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Lactation is a complex physiological process, depending on orchestrated central

and peripheral events, including substantial brain plasticity. Among these events is a

novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent

hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This

expression reaches its highest levels around postpartum day 19 (PPD19), when dams

transition from lactation to the weaning period. The appearance of this lactation-related

Pmch expression occurs simultaneously with the presence of one of the Pmch products,

melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA

to maternal physiology and the contemporaneity between Pmch expression in this

structure and the weaning period, we hypothesized that MCH has a role in the termination

of lactation, acting as amediator between central and peripheral changes. To test this, we

investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the

mammary gland of female rats in different stages of the reproductive cycle. To that end,

in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry,

and Western blotting were employed. Although Mchr1 expression was detected in the

epidermis and dermis of both diestrus and lactating rats, parenchymal expression was

exclusively found in the functional mammary gland of lactating rats. The expression of

Mchr1mRNA oscillated through the lactation period and reached its maximum in PPD19

dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential

location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case

for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than
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in other groups. Our data demonstrate the presence of an anatomical basis for the

participation of MCH peptidergic system on the control of lactation through the mammary

gland, suggesting that MCH could modulate a prolactation action in early postpartum

days and the opposite role at the end of the lactation.

Keywords: lactation, MCHR1, GPCR, neuroendocrinology, peptides

INTRODUCTION

The melanin-concentrating hormone (MCH) peptidergic system
was first characterized in mammalian species in 1989 (1, 2)
and mapped in the rat central nervous system (CNS) for the
first time in 1992 (3). Although the tuberal hypothalamus
harbors the largest expression of the pro-melanin-concentrating
hormone (Pmch) mRNA and peptide in both sexes (3, 4),
transient expression of Pmch mRNA is observed in the preoptic
hypothalamus of lactating females (5). This novel expression (and
peptide synthesis) encompasses the ventromedial aspect of the
medial preoptic nucleus (vmMPOA), the periventricular preoptic
nucleus, and the most rostral aspects of the paraventricular
nucleus of the hypothalamus with peak expression occurring on
postpartum day 19 (PPD19) (5–10).

Although no colocalization between MCH and oxytocin (OT)
is found in the paraventricular nucleus, MCH-immunoreactive
(MCH-ir), and OT-ir fibers travel through the internal lamina
of the median eminence in close apposition (9). These
MCH-ir fibers then reach the neurohypophysis, where MCH
is presumptively released into the bloodstream (9). Despite
overwhelming evidence of hormonal release of MCH in
mammals (11–16), it is unclear what physiological role does it
play or what is its relevance for lactation and weaning. One
possible strategy to elucidate these questions is to identify targets
of MCH action in the periphery that are contextually related to
the lactation period.

Melanin-concentrating hormone acts through two different
G protein-coupled receptors (GPCRs), MCHR1 (17–21) and
MCHR2 (22–27). Although MCHR1 is ubiquitously expressed in
vertebrates, MCHR2 has been lost in the Glires clade, including
rabbits and rodents (28, 29). In addition to the CNS (10, 30),
MCHR1 has been reported in several peripheral tissues, including
eye, skeletal muscle, intestine, adipose tissue, placenta, and bone
(20, 23). However, to the best of our knowledge, the mammary
gland has not been examined for the presence of MCHR1.

The mammary gland is a complex secretory structure,
exclusively found in the class Mammalia, which consists of
a parenchyma and adipose stroma, respectively derived from
ectoderm andmesoderm (31–34). Male and female rat mammary
glands present six pairs of glands along the milk line and sexual
dimorphism with specific differences in their morphologies [for
review, see (33)]. Under specific hormonal influence, the female
rat mammary gland develops the secretory epithelium (32)

Abbreviations: GPCRs, G-protein couple receptors; Mchr1, receptor 1 MCH,

gene; MCHR1, receptor 1 MCH, protein; MCHR2, receptor 2 MCH, protein;

MPOA, medial preoptic area; OT, oxytocin; Pmch, melanin-concentrating

hormone, gene; PRL, prolactin.

during pregnancy, which is responsible for milk production.
After weaning, there is a mammary gland involution followed
by alterations that decrease the expression of milk proteins and
promote the return of the glandular tissue to its prepregnancy
state (34).

The peak synthesis of MCH in the hypothalamus and of
MCH-ir fibers in the ME near the weaning period, which
accompanies the cessation of lactation and involution of
mammary glands, puts MCH neurons in a unique position to
bridge the central control of energy expenditure (35–37) and the
periphery, fitting well our proposition thatMCH’s prime function
is as a maintainer of the homeostatic baseline (38). Therefore, we
hypothesized that MCHR1 can be found in the mammary gland,
and its presence is dynamically modulated by the lactation stage
of the dam.

MATERIALS AND METHODS

Animals and Experimental Groups
Adult female and male Long-Evans rats (n = 76) were
bred and raised in the animal facility of the department of
anatomy (Universidade de São Paulo, Instituto de Ciencias
Biomedicas) in a light- and temperature-controlled environment
(12-h light–dark cycle, 22 ± 2◦C) with standard food chow
and tap water ad libitum. All procedures were performed in
accordance with local regulations (39). The studies involving
animal subjects were reviewed and approved by the Committee
on Ethical Research on Animals of the Institute of Psychology
(Protocol CEPA #003/2012) and by the Ethics Committee on
Animal Use of the Institute of Biomedical Sciences (Protocol
CEUA #035/2012).

When females reached 3 months of age (250–270 g), they
were group housed in propylene cages, and the estrous cycle
was verified daily (between 9 and 10 am) by vaginal cytology
(40). After the confirmation of two regular estrous cycles, female
virgins were randomly assigned to the diestrus group (n = 19),
constituting the control group of non-lactating rats (diestrus).
To form the lactating groups, randomly assigned female rats with
two regular estrous cycles were mated with experienced male rats
(n= 10) in the afternoon of proestrus. Pregnancy was confirmed
by the presence of sperm in the vaginal cytology analysis the
day after mating. Pregnant females were individually housed in
propylene cages until the end of the experiments. The day of
parturition was designated as PPD0, and the litters were culled to
eight pups (four females and four males) at PPD2. The lactating
groups (n = 47) were comprised of randomly assigned lactating
dams at 5 (PPD5), 12 (PPD12), and 19 (PPD19) days after
term. Within each group, subjects were randomly assigned to
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transcardiac perfusion or decapitation methods and euthanized
at the appropriate day of lactation.

To ensure the antibody specificity, we used mammary gland
tissue from Mchr1 knockout mice (Mchr1−/− mice) (41) at
PPD19. These animals (n= 3) were bred and raised in the animal
facility of the Inselspital University Hospital (Bern, Switzerland)
in similar conditions as described above.

Tissue Processing
Animal Perfusion and Tissue Preparation

Animals assigned to in situ hybridization protocol (ISH) received
an excess of 35% chloral hydrate (1mL i.p.) and were perfused
transcardiacally via the ascending aorta with ∼100mL of cold
0.9% saline. This step was followed by 750mL of cold 4%
formaldehyde in borate buffer (0.1M, pH 9.5) for 25 min.

Mammary gland pairs from the abdominal sector were
carefully dissected, embedded in Tissue Tek R© (Sakura Finitek,
USA), and kept at −80◦C. Samples were then cut in a cryostat
(CM1850; Leica, Germany) in six series of sagittal sections (15-
µm-thick) collected onto adhesion glass slides (Fisher Scientific,
USA) and stored at −30◦C until further processing (see below).
For reference purposes, series of slices underwent hematoxylin-
eosin staining.

Decapitation and Tissue Preparation

Animals assigned to PCR, nucleotide sequencing, Western
blotting, and immunohistochemistry were anesthetized with an
excess of 35% chloral hydrate (1mL, i.p.) and euthanized by
decapitation. For RNA extraction, the skin was carefully removed
from the rest of the mammary gland in all four sectors (cervical,
thoracic, abdominal, and inguinal). Each gland was then quickly
dissected and cut into pieces ∼5-mm-thick, washed in 0.2M
phosphate saline buffer (PBS, pH 7.4), carefully collected in tubes
containing TRIzol R© (Life Technologies Inc., USA), and frozen
in dry ice. For protein extraction, pairs of mammary glands
(abdominal sector) were quickly dissected, washed in PBS (0.2M,
pH 7.4), and collected in tubes followed by freezing the tissue in
dry ice. All samples were kept at−80◦C.

For immunohistochemistry, pairs of mammary glands
(abdominal sector) were quickly dissected, washed in PBS,
and carefully submerged in methacarn fixative solution (60%
methanol, 30% chloroform, and 10% acetic acid) for 3 h at
4◦C, which protocol was adapted from a previous study (42).
Samples were washed in 100% alcohol and processed for
paraffin embedding. Tissue sectioning was performed in a
rotary microtome (American Optical, USA) to obtain sagittal
5-µm-thick slices. Slices were collected on positively charged
glass slides (Knittel, Germany) and stored at room temperature
(RT) until further processing.

In situ Hybridization
The ISH procedure with 35S-labeled antisense cRNA probes was
used to investigate and localize Mchr1 mRNA-expressing cells
in the mammary gland tissue (abdominal sector) of diestrus
and lactating rats. To synthesize the hMchr1 probes, a plasmid
was designed by subcloning a 600-bp fragment comprising
the coding region of hMchr1 into the BamHI-XbaI sites of

a pBluescript II SK(+) vector (Stratagene, USA), following
protocol previously established (30). The RNA polymerases
were applied to generate sense (T7) and antisense (T3) hMchr1
riboprobes. The protocol employed for ISH was adapted
from previous work (43) while taking into consideration specific
characteristics of the mammary tissue. Briefly, sections were fixed
(4% formaldehyde in 0.1M PBS) for 5min, followed by protein
digestion (0.05M EDTA, 0.1M Tris pH 8, 0.001% proteinase K)
for 5min at 37◦C. Next, the samples were submitted to 0.25%
acetylation for 10min and washed in 2x saline sodium citrate
(SSC). The samples were dehydrated, air dried, and then each
slide received 100 µL of hybridization solution (50% formamide,
0.3M NaCl, 0.01% SDS, 10mM Tris (pH 8.0), 0.01% tRNA, 0.2%
5M dithiothreitol, 1mM EDTA pH 8.0, 1x Denhardt’s solution,
10% dextran sulfate) containing the cRNA probes for Mchr1 at
56◦C overnight (∼=18 h). Next, slices were submitted to 0.002%
RNAse A treatment for 30min in a 37◦C water bath, followed by
stringency washes. The tissue was dehydrated and air dried at RT.
The slides were dipped in Kodak NTB-2, air-dried, and exposed
at 4◦C for 1 week. The slides were developed with Kodak D-19,
counterstained with hematoxylin-eosin staining, dehydrated,
cleared in xylene, and coverslipped with DPX (Sigma-
Aldrich, USA).

RNA Extraction, cDNA Synthesis, RT-PCR,
and RT-qPCR
Mammary glands and hippocampus (used as a central nervous
system positive control) were homogenized using TRIzol R©

in Precellys R© 24 (BertinTechnologies, France). The samples’
total mRNA was extracted using the Direct-zolTM Kit (Zymo
Research Corp., USA). Quality and quantification of mRNA
samples were determined by NanoDrop R© (Fisher Scientific).
The generation of cDNA occurred after treatment with DNase I
(Life Technologies) through the use of a high-capacity cDNA kit
(Life Technologies). Briefly, 1 µg of total RNA was treated with
DNase I and incubated with kit buffers (10min at 25◦C, 120min
at 37◦C and, 5min at 85◦C) in a thermocycler (Eppendorf,
USA). The resulting cDNAs were used both for RT-PCR/RT-
qPCR purposes.

Reverse transcriptase PCR was performed with Platinum R©

PCR SuperMix High Fidelity (Life Technologies) following these
steps: 10min at 95◦C, 40 PCR cycles (1min at 94◦C, 90 s at 55◦C,
90 s at 68◦C) and 10min at 72◦C. TheMchr1 andGapdh products
were visualized on a 1.5% agarose gel electrophoresis stained with
ethidium bromide (Sigma-Aldrich).

Real-time qPCR was performed with SYBR R© Green PCR
Master Mix (Applied Biosystems, USA) with StepOnePlus
(Applied Biosystems) under standard conditions: 10min at 95◦C,
40 qPCR cycles (15 s at 95◦C, 1min at 55◦C), 15 s at 95◦C,
1min at 60◦C, and 15 s at 95◦C. The Ct values (triplicates) were
analyzed using StepOnePlus Software 2.0 (Applied Biosystems).
The amplification specificity was analyzed by the melting curve
of the samples, and the 2−11Ct method (44) was used to
quantify mRNA relative to the housekeeping endogenous control
gene (Gapdh). Primers for Mchr1 and Gapdh and amplification
conditions for RT-PCR/RT-qPCR are listed in Table 1.
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TABLE 1 | Primers used in RT-PCR and RT-qPCR.

Gene Primers Bases Annealing Cycles PCR

product

Mchr1 AS: 5′- CAGGGTAGCCCTGGGTTTAAT-3′ 21 55◦C 40 639 pb

(RT-PCR) S: 5′-GCGCTCTCCTTCATCAGTATC-3′ 21

Mchr1 AS: 5′- CTGACCTCTACTGGTTCACTCT−3′ 22 55◦C 40 102 pb

(RT-qPCR) S: 5′-ACGTCATGCGCTGTAGTATTT−3′ 21

Gapdh AS: 5′- TGGAAGATGGTGATGGGTTTC-3′ 21 55◦C 40 219 pb

(RT-PCR and

RT-qPCR)

S: 5′-GGTCGGTGTGAACGGATTT−3′ 19

AS, antisense; S, sense; bp, base pairs.

Nucleotide Sequencing
Amplified cDNA RT-PCR products (20 ng/µl) of Mchr1 in the
mammary gland (skin and non-skin) and hippocampus (PPD19
dam) were purified and concentrated using the illustra GFX
PCR DNA, and Gel Band Purification Kit (GE Healthcare,
UK) following the manufacturer’s instructions. Samples were
sequenced by automatic DNA sequencing from PCR products
using the ABI 3730 DNA Analyzer (Applied Biosystems).
Sequencing reactions were performed using the BigDye R©

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems).
Quality control of reactions was performed using pGEM 3Zf (+)
and primer M13 (-21). Sequences were analyzed by Sequencing
Analysis 5.3.1 software using Base Caller KB, and the output files
were analyzed and aligned with Chromas 2.4.4 (Technelysium,
Australia) and MultAlin (45).

Western Blotting
Mammary glands were homogenized using RIPA Lysis Buffer
(50mM Tris-HCl, 150mM NaCl, 1% NP-40, 0.25% Na-
deoxycholate, 0.1% SDS, 1mM Na3VO4, 1mM NaF, 1x Protease
mix; Sigma Aldrich, Germany) in Precellys R© 24 equipment
(BertinTechnologies, France). The quantification of protein
concentration was determined by the Bradford method following
the manufacturer protocol (Sigma Aldrich). Briefly, samples (50
µg) were resolved by SDS-Page in 15% acrylamide gels (Bio-Rad,
USA) and transferred to nitrocellulose membranes (0.45µm,
Bio-Rad) by using a trans-blot turbo transfer system (Bio-Rad,
USA). Next, membranes were blocked in TBS-T-non-fat milk
5% (140mM NaCl, 20mM Tris-HCl pH 7.4, 0.1% Tween-20)
for 6 h and incubated at 4◦C with anti-MCHR1 polyclonal
antibody (1:100, sc-5534) in TBS-T-nonfat milk 5% overnight.
Then, membranes were washed three times with TBS-T buffer
and incubated with secondary antibody, donkey anti-goat HRP
(1:1000, Jackson ImmunoResearch, USA) in TBST-nonfat milk
2.5% for 1 h at RT and washed three times with TBS-T buffer.

After stripping, the same membranes were incubated with
anti-β-Actin monoclonal antibody (1:1000, clone AC-15, Sigma)
in TBS-T-nonfat milk 5% for 1 h at RT and then washed
three times with TBS-T buffer. Finally, the membranes were
incubated with secondary antibody, donkey anti-mouse HRP
(1:1000, Jackson ImmunoResearch, USA) in TBS-T-nonfat milk
2.5% for 1 h at RT and washed three times with TBS-T buffer.
Immunoreactive protein bands were revealed with ClarityTM

Western ECL Substrate (Bio-Rad, USA), and images were

acquired with an Amersham Imager 600 (GE Healthcare).
Primary antibodies for MCHR1 and β-actin are listed in Table 2.

Immunohistochemistry
Antisera Characterization

In this work, two primary antibodies for MCHR1 (sc-5534, Santa
Cruz Biotechnology, USA, and ab97059, Abcam, USA) were
tested for the indirect immunofluorescence method; however,
only sc-5534 showed consistent labeling specificity for MCHR1
cells in the mammary gland tissue. To determine the optimal
labeling, we titrated the antibodies following a previously
established protocol (46), and the omission of the primary and
secondary antibodies were carried out. Moreover, to confirm
the specificity of the antibodies, we also performed the same
immunofluorescence method in the negative control tissue, the
mammary gland tissue of Mchr1−/− mice at PPD19. Primary
antibodies for MCHR1 are listed in Table 2.

Immunofluorescence

Briefly, methacarn-fixed paraffin-embedded sections were
submitted to antigen retrieval method in sodium citrate
pH 6 (15min in a 95◦C water bath). Sections were rinsed
in 0.02M potassium phosphate buffer (KPBS, pH 7.4) and
pretreated with a solution of 3% hydrogen peroxide diluted
in KPBS for 5min. Next, the sections were rinsed in KPBS
and then incubated in KPBS solution containing 0.03% Triton
X-100, 3% bovine serum albumin (blocking solution), and
the polyclonal anti-MCHR1 antibody at a dilution of 1:100
(sc-5534) overnight at 4◦C. Sections were washed in KPBS and
incubated in KPBS solution containing 0.03% Triton X-100, and
fluorophore-conjugated anti-IgG antibody at 1:200 (AlexaFluor
594, Molecular Probes, USA) for 2 h at RT. Next, sections were
rinsed in KPBS, counterstained with 1:10,000 DAPI nuclear stain
(Life Technologies) in KPBS for 15min at RT, washed, air-dried,
and coverslipped with Prolong Diamond Antifade Mountant
(Life Technologies).

Imaging and Data Analysis
Bright field and dark field photomicrographs were acquired with
a DS-Ri1 digital camera (Nikon Corporation, Japan) coupled
to an upright microscope (Leica) using the image capture
software NIS-Elements BR 3.22 (Nikon Corporation). Wide
field fluorescence photomicrographs were obtained with an
AxioCam 506 (Carl Zeiss, Germany) coupled to an AxioImager
Z2motorized upright microscope with an HXP 120V illuminator
(Carl Zeiss) and processed using the ZEN Blue Edition software
(Carl Zeiss). All images were adjusted for brightness and contrast
using Adobe Photoshop CS5.1 (Adobe Systems Inc., USA).
The images of the bands of each gel obtained by the Western
blotting were subjected to analysis by relative densitometry band
quantification using ImageJ 1.52v software (47) and compared
with the values obtained from β-actin (housekeeping protein).

Data were assessed for normality and homogeneity of variance
to determine whether to use parametric or non-parametric
statistical tests. All statistical analyses were performed using
GraphPad Prism 8 software (GraphPad Software, USA). Outliers
were identified and removed from the analysis through the
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TABLE 2 | Primary antibodies used in the experiments.

Antibody Manufacturer Man. Code Reference (First author, volume:

pages, year and journal)

PubMed ID RRID Antigen sequence Application/

concentration

Goat anti(human)

melanin-concentrating

hormone receptor 1, C-17

(anti-MCHR1)

Santa Cruz sc-5534 Berbari NF, 105(11):4242–6,

2008—Proceedings of the National

Academy of Sciences of the

United States of America

18334641 AB_2143957 C-terminus of MCH-1R of human

origin

1:100 [IF/WB]

Mouse anti(human) β-Actin

(anti β-Actin)

Sigma A5441 Rostoker R, 154(5):1701–10,

2018—Endocrinology

23515289 AB_476744 Slightly modified β-cytoplasmic actin

N-terminal peptide,

Ac-Asp-Asp-Asp-Ile-Ala-Ala-Leu-Val-

Ile-Asp-Asn-Gly-Ser-Gly-Lys,

conjugated to KLH

1:1,000 [WB]

Rabbit anti(human)

melanin-concentrating

hormone receptor 1

(anti-MCHR1)

Abcam Ab97509 - - AB_10680290 Synthetic peptide corresponding to

Human MCHR-1 aa 358–422.

1:100 [IF/WB]

IF, immunofluorescence; WB, western blotting.

Grubbs test. Gapdh and β-actin were used as normalizers for
RT-qPCR and Western blotting, respectively. The results are
presented as means ± S.E.M. Data from RT-qPCR and Western
blotting experiments were evaluated through Mann–Whitney or
Kruskal–Wallis non-parametric with multiple comparisons tests
or one-way ANOVA followed by Tukey or Dunn’s post-hoc when
p-values reached significance. Statistical significance was set at
p < 0.05.

RESULTS

Cellular Localization of Mchr1 mRNA in the
Mammary Gland
In situ hybridization revealed an abundant presence of Mchr1
mRNA in the mammary gland of female rats (Figure 1) with
distinct patterns for non-lactating and lactating subjects. In
diestrus female rats, silver grain deposits were exclusively found
in the skin: epidermis and dermis (Figures 1A,A’). In the
epidermis, silver grains preferentially deposited in the basal
layer and in structures that invaginate into the dermis, such
as hair follicles (not shown). In the dermis, Mchr1-expressing
cells were identified on stromal cells juxtaposed to the basal
layer of the epidermis, close to the skin attachments and in the
connective andmuscular tissue region (Figures 1A,A’). Although
the morphology supports a fibroblast-like character for some of
these labeled cells, other stromal cell types could not be identified.
No evidence of Mchr1 mRNA was found in the undeveloped
glandular tissue.

In lactating animals, the epidermis and dermis were similarly
labeled (Figures 1B,C). An additional site of silver grain
deposition was detected in lactating animals: the glandular
parenchyma. Cells labeled for Mchr1 mRNA were found
bordering ducts and acini (alveoli) (Figures 1B,B’). The
hybridization signal for Mchr1 was also found in the connective
tissue that surrounds the mammary alveoli as well as in the
connective tissue near the skin attachments and muscle tissue
that surrounds the glandular part in contrast to the animals in
diestrus phase (Figures 1C,C’). This Mchr1 expression pattern
was more evident in dams in PPD19 than PPD12. Control of
the in situ hybridization technique was performed in adjacent

section series. There was no Mchr1 mRNA expression using
Mchr1 cRNA sense probe (Figures 1D,D’).

Differential mRNA Expression, Protein
Variation, and Nucleotide Sequencing of
Mchr1 in the Rat Mammary Gland
To quantify the apparent differences in the expression of Mchr1
mRNA observed with ISH, we employed RT-qPCR. Grouped
analysis of relative expression of Mchr1 mRNA revealed that
expression is significantly higher in the mammary gland of
lactating dams (6.63 ± 1.09) when compared to diestrus (1.48 ±
0.36) U = 423, ∗p = 0.0002, Mann–Whitney; Figure 2A). When
divided into lactation subgroups, there is a significantmain group
effect, K = 19.37, ∗p = 0.0002, Kruskal-Wallis), with Dunn’s
post-hoc analyses indicating a difference between diestrus and
PPD19 (∗p = 0.0002) (Figure 2A’). Analysis of PCR products of
the representative groups by agarose gel electrophoresis revealed
the presence of similar-sized Mchr1 (639 bp) products in the
mammary gland (Figure 2A”).

TheWestern blotting method was performed to provide more
information about the amount of MCHR1 protein, considering
the different stages of the reproductive cycle. There was no
significant difference in the grouped analysis of MCHR1 protein
level in the mammary gland of diestrus (0.91 ± 0.12) and
lactating dams (1.23 ± 0.12); t = 1.485, p = 0.157, Student’s t-
test (Figure 2B). ANOVA revealed main group effect [F(3,14) =
4.135, p = 0.027] for different phases of the lactation period,
MCHR1 protein level increases with the progression of lactation
(Figure 2B’); Tukey post-hoc analysis indicates a significant
increase in the MCHR1 protein in PPD19 as compared to female
rats in diestrus or PPD12 (∗p = 0.027) (Figure 2B’). Analysis
of bands of the representative groups by SDS-Page in 15%
acrylamide revealed the presence of MCHR1 (53 kDa) and β-
Actin (42 kDa) in the mammary gland (Figure 2B”). Please see
Supplementary Figure 1 for MCHR1 detection details by the
Western blotting method.

Moreover, to investigate if there are nucleotide sequence
alterations in the mammary gland Mchr1 mRNA during
lactation, we employed DNA sequencing method using cDNA
PCR products of mammary gland and hippocampus (PPD19
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FIGURE 1 | Distribution of Mchr1 mRNA in the rat mammary gland tissue. A series of bright field photomicrographs showing Mchr1 mRNA (silver grains) over

hematoxylin-eosin-counterstained cells in the mammary gland tissue (skin and undifferentiated parenchyma) of (A) diestrus female rat, (B) PPD12, and (C) PPD19

dams, (n = 3/group). Dark field photomicrographs of (A’- C’) display that the mammary gland tissue of diestrus female rat (A’) presents a restricted Mchr1 mRNA

expression in skin and, the lactating dams in PPD12 (B’) and PPD19 (C’) present a parenchyma expression: acini and stroma. A series of bright field (D) and dark field

(D’) photomicrographs showing no labeled cells hybridized in the mammary gland tissue of lactating dam in PPD12 when cRNA Mchr1 sense probe was applied. The

Mchr1 mRNA cells are indicated by black arrowheads. d, duct. Scale bars: 10µm (A–C), 10µm (A’–C’), and 50µm (D, D’).
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FIGURE 2 | Effect of the lactation in the expression of mRNA Mchr1 and MCHR1 protein content in the rat mammary gland. (A) Significant effect of lactation in the

Mchr1 expression in mammary gland of the lactating group when compared to the diestrus, U = 423, *p = 0.0002, Mann–Whitney. (A’) Dunn’s post-hoc analysis

indicates differences between diestrus and PPD19, K = 19.37, *p = 0.0002, Kruskal–Wallis. (A”) Analysis of PCR products by agarose gel electrophoresis revealed

the presence of Mchr1 (639 bp) for mammary gland for all samples analyzed. Data are expressed as mean ± S.E.M. Diestrus (n = 8), PPD5 (n = 6), PPD12 (n = 5),

PPD19 (n = 8). Relative Mchr1 expression data were normalized using Gapdh as housekeeping gene. The final data presented in the graphics were normalized

according to the diestrus value. (B) There was no significant difference in the MCHR1 protein level in the mammary gland of diestrus and lactating rats (p = 0.157),

Student’s t-test. (B’) ANOVA revealed main group effect (p = 0.027) for different phases of the lactation period, with MCHR1 protein level increases with the

progression of lactation; *p = 0.027. Tukey post-hoc analysis indicates a significant increase in the MCHR1 protein in PPD19 as compared to diestrus or PPD12 (*p =

0.027). (B”) Analysis of bands by SDS-Page in 15% acrylamide revealed the presence of MCHR1 (53 kDa) for mammary gland and the integrity with the presence of

β-actin (42 kDa). Data are expressed as mean ± S.E.M. Diestrus (n = 5), PPD5 (n = 5), PPD12 (n = 4), PPD19 (n = 4). Relative MCHR1 protein levels were

normalized using β-actin.

dam). Analysis of aligned sequences demonstrated the existence
of 100% sequence identity between mammary gland and its
hippocampusMchr1mRNA (Supplementary Figure 2).

Cellular Localization of MCHR1
Immunoreactivity in the Mammary Gland
Immunohistochemistry was performed to confirm MCHR1
synthesis by cells in the mammary gland. However, to determine
the specificity of the MCHR1 antibody used, we performed two
sets of controls in both MCHR1 primary antibodies (sc5534
and ab97059): the use of Mchr1−/− mice mammary gland tissue
and omission of the primary antibodies. Reactions with ab97059
in knockout Mchr1 tissue showed staining, demonstrating lack
of specificity (Supplementary Figure 3A). However, reactions
with sc5534 in knockout Mchr1 tissue showed no staining
(Supplementary Figure 3B). The suppression of the primary
antibody sc5534 resulted in the absence of immunostaining for
MCHR1 (Supplementary Figure 3C). These standard negative
controls for antibody validation as recommended by previous

study (48) showed that sc5534 primary antibody labels MCHR1
with high specificity.

As first revealed by ISH, the skin overlying the mammary
gland of diestrus and lactating rats is richly labeled for MCHR1,
including cells located in the epidermis, distributed all over the
basal, spinous, granular layers, and some MCHR1-ir labeled cells
found very close to the cornified layer (Figures 3A,B). Some of
the accessory epidermal structures of the skin were also labeled,
such as the fat cells of the sebaceous gland and cells of the
hair follicle (Figures 3A,B). Although the cells of alveoli and
ducts located in the undeveloped parenchyma of the mammary
gland of diestrus rats show few or absence immunostaining for
MCHR1 (Figure 3A’), lactating dams display MCHR1-ir cells in
the subjacent layers of developed parenchyma, such as muscle,
adipose, and glandular tissues (Figure 3B’).

The pattern of immunoreactivity was similar to that obtained
through ISH: only sparse or absence immunolabeling was
observed in the undeveloped parenchyma of diestrus rats
(Figures 4A,A’). The labeled MCHR1-ir cells were found in
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FIGURE 3 | MCHR1 immunoreactivity in the skin and parenchyma of the rat mammary gland tissue. Wide field fluorescence photomicrographs of sagittal mammary

gland slices from diestrus and PPD19 rats (n = 3/group) submitted to indirect immunofluorescence for MCHR1 (red) and counterstained with DAPI nuclear stain (blue).

(A,B) In the skin of mammary gland the MCHR1-ir cells are found in the epidermis, distributed all over the basal, spinous, granular layers, and cornified layer. Some of

the accessory epidermal structures of the skin were labeled, such as the fat cells of the sebaceous gland and cells of the hair follicle. (A’) The undeveloped parenchyma

on diestrus phase shows few or absence immunolabeling for MCHR1. (B’) The parenchyma on PPD19 display MCHR-ir cells bordering and into the luminal part of

the acini and ducts. The MCHR1-ir cells are indicated by white arrowheads. a, acini; ep, epidermis; de, dermis; hf, hair follicle; d, duct. Scale bar: 50µm.

the parenchyma located bordering the acini and in the ducts
of the mammary alveoli along the lactation time points
(Figures 4B–D). Moreover, we identified the presence of
MCHR1-ir cells in the luminal part of the aciniwith an increasing
pattern of distribution along and at the end of the lactation
(Figures 4B’–D’).

DISCUSSION

In this work, we report for the first time the presence of MCHR1
in the mammary gland of female rats and its correlation with the
lactating status and postpartum period. Although a large body of
information has been generated for MCHR1 within the central
nervous system, little is known about this receptor action in the
periphery despite the description of its mRNA in several tissues
(11, 20, 23, 30). Although central MCH has been implicated in
several functions [for review, see (38)], the actions of MCH in
peripheral MCHR1 remain mostly unclear with the exception of
a few works indicating a modulatory action of MCH over the
immune system (49, 50).

Previous works have indicated a biphasic role for the MPOA
synthesis of MCH in maternal behavior as MCH appears to
be both necessary for the onset of maternal behavior and a

deterrent to this behavior expression as lactation progresses
(51–53). Our work indicates that MCH plays a similar role
in milk secretion and mammary gland development in the
postpartum period.

In this study, both Mchr1 mRNA and MCHR1
immunoreactivity were found in the mammary glandular
parenchyma. Within the parenchyma, MCHR1 was found
codistributed with the acini (external layer), but it was most
prevalent in the secretory cuboid cells lining the acinus lumen,
mainly in lactating rats on PPD19. This double presence of
MCHR1 in cells of the acinus could also represent a dual
mechanism of MCH modulation of secretory and milk ejection
function. Through myoepithelial cells, MCH can exert actions
over milk ejection in synergistic way with OT since myoepithelial
cells surrounding the mammary ducts contain OT receptors (54).
At the same time, MCH may interact with the prolactin (PRL)
system in the secretory cells given the presence of PRL receptors
in this cell population. Prolactin binding to its receptors results
in transcription of milk-specific proteins and inhibition of
mammary involution (54–56). Given that PRL acts more as a
survival factor than as a milk secretion–regulating factor (57),
MCHR1 is located in a prime location to modulate both milk
secretion and mammary gland maintenance.
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FIGURE 4 | MCHR1 immunoreactivity in the rat mammary gland. Wide field fluorescence photomicrographs of sagittal mammary gland slices from diestrus and

lactating rats (n = 3/group) submitted to indirect immunofluorescence for MCHR1 (red) and counterstained with DAPI nuclear stain (blue). (A) The mammary gland of

(Continued)
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FIGURE 4 | diestrus, a tissue that is not totally differentiated as a lactating tissue, presents few MCHR1-ir cells. (A’) Higher magnification of the square area in (A)

showing few MCHR1-ir cells located mainly in islands of undifferentiated parenchyma of mammary gland tissue surrounded by adipose tissue. (B–D) Along the

different time points of the lactation, there is an evident effect of lactation in the presence and location of MCHR1-ir cells in the rat mammary gland tissue. (B’–D’)

Higher magnification of the square areas in (A–D). There is an increasing of MCHR-ir cells bordering and into the luminal part of the acini at PPD19 (D’) when

compared with the (B’) PPD5 and (C’) PPD12, which is similar with qPCR and Western blotting data. The MCHR1-ir cells are indicated by white arrowheads. Scale

bars: 50µm (A–D), 20µm (A’–D’).

A possible mechanism for peripheral MCHR1 activation
is the release of MCH in the bloodstream, a phenomenon
described by several authors in lactating and non-lactating
contexts (11–16). The peak synthesis of MCH near the weaning
period (6) and, consequently, the lactation end, and the
anatomical basis for a mechanism of MCH release during
this period advocate for a peripheral action of MCH over
lactation cessation. Furthermore, the interaction between MCH
and OT in the median eminence could be indicative of a role
in milk synthesis/ejection modulation, which fits well with the
thoroughly described action of MCH in orexigenic and energy
expenditure processes (9, 35–37).

If this hypothesis is valid, it begs the question of what benefit
would mammals have to have a secondary system acting with OT
and PRL in the mammary acinus. When gene expression was
quantified, we observed a biphasic pattern of Mchr1 expression
in lactating animals with PPD5 (early lactation) and PPD19 (late
lactation) displaying the highest values. This mimics the biphasic
role of MCH on maternal behavior, where a facilitating role
on early lactation is superseded by a suppressive role toward
PPD19. Transposing this to themammary gland, it could indicate
an increased Mchr1 expression at the beginning of lactation to
promote milk ejection, relaying visual, auditory, and olfactory
stimuli perceived by the dam and integrated in the MPOA,
possibly tomodulate or anticipate the action of OT upon suckling
stimulus. As the dam’s energy reserves are depleted and the
pups consume more milk, the homeostatic dampener role of
MCH becomes the driving force, contributing to the cessation of
lactation and involution of the mammary glands.

In unpublished data from our group, we verified the presence
of MCH-ir cells in the same sites described here for the presence
of MCHR1 in the mammary gland tissue of female rats. However,
studies of molecular biology are needed to investigate local MCH
synthesis in this tissue. Despite that, we cannot disregard the
hypothesis that MCH is also synthesized locally, and it has
autocrine and/or paracrine action on mammary gland tissue.
Interestingly, there is evidence in the literature that support local
production of MCH and its autocrine action as it was described
for some other peripheral tissues, such as the endocrine pancreas,
gastrointestinal tract, and testis (58–60), which supports the idea
of the modulating role of MCH.

Our model fits well in the idea that pregnancy, lactation,
and weaning are highly concerted central and peripheral
actions. They are a physiological process that results in
some of the most intense morphological and hormonal
transformations an adult mammal can undergo in its lifetime.
It is known that pregnant rats undergo central and peripheral
alterations to cope with the nutritional demand of the
pups (54, 61), guaranteeing its own homeostatic balance

and adequate litter survival. Our data suggests that MCH is
an important integrative player in this process, integrating
external stimuli and the dam’s own energy reserve to possibly
modulate the major energetic sink during this period: milk
production and ejection. However, more functional studies are
necessary to completely clarify specific mechanisms underlying
this process.

In summary, we have identified the rat skin and mammary
gland parenchyma as new sites ofMchr1 expression and MCHR1
synthesis. Although the presence of MCHR1 in the skin was
independent of reproductive status, Mchr1 expression in the
mammary acini was temporally vinculated to the lactation stage.
These results suggest that MCH released into the bloodstream
can act to modulate physiological aspects of the mammary
gland in addition to the canonical hormones OT and PRL,
forming a class of unspecific modulators that act on the
mammary gland to promote the coordination of milk ejection
and mammary involution with the metabolic demands of the
dam. Further studies are necessary to understand the role of
the MCH/MCHR1 peptidergic system in the mammary gland
to allow a better understanding about the mechanisms by
which MCH acts in mammary tissue to modulate lactation-
related events.
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