSM (144). Schneider and colleagues developed serial
focused ion beam/SEM imaging for quantitative 3D-assessment
of the osteocyte lacuno-canalicular network (145). Micropetrotic
lacunae, as seen in old age, in cortical and trabecular bone
can be visualized by transmission electron microscopy (TEM)
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and SEM (81). High power backscattered SEM images of a
bone tissue section visualizes the mineralized micropetrotic
lacunae (146). Osteocyte-specific expression of proteins such as
sclerostin, IL-1β, TNFα, DKK1, DMP1, and FGF23 is altered
in different disease conditions. Immunohistochemistry using
specific antibodies easily visualizes the expression pattern in
bone sections (33, 121, 147). Serum sclerostin is a key marker
of osteocyte function in different disease conditions (148, 149).
Serum sclerostin levels are upregulated in osteoporosis and
downregulated in high bone mass conditions (150). Enzyme-
linked immune assays and automated chemiluminescent assays
have been developed and validated for high precision analysis
of serum sclerostin (151, 152). Spinal cord injury causes patient
immobilization and bed rest that mimics unloading conditions.
Serum of patients with spinal cord injury contains increased
periostin and decreased sclerostin levels (153). Since sclerostin
and periostin are mainly secreted by osteocytes, these proteins
could possibly be used as serum markers to analyze osteocyte
function in different diseases.

Osteocyte mechanotransduction alters in different disease
conditions, such as aging, osteoporosis, and inflammatory
diseases (82, 154–157). Various in vitro and ex vivomethods have
been developed to analyze osteocyte functions (158). However,
most of these methods are invasive and difficult to perform
routinely in clinical setting. Non-invasive bone loading methods
are available to analyze osteocyte functions in murine models
(59, 159, 160). Future research is recommended to develop non-
invasive approaches to analyze osteocyte mechanotransduction
in vivo.

Recently, extracellular vesicles and exosomes are regarded
as the key cargo-carrying organelles affecting the local and
systemic cellular activities. Exosomes are released from living
cells and carry miRNAs, circular RNAs, mRNAs, and various
proteins from one cell to other cells. Osteocyte-derived exosomes
detected in the circulation are enriched with osteocyte-specific
miRNAs (161). A possible role of extracellular vesicles and
exosomes in bone biology has been presented nicely in a recent
review from Tao and Guo (162). Mechanically loaded osteocytes
release exosomes with bone regenerating potential, via Ca2+

oscillation (19). Proteomic analysis of exosomes from cortical
bone osteocytes provide a clear picture of osteocyte function
in different disease conditions, including rare bone diseases
(32). The osteocyte transcriptome is extensively deregulated in
a mouse model of osteogenesis imperfecta (163). Transcriptome
and proteomic analysis in osteocytic exosomes could unravel
the role of exosomes in the pathophysiology of rare bone
diseases. Recent advancements in RNA sequencing, functional
analysis tools, and bioinformatic tools reveal a role of non-
coding RNAs such as miRNAs, circular RNAs, piRNAs, and
lncRNAs in various cellular signaling and biological activities
including development and diseases (164–168). Various mRNAs
and their translated proteins play a role in osteocyte function
(36, 56). Only few studies address the role of non-coding RNAs in
osteocyte function (161, 169, 170). Disruption of the Cx43/miR21
pathway results in osteocyte apoptosis and increases osteocyte-
mediated osteoclastogenesis in old-age subjects (170). miR-29b-
3p regulates osteogenic differentiation of precursor cells via

modulating IGF1 secretion in mechanically loaded osteocytes
(169). The role of circular RNAs, piRNAs, lncRNAs, and other
miRNAs on osteocyte functions in physiological and disease
conditions is poorly understood. The differential expression
pattern of non-coding RNAs in osteocytes during rare bone
diseases has not been investigated yet. Altered expression pattern
of non-coding RNAs in osteocytes during rare bone diseases
could play role in disease development and pathophysiology. We
believe that this research direction could guide the development
of new targets and techniques to analyze the function of
osteocytes in patients.

THERAPIES TO IMPROVE OSTEOCYTE
FUNCTION

Intermittent PTH therapy enhances bone regeneration and bone
mineral density (171). PTH signaling affects the function of
osteoblasts, osteoclasts, and osteocytes. Intermittent PTH
treatment enhances the commitment of precursor cells
to an osteogenic fate (172). PTH signaling in osteocytes
regulates sclerostin expression and controls osteocyte-
mediated osteoblastogenesis (58, 87, 173, 174). PTH treatment
(teriparatide, PTH1-34) in osteogenesis imperfecta increases
bone mineral density and vertebral strength (175, 176). PTH
inhibits Notch signaling in osteoblasts and osteocytes, which
might exert the anabolic effect on bone (177).

Studies on sclerostin deficiency-related high bone mass
phenotype illustrate the role of sclerostin in bone biology guiding
the development of anti-sclerostin bone anabolic agents. Anti-
sclerostin monoclonal antibody has the potency to treat diseases
with low bone mass phenotype, including osteoporosis (178,
179). There is increasing evidence suggesting a role of sclerostin
in myeloma bone diseases and breast cancer bone metastasis-
mediated complications (149, 180). In the bone niche, sclerostin
is mainly produced by mature osteoblasts and osteocytes (181).
Interestingly, multiple myeloma cells and breast cancer cells
also produce sclerostin that might have a catabolic effect
on bone (180, 181). Furthermore, cancer metastasis-induced
inflammation upregulates osteocytic sclerostin that inhibits
osteoblast function (181). Therefore, sclerostin monoclonal
antibody could be beneficial to reduce myeloma and breast
cancer-mediated complications in bone (182–184). Sclerostin
antibody romosozumab clears a phase III trial with satisfactory
outcomes and already got approval for osteoporosis treatment
(185). This sclerostin antibody has shown promising potential
to treat osteogenesis imperfecta (127, 186, 187). Therefore,
romosozumab might be beneficial to treat rare bone disease
patients with low bone mass phenotypes, such as osteogenesis
imperfecta, Wnt1 mutation, and PLS3 mutation.

DKK1 is another potent Wnt inhibitor, that is also mainly
produced by osteocytes in bone. Similar to sclerostin, DKK1
is also produced by breast, prostate, and multiple myeloma
cancer cells (188–190). Increased levels of DKK1 in various
cancers cause osteolytic bone disease and inhibit osteoblast
function (188, 189). DKK1 is an osteocyte-specific target to treat
osteoporosis and other low bone mass diseases (191). In systemic
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inflammation, the neutralization of DKK1 reduces sclerostin
expression and protects systemic bone loss (192). Monoclonal
antibodies against DKK1 showed DKK1 inhibitory potential
in vitro and increased bone mass in vivo (192). Moreover, a
bispecific antibody targeting both sclerostin and DKK1 shows
higher efficiency on bone formation and fracture repair (193).
Phase I and phase II clinical trials have been performed to test
the efficacy of anti-DKK1 antibodies on myeloma and myeloma-
induced skeletal events (194, 195).

Studies on the role of osteocytic RANKL in bone homeostasis
have led to the development of an anti-RANKL monoclonal
antibody to treat common metabolic bone diseases, including
osteoporosis (196, 197). During the last 10 years, the use
of denosumab proved to be satisfactory with rare adverse
effects (198). An imbalance in RANK-RANKL-OPG signaling
is also observed in many rare bone diseases such as Juvenile
Paget disease, fibrous dysplasia, Hajdu Cheney syndrome, and
Langerhans cell histiocytosis (199). Therefore, denosumab has
also been used off-label in rare metabolic bone diseases, including
Paget’s disease, osteogenesis imperfecta, and aneurysmal bone
cysts (200). Bisphosphonate treatment prevents bone loss and
fractures caused by rare bone disease-mediated osteogenesis
imperfecta (201–203). Physical therapy/rehabilitation regimes in
children with osteogenesis imperfecta improved mobility and
bone mineral density, and thereby prevented fractures (175).
Most treatment approaches for rare bone diseases directly act on
osteoblast or osteoclast activity, and are symptomatic treatments.

The meticulous research on the molecular mechanism
of osteocytic sclerostin on bone remodeling led to the
development of anti-sclerostin antibodies to treat osteoporosis
and other skeletal disorders demanding an increase in bone
mass. Anti-sclerostin antibody primarily targets bone-lining
cells, rather than the osteocytes imbedded in bone matrix
(204). Anti-sclerostin antibody activates selected canonical
Wnt target genes in a mature osteoblast subpopulation and
increases bone formation (204). Sclerostin monoclonal antibody
romosozumab treatment significantly increases bone mineral
density in postmenopausal women with low bone mineral
density and reduces fracture risk in postmenopausal women with
osteoporosis (205). However, adverse side effects of a loss of
sclerostin are osteoarthritis (206), TNF-dependent inflammatory
joint destruction (207), negative effect on B cells (208), and
risk of cardiac failure (205), which should be carefully evaluated
before romosozumab treatment is considered. Although research
on the cellular and molecular mechanisms of sclerosteosis and
van Buchem disease guided the development of anti-sclerostin
antibody to treat osteoporosis, an osteocyte function-targeted
therapy for sclerosteosis and van Buchem disease has not yet
been developed. Genetic disorders disrupt the expression of
osteocytic proteins that play a role in the pathophysiology of
various rare bone diseases (Figure 2). Since osteocyte functions
play a crucial role in bone homeostasis, and since these functions
are disrupted in many rare bone diseases, a better understanding
of the molecular mechanisms of disrupted osteocyte functions in

FIGURE 2 | Schematic showing the role of disrupted expression of osteocytic proteins on the pathophysiology of rare bone diseases. Green arrow: Gain-of-function

mutation; red arrow: Loss-of-function mutation.
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rare bone diseases may guide to discover novel targets to treat
these rare bone diseases.

CONCLUSIONS

Genetic and pathophysiological research on three rare
bone diseases, i.e., sclerosteosis, pycnodysostosis, and van
Buchem disease, provided new effective interventions to treat
osteoporosis. The current available therapeutic approaches for
rare bone diseases are symptomatic and mainly target osteoblast
and osteoclast formation and activity. Since osteocytes play
a vital role in bone homeostasis, and because their function
is disrupted in many rare bone diseases, it would be wise to
focus on unraveling the osteocyte-specific targets to treat rare
bone diseases. The role of coding RNAs (mRNAs) in osteocyte
function during pathophysiological conditions has been widely
investigated. Non-coding RNAs (piRNAs, circRNAs, lncRNAs,
shRNAs, etc.) represent 97% of the total RNA in the cell, and
recent technological advances have unveiled a crucial role of
non-coding RNAs in various biological processes including bone
homeostasis. Therefore, meticulous research focusing on the role

of non-coding RNAs in osteocyte functions under physiological
conditions and in various bone diseases including rare bone
diseases could be the future research direction. The results of
this research could provide clues for the discovery of novel
osteocyte-specific targets to treat rare bone diseases.
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