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The neurosteroids progesterone and allopregnanolone regulate numerous

neuroprotective functions in neural tissues including inhibition of epileptic seizures

and cell death. Many of progesterone’s actions are mediated through the nuclear

progesterone receptor (PR), while allopregnanolone is widely considered to be devoid

of hormonal activity and instead acts through modulation of GABA-A receptor activity.

However, allopregnanolone can also exert hormonal actions in neuronal cells through

binding and activating membrane progesterone receptors (mPRs) belonging to the

progestin and adipoQ receptor (PAQR) family. The distribution and functions of the

five mPR subtypes (α, β, γ, δ, ε) in neural tissues are briefly reviewed. mPRδ has

the highest binding affinity for allopregnanolone and is highly expressed throughout

the human brain. Low concentrations (20 nM) of allopregnanolone act through

mPRδ to stimulate G protein (Gs)-dependent signaling pathways resulting in reduced

cell death and apoptosis in mPRδ-transfected cells. The 3-methylated synthetic

analog of allopregnanolone, ganaxolone, is currently undergoing clinical trials as a

promising GABA-A receptor-selective antiepileptic drug (AED). New data show that

low concentrations (20 nM) of ganaxolone also activate mPRδ signaling and exert

anti-apoptotic actions through this receptor. Preliminary evidence suggests that

ganaxolone can also exert neuroprotective effects by activating inhibitory G protein

(Gi)-dependent signaling through mPRα and/or mPRβ in neuronal cells. The results

indicate that mPRs are likely intermediaries in multiple actions of natural and synthetic

neurosteroids in the brain. Potential off-target effects of ganaxolone through activation of

mPRs in patients receiving long-term treatment for epilepsy and other disorders should

be considered and warrant further investigation.
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INTRODUCTION

Progesterone and its metabolites produced in neural tissues
(neurosteroids, Figure 1A) such as allopregnanolone mediate a
wide variety of actions in the brain including neuroprotection,
anti-apoptosis, inhibition of epileptic seizures, reproductive
behaviors, neuroendocrine control of reproduction, and both
pro-tumorigenesis and anti-tumorigenesis (1–3). Many genomic
actions of progesterone in neural tissues are mediated through
PR whereas the neurosteroid allopregnanolone has negligible
binding affinity for the PR and instead interacts with GABA-A
receptors resulting in decreases in their activities and also
activates the pregnane X receptor (PXR) (3–6). However,
progesterone actions have also been observed in the brain which
are PR-independent (i.e., persist in PR knockout mice) and in
neuronal cells which have low expression of PRs (e.g., GnRH-
producing GT1-7 cells) (7–9). Evidence has accumulated that
some of these actions may be mediated through membrane
progesterone receptors (mPRs) (4, 10, 11), 7-transmembrane
receptors coupled to G proteins belonging to the progestin and
adipoQ receptor (PAQR) family which is unrelated to the GPCR
superfamily (12, 13). Moreover, recent studies with cultured
neuronal cells show that low concentrations of progesterone and
allopregnanolone exert hormonal actions through binding and
activating mPRs, resulting in rapid induction of intracellular
signaling pathways and anti-apoptosis (14, 15). Collectively,
these results suggest that mPRs are likely intermediaries of
progesterone and allopregnanolone actions in neural tissues, with
potential implications for human health and disease.

The mechanisms by which progesterone, allopregnanolone,
and an antiepileptic drug, ganaxolone, exert their protective
actions in epilepsy are summarized here. The characteristics
of mPRs, their distribution in brains of humans and rodents,
and their proposed functions in the central nervous system are
briefly discussed. The anti-apoptotic actions of allopregnanolone
in neuronal cells and in mPR-transfected cancer cells that
are mediated through mPR-dependent signaling pathways are
reviewed. Ganaxolone, a synthetic analog of allopregnanolone,
is currently undergoing clinical trials as a third generation AED
that targets GABA-A receptors (16, 17). New data are presented
showing that ganaxolone binds to mPRs and mimics the anti-
apoptotic actions of allopregnanolone and progesterone in these
cultured cells. These results indicate that clinical studies with
ganaxolone should include investigations of possible additional
unexpected, off-target effects of the drug through activation
of mPRs.

PROTECTIVE EFFECTS OF
NEUROSTEROIDS AGAINST EPILEPTIC
SEIZURES

Epilepsy is a severe neurological disorder that affects over 50
million people throughout the world (16, 18). Progesterone
exerts anticonvulsant effects in animal epilepsy models through
a PR-independent mechanism as they are not decreased
in PR knockout (PRKO) mice (19). Instead, progesterone’s

anticonvulsant potency is increased in PRKO mice which
is consistent with results showing activation of PR in a
status epilepticus rat model increases seizure frequency (19,
20). Progesterone’s antiseizure actions are dependent on its
conversion to allopregnanolone since cotreatment with the 5α-
reductase inhibitor, finasteride, blocks progesterone’s actions
(19). Allopregnanolone displays very weak binding affinity for
PRs (21) and exerts its protective effects against seizures through
a PR-independent mechanism. Allopregnanolone acts through
positive allosteric modulation of GABA-A receptor activity, and
can also activate the receptors at higher concentrations in the
absence of GABA (22, 23). Positive modulation of GABA-A
receptors by allopregnanolone enhances inhibitory chloride
conductance which in turn decreases neuronal excitability and
reduces the incidence of seizures (19, 24). Although over 20
AEDs have been used to treat this disease, these treatments are
ineffective in controlling seizures in a third of epileptic patients
and long-term treatment with enzyme-modulating AEDs can
cause endocrine, metabolic, and reproductive disorders (25). The
3β-methylated synthetic analog of allopregnanolone, ganaxolone
(3α-hydroxy-3β-methyl-5α-pregnan-20-one, Figure 1A) is a
promising fourth generation AED that is currently completing
phase III clinical trials (16). Ganaxolone has been shown
to have activity in several animal epilepsy models and is
effective in infants with spasm and in adults with partial-
onset seizures (17). Ganaxolone is also potentially useful for
treatment of mood and anxiety disorders (16) and has been
shown to improve sociability in a rodent model of autism
spectrum disorder, which indicates it may increase sociability in
autistic patients (26). Although ganaxolone can cause sedation
in epilepsy patients, few other adverse effects of long-term
administration of the drug have been observed to date in
clinical trials. Methylation at the 3β position of ganaxolone
impairs its metabolism to inactivemetabolites, thereby increasing
its period of effectiveness in inhibiting seizures compared to
allopregnanolone (26). Like allopregnanolone, ganaxolone is an
allosteric modulator of GABA-A receptors and acts through
different allosteric binding sites to that of benzodiazepines,
as revealed by ligand binding assays and receptor mutational
analysis (17, 27, 28).

MEMBRANE PROGESTERONE
RECEPTORS (mPRs, PAQRs)

Progesterone exerts hormonal actions in numerous cell and
animal models through activation of membrane progesterone
receptors (mPRs) belonging to the progesterone and adipoQ
receptor (PAQR) family (29). These novel 7-transmembrane
receptors were initially discovered in teleost fish gonads and
their homologs were subsequently identified in other vertebrate
classes (30, 31). mPRs mediate rapid, non-classical progesterone
actions, which are frequently non-genomic, by activating G
proteins and modulation of intracellular signaling pathways.
The five mPR members of the PAQR family, mPRα (PAQR7),
mPRβ (PAQR8), mPRγ (PAQR5), mPRδ (PAQR6), and mPRε

(PAQR9), have different tissue distributions, progestin binding
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FIGURE 1 | Interactions of ganaxolone with human mPRδ (PAQR6). (A) Structures of ganaxolone and several other neurosteroids. (B) Representative competition

curve of ganaxolone binding to plasma membranes of mPRδ-transfected MDA-MB-231 cells (231-mPRδ) expressed as percentage of maximum [3H]-progesterone

binding. Ganaxolone was added to the assay buffer dissolved in ethanol. Ethanol was 0.1% of total volume, which did not affect [3H]-progesterone binding. P4,

(Continued)
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FIGURE 1 | progesterone. (C,E,F) Effects of 4 days treatment with progesterone (P4), allopregnanolone (Allo) and ganaxolone (Gana) on serum starvation-induced

percent apoptotic cells detected with a TUNEL assay kit (C) and percent cell death detected by trypan blue staining (E,F) of the vector-transfected MDA MB-231 cells

and 231-mPRδ cells, N = 3. (D) Effect of treatment with ganaxolone (10 nM) for 15min. on cellular cAMP levels in 231-mPRδ cells. N = 3. (G,H) Representative

Western blot analysis and quantification of effects of 20-min treatments with progesterone (P), allopregnanolone (A), and ganaxolone (G) on activation of ERK. P-ERK:

phosphorylated ERK, ERK: total ERK in the vector- (CTL cells), and 231-mPRδ cells. E100: 100 nM EGF as a positive control. The bar graph shows relative

densitometry changes of the bands in Western blot images (N = 3). Results were analyzed by one-way ANOVA, followed by Newman-Keul’s multiple comparison test.

Treatment groups that are significantly different from each other in the post hoc test (P < 0.05) are indicated by different letters. Experiments were repeated three or

more times, and similar results and similar significant differences between treatment groups were obtained on each occasion. See Pang et al. (15) for descriptions of

reagents, culture conditions and assay procedures.

FIGURE 2 | Effects of ganaxolone on rodent neuronal cell lines. (A) Effects of 4 days treatment with 20 nM and 100 nM progesterone (P4), allopregnanolone (Allo) and

ganaxolone (Gana) on cell death of mouse hypothalamic GT1-7 cells. N = 3. (B) Detection of mPRα (α), mPRβ (β), mPRδ (δ), mPRε (ε), and progesterone receptor

membrane component 1, PGRMC1 (PG) mRNA expression by RT-PCR in immortalized rat hippocampal H19-7 cells. (C) Representative Western blot analysis of

effects of pre-incubation with muscimol (Musc, 100µM) and bicuculline (Bicu, 1µM) for 20min on neurosteroid-induced (100 nM, for 20min.) activation of ERK.

P-ERK, phosphorylated ERK; ERK, total ERK in H19-7 cells; V, vehicle control; A, allopregnanolone; G, ganaxolone; P, progesterone. The bar graph shows relative

densitometry changes of the bands in Western blot images (N = 3). (D) Effects of 15min. treatments with 20 nM progesterone (P4), Org OD 02-0 (02),

allopregnanolone (Allo) and ganaxolone (G, 20 and 100 nM) on cAMP levels in H19-7 cells. (N = 3). Results were analyzed by one-way ANOVA, followed by

Newman-Keul’s multiple comparison test. Treatment groups that are significantly different from each other in the post hoc test (P < 0.05) are indicated by different

letters. Experiments were repeated three or more times, and similar results and similar significant differences between treatment groups were obtained on each

occasion. See Pang et al. (15) for descriptions of reagents, culture conditions, and assay procedures.

specificities, signal transduction pathways, and functions in
vertebrate cells and tissues (12–15). mPRα is the predominant
mPR isoform expressed in most progesterone target tissues
with the exception of the brain and is the primary mPR

that regulates several critical reproductive and non-reproductive
progestin functions. For example, mPRα mediates oocyte
meiotic maturation and sperm motility in fish, anti-apoptosis
in fish ovarian granulosa cells and in human breast cancer
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cells (32, 33), relaxation of human myometrial and vascular
muscle cells (34, 35), reversal of epithelial to mesenchymal
transition in breast cancer cells (36), and inhibition of
prolactin release from rat lactotrophs through activation of
TGFβ1 (37).

LOCALIZATION OF mPRs IN THE BRAIN
AND PERIPHERAL NERVOUS SYSTEM

All five mPRs subtypes are expressed throughout the human
brain and relative expression of mPRδ mRNA is highest
among all the mPRs in nearly all brain regions, with greatest
expression in the corpus callosum, hypothalamus, and spinal
cord. Furthermore, mPRδ mRNA expression is greater than the
mRNA expression of the other mPRs in the neocortex lobes,
the limbic system (amygdala, hippocampus, nucleus accumbens),
thalamus, as well as in the caudate and putamen, substantia
nigra, medulla, and pons, brain regions involved in memory and
movement, reward, and autonomic functions (15). Expression
of mPRβ and mPRε genes is also high in many of these
regions, including the hypothalamus, hippocampus, caudate,
cerebellum, pons, and spinal cord, whereas mPRα expression
is lower in most brain regions with highest expression in the
temporal lobe, medulla, and spinal cord and mPRγ expression
is low throughout the brain with the exception of the pons,
spinal cord and choroid plexus. The finding that PR mRNA
is also expressed throughout the human brain indicates the
potential for interactions between mPRs and PR in progesterone
regulation of brain functions. However, PR mRNA expression
is lower than that of the mPRs in all brain regions except
in the pituitary gland which also expresses high levels of
mPRε (15).

Unfortunately, the only information currently available
on mPRδ and mPRε expression in rodent brains is in the
mouse hypothalamus, where low mRNA levels of these
subtypes and mPRγ were detected, <10% those of mPRα

and mPRβ (38). However, mPRα and mPRβ are broadly
distributed in rat and mouse brains (4), with mPRα expression
detected in the hippocampus, cerebellum, hypothalamus,
thalamus, cortex, striatum, and olfactory bulb (39). Higher
mRNA expression of mPRβ compared to that of mPRα

and high immunoreactive mPRβ protein expression have
been reported in the cortex, paraventricular, and preoptic
regions of the hypothalamus, the oculomotor nucleus in
the mesencephalon, with substantial expression also in the
telencephalon, hippocampus, thalamus, and pons of female
rat brains (40, 41). Although these two mPR subtypes are
expressed only in neurons under normal conditions, mPRα is
also expressed in oligodendrocytes, astrocytes and glial cells
after traumatic brain injury, suggesting a potential role for the
receptor in inflammatory responses and myelin repair (39).
Similarly, mPRα is expressed in astrocytes, oligodendrocytes
and their progenitor cells as well as in neurons throughout the
spinal cord, whereas mPRβ has a more limited distribution
and is mainly located in ventral horn neurons and neurites
(42). Interestingly, in the peripheral nervous system all five

mPR isoforms have been detected in Schwann cells (43).
Collectively, these results indicate that progesterone and possibly
allopregnanolone can act in all human brain regions through
mPRs and suggest that different mPR subtypes are major
intermediaries in these neurosteroid actions within distinct
brain regions.

FUNCTIONS OF mPRs IN THE BRAIN AND
PERIPHERAL NERVOUS SYSTEM

Although relatively few studies have been conducted so
far on mPR functions in the brain, there is emerging
evidence that they are intermediaries in several important
progesterone neural functions. Experiments in new-born rats
with the mPR-selective agonist, Org OD 02-0 (02-0) and in
adults injected with mPRβ si-RNA show that the receptor
is involved in stabilizing breathing and reducing apnea (9,
44, 45). Knockdown of mPRβ and mPRα mRNAs in the
midbrains of female adult rodents by injection of antisense
oligonucleotides into the lateral ventricle decreased reproductive
behaviors (lordosis and aggression/rejection), whereas other
behaviors were not affected (10, 46). The mPR agonist, 02-
0, increases dopamine release from hypothalamic explants of
rodent prolactinoma models resulting in decreased prolactin
secretion and also exerts a direct action on mPRα in pituitary
lactotrophs to decrease prolactin secretion through TGFβ-1
(37, 38). These results suggest mPR agonists are potentially
of therapeutic use for treating pathological hyperprolactinemia
(47). However, the role of mPRs in tumorigenesis in the
brain remains unclear. Whereas, proliferation and invasion
of glioblastoma cells was stimulated by 02-0 and decreased
when mPRα expression was silenced (48), progesterone has
been shown to inhibit the growth and metastasis of PR-null
breast cancer cells through mPRα in the brains of nude mice
(49). Several mPR functions have also been identified in the
peripheral nervous system. A recent study showed migration
and proliferation of primary rat Schwann cells in vitro were
increased by treatment with the mPR agonist, 02-0 (50). This
treatment also increased expression of differentiation markers
and caused morphological changes characteristic of the repair
phenotype, indicating a potential role of mPRs in peripheral
nerve regeneration following injury (50). Activation of mPRs
has also been shown to promote neurite growth in PC12
cells (51).

INTERACTIONS OF
ALLOPREGNANOLONE WITH mPRs

We have shown that allopregnanolone exerts protective effects
through mPR-dependent signaling pathways in cultured breast
cancer cells that do not express PR or GABA-A receptors
as well as in neuronal cells (14, 15). Among the mPRs
allopregnanolone displays the highest binding affinity for
mPRδ in transfected MDA-MB-231 triple negative breast
cancer cells (231-mPRδ) with an IC50 of 151 nM and a
relative binding affinity (RBA) of 33.6% that of progesterone.
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Allopregnanolone is also an effective competitor for [3H]-
progesterone binding to mPRα and mPRβ, with IC50s of 400 and
550 nM, respectively, whereas it has negligible binding affinity
for mPRε. Another neurosteroid, 5α-dihydroprogesterone, also
displays high binding affinity for mPRα (13). Interestingly,
the neurosteroids, dehydroepiandrosterone and pregnanolone
(52) (Figure 1A), have relatively high binding affinities for
mPRδ, with IC50s of 780 and 346 nM, respectively (15). A
low concentration of allopregnanolone (20 nM) was shown
to mimic the stimulatory actions of progesterone on cAMP
production and ERK phosphorylation and also attenuate
serum starvation-induced cell death and apoptosis in 231-
mPRδ cells cultured in vitro. Allopregnanolone (20 nM) also
decreased apoptosis of rat hippocampal neuronal (H19-7)
cells which express mPRδ and mPRε, whereas the PR agonist
R5020 was ineffective. Interestingly, allopregnanolone also
mimicked the actions of progesterone in cultured rat GnRH
secreting GT1-7 cells which express high levels of mPRα and
mPRβ and lower expression of mPRδ mRNA to decrease
cAMP production and attenuate cell death and apoptosis
(14). The finding that allopregnanolone causes a decrease
in cAMP production in GT1-7 cells suggests it is acting
through mPRα and/or mPRβ which activate a Gi in these
cells, rather than through mPRδ which activates a stimulatory
G protein (7, 15). Collectively, these results suggest that low
physiological concentrations of allopregnanolone can also
potentially act through mPRα/mPRβ to influence their neural
functions. On the basis of these findings we hypothesized that
ganaxolone can similarly alter neuronal cell functions mediated
by mPRs. Therefore, in the present study we investigated
whether ganaxolone binds to mPRs, activates mPR-dependent
signaling, and exerts anti-apoptotic actions in several neuronal
cell lines and in mPR-transfected cells. Experiments were
conducted primarily with 231-mPRδ cells, since mPRδ

displays the highest binding affinity for allopregnanolone,
following experimental procedures described in detail
previously (15).

INTERACTIONS OF GANAXOLONE WITH
mPRs

The present results show that ganaxolone also binds to mPRs and
displays agonist activity in 231-mPRδ cells that do not express
GABA-A receptors (Figure 1). A representative competitive
binding assay showed that ganaxolone displaced up to 60% of
[3H]-progesterone binding to cell membranes of 231-mPRδ cells
(Figure 1B) with an approximate IC50 of 100 nM, similar to that
for allopregnanolone (15). However, the ganaxolone competition
curve was not parallel to that of progesterone and higher
ganaxolone concentrations (10−7 and 10−6M) were ineffective
in displacing the remaining∼40% of [3H]-progesterone binding.
Similarly, a previous study showed that higher concentrations of
allopregnanolone (10−6 and 10−5 M) did not replace the residual
30% [3H]-progesterone binding to mPRδ (15). One possible
interpretation of the results is that these two neurosteroids
do not occupy all the progesterone binding sites on mPRδ.

However, additional research on their potential binding to
allosteric sites as well as their interactions with progesterone
binding to orthosteric sites will be required to determine the
nature of their interactions withmPRδ, and whether, for example,
they act as ago-allosteric ligands (28, 53, 54). The results
indicate that ganaxolone, like allopregnanolone, can potentially
influence progesterone signaling through mPRδ. The finding
that a low concentration of ganaxolone (20 nM) mimicked
the effects of 20 nM progesterone and allopregnanolone on
inhibition of serum starvation-induced apoptosis (Figure 1C)
and cell death in 231-mPRδ cells (Figure 1E), whereas it was
ineffective in reducing cell death in vector-transfected 231 cells
(231-vector, Figure 1F) demonstrates that ganaxolone has a
mPRδ agonist activity at low nM concentrations. While the
progesterone-induced decreases in the two assays were similar
(10–12% of the cells), percent cell death measured by trypan
blue exclusion was higher than the percent apoptotic cells,
which was expected because this assay does not distinguish
between cell mortality and cell morbidity after serum starvation,
whereas the TUNEL assay is a more robust measure of cells
undergoing programed cell death (33). Ganaxolone triggers
the same intracellular signaling pathways as those activated
by progesterone and allopregnanolone. Ganaxolone treatment
(10 nM) increased cAMP levels more than two-fold over no
treatment control values in 231-mPRδ cells, consistent with
previous results showing mPRδ activates a stimulatory G
protein (Figure 1D) (15). Ganaxolone (100 nM) ganaxolone
mimicked the effects of progesterone and allopregnanolone on
phosphorylation of ERK in 231-mPRδ cells (Figures 1G,H). At
the higher concentration (100 nM), ganaxolone also mimicked
the inhibitory effects of progesterone and allopregnanolone on
serum starvation-induced cell death in rat hypothalamic GT1-
7 cells (Figure 2A). GT1-7 cells do not express appreciable
amounts of PR mRNA in the absence of estrogen priming,
but display significant expression of mPRα and mPRβ which
have relatively high binding affinities for allopregnanolone, and
lower expression of mPRδ (7, 14, 15). Rat hippocampal neuronal
H19-7 cells, in which progesterone and allopregnanolone have
previously been shown to inhibit serum starvation-induced
cell death (15), have low expression of the PR and high
expression of mPRα, mPRβ and mPRδ (Figure 2B). All three
neurosteroids caused significant phosphorylation of ERK in
H19-7 cells (Figure 2C). Moreover, MAP kinase signaling and
its activation by ganaxolone and the two other neurosteroids
was not altered by pretreatment with 100µM muscimol, a
GABA-A receptor agonist, or with 1µM bicuculline, a GABA-A
receptor antagonist (Figure 2C), confirming that activation of
this pathway by these neurosteroids in H19-7 cells is not
mediated through a GABA-A receptor. Moreover, the finding
that the PR agonist R5020 does not have the anti-apoptotic
effects observed with progesterone and allopregnanolone in
H19-7 cells (15), suggests the PR is not involved in this
response. Interestingly, treatments with 20 nM ganaxolone and
allopregnanolone mimicked the effects of progesterone and the
mPR-selective agonist, 02-0, to decrease cAMP production in
H19-7 cells (Figure 2D), indicating an inhibitory G protein
is activated. These results suggest these neurosteroids act
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through mPRα and/or mPRβ in H19-7 cells, rather than
through mPRδ, since mPRα and mPRβ activate inhibitory
G proteins.

DISCUSSION

There is an extensive body of literature describing
neuroprotective functions of progesterone and allopregnanolone
mediated through the PR and GABA-A receptors, respectively.
Our results suggest that allopregnanolone and the synthetic
neurosteroid, ganaxolone, can also exert protective functions in
cultured neuronal cells through activation of mPRs to attenuate
cell death and apoptosis. However, details of the signaling
pathways activated by these steroids through mPRs in neuronal
cells are lacking. Moreover, only limited information is currently
available on the functions of mPRs in the central nervous
system and there is an urgent need to determine whether
these neurosteroids exert similar neuroprotective functions
through mPRs in in vivo models of neurodegenerative diseases.
Information is also lacking on possible interactions between
mPR and other progesterone and allopregnanolone signaling
pathways mediating neuroprotective functions in neural tissues.
For example, progesterone membrane component 1, which is
abundant in many brain regions (4) and has been proposed to
mediate progesterone neuroprotective actions (55), acts as an
adaptor protein for mPRα in breast cancer cells, by coupling
to mPRα and facilitating its transport to the cell surface where
it mediates its membrane receptor functions (56). In addition,
cross-talk between mPR and PR signaling has been shown in
human myometrial cells and in rat Schwann cells. Activation
of mPR in myometrial cells causes transactivation of PR and
modulation of PR coactivator expression (34). On the other
hand, experiments with the PR agonist, R5020, show mPRα

and mPRβ expression in rat primary Schwann cells can be
upregulated through the PR (50). Finally, it is important to
obtain a clearer understanding of possible off-target effects of
ganaxolone through activation of mPRs which would indicate
several additional physiological functions that should be
monitored in future clinical trials as well as suggesting potential
medical complications for some epilepsy patients after long-term
ganaxolone treatment.
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