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Aggressive behaviors occurring dissociated from the breeding season encourage the

search of non-gonadal underlying regulatory mechanisms. Brain estrogen has been

shown to be a key modulator of this behavior in bird and mammal species, and it remains

to be understood if this is a common mechanism across vertebrates. This review focuses

on the contributions ofGymnotus omarorum, the first teleost species in which estrogenic

modulation of non-breeding aggression has been demonstrated. Gymnotus omarorum

displays year-long aggression, which has been well characterized in the non-breeding

season. In the natural habitat, territory size is independent of sex and determined by

body size. During the breeding season, on the other hand, territory size no longer

correlates to body size, but rather to circulating estrogens and gonadosomatic index

in females, and 11-ketotestosterone in males. The hormonal mechanisms underlying

non-breeding aggression have been explored in dyadic encounters in lab settings. Males

and females display robust aggressive contests, whose outcome depends only on

body size asymmetry. This agonistic behavior is independent of gonadal hormones and

fast acting androgens. Nevertheless, it is dependent on fast acting estrogenic action,

as acute aromatase blockers affect aggression engagement, intensity, and outcome.

Transcriptomic profiling in the preoptic area region shows non-breeding individuals

express aromatase and other steroidogenic enzyme transcripts. This teleost model

reveals there is a role of brain estrogen in the control of non-breeding aggression which

seems to be common among distant vertebrate species.

Keywords: Gymnotus omarorum, non-breeding aggression, fadrozole, natural spacing, estrogen

INTRODUCTION

The study of territoriality can provide insight into how animals integrate social and environmental
cues with their physiological context to produce behavioral responses. Steroid hormones are key in
this integration, affecting behavior through the modulation of brain areas belonging to the social
behavior network (1–3). Territoriality occurs when animals defend spatially associated resources
against competing individuals, and it is frequently mediated by agonistic encounters (4–6). Animals
will only defend resources when the benefits exceed the costs of defense, and this is key to
understanding how spacing, mating, and social systems have evolved (7). Pioneering studies in the
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field of behavioral ecology (8) have shown that optimal cost-
benefit balance in territorial defense occurs when animals
compete for mating opportunities, while the defense of resources
unrelated to reproduction is less often observed. Nonetheless,
in a few species territorial defense is present year-round (9–11),
which may ensure access to foraging areas or protection from
predators across seasons (4). Territorial aggression may thus
occur in these unconventional cases uncoupled from a breeding
physiology and independently from gonadal hormones.

Aggressive behaviors which occur dissociated from the
breeding season, encourage the search of non-gonadal
underlying regulatory mechanisms (12, 13). Early reports
in wild birds established the independence of non-breeding
aggression from circulating androgens (14–16). Many studies
have shown that aggression may occur when gonads are
regressed and even after castration in some species of birds,
mammals, reptiles and fish (9, 11, 17–25). In addition, it has also
been reported that territorial challenges during the non-breeding
season do not affect circulating testosterone (22, 26, 27). Brain
estrogens have been shown to have a forefront role in the
regulation of non-breeding aggression. This was first postulated
by pioneer research showing that estrogens promote aggression
in non-breeding song sparrows (18, 28, 29) and in California
mice subjected to a short photoperiod (30, 31). Aromatase,
which converts androgens into estrogens, is present in brain
regions related to aggression, and may display seasonal changes
in activity (32, 33). This raises the question: is the role of brain
estrogen underlying non-breeding aggression a general strategy
across vertebrates?

Fish are an ideal group to approach this question as they
are evolutionarily early vertebrates, they display diverse and
elaborate social behaviors, brain areas related to social behavior
are conserved, and they exhibit extraordinarily high levels of
brain aromatase activity (34–38).

This review focuses on the contributions from a teleost fish
model on the hormonal modulation of non-breeding territorial
behavior, to better understand different mechanisms underlying
aggression. South American weakly electric fish of the Order
Gymnotiformes, constitute a highly diverse group. They produce
electric organ discharges (EOD) that are used for active sensing
and communication [reviewed in (39)], and their well-known
electrogenic system is composed of discrete nuclei in the
brainstem and spinal cord and a peripheral electric organ.
This system has been shown to be hormone-sensitive in many
of its components frequently producing sexually dimorphic
communication signals, making these fish well established
models to study steroid action on neural circuits underlying
behavior (40–49). Gymnotus omarorum occurs naturally at
the southern boundary of gymnotiform distribution in South
America (Uruguay). It is a seasonal breeder, yet it displays year-
round territoriality in both males and females (50). It allows the
analysis of territorial aggression in the natural habitat as well
as the exploration of its proximate mechanisms in lab settings.
The fact that this behavior occurs when gonads are regressed
and circulating sex steroids are low, puts the spotlight on brain
synthesis of steroid hormones. This is the first teleost model that
contributes to revealing common estrogenic roles in the control

of non-breeding aggression, broadening the perspective of the
current state of knowledge currently based mostly on bird and
mammal models.

YEAR-LONG SPACING IN THE NATURAL
HABITAT

The spacing patterns of G. omarorum in the natural habitat likely
reflect year-long territorial defense in both males and females.
Territorial defense, usually associated with breeding males, has
been proposed to follow two general principles: (1) territory size
depends on body size as it is the universal indicator of physical
strength and resource holding power (51–53); and (2) territory
size depends on individual reproductive state and may be related
to circulating androgen levels (54–56). Sexual dimorphism in
territory size during breeding can also be expected even in species
in which both sexes display territoriality, as males and females
may have asymmetries in their motivation and/or their fighting
ability. This is the case of red squirrels (Sciurus vulgaris), for
example, in whichmales often hold larger territories than females
(57) or in the striped plateau lizard (Sceloporus virgatus), in which
females are more territorial than males (58).

During the breeding season (corresponding to the austral
spring-summer, from December to February), this sexually
monomorphic species displays similar patterns of spatial
arrangement for males and females (59). In resting diurnal
conditions, both males and females are found occupying
individual spots, distanced at least a meter away from their
closest neighbor. A close analysis shows that sex is relevant
in spatial arrangements, as animals are more likely to have
an opposite-sex than a same-sex closest neighbor. Although
males and females hold same-sized territories, when the size
of each territory is normalized to its owner’s body size, sexual
dimorphism arises as females hold relatively larger territories.
This interesting difference is probably due to sex-biased
reproductive requirements associated to anisogamy, which may
lead to higher metabolic requirements in females and thus
the need for larger foraging grounds. In male G. omarorum
gonadosomatic index (GSI) did not show correlation to territory
sizes, but circulating 11-ketotestosterone (11-KT, the main
bioactive androgen in teleost fish) marginally predicted territory
size (59). This data falls in line with the well documented
relationship between androgens and male territorial behavior
(60–62). In contrast, both female GSI and circulating estradiol
show high predicting power on territory size, which constitutes
the first report to associate circulating estradiol and territory size
in a vertebrate species (59). In the light of the evidence that
estradiol promotes female aggression (63–65), ovarian estradiol
is likely involved in the modulation of breeding territorial
aggression in this species. In summary, during the breeding
season, sexually dimorphic individual traits seem to influence
motivation toward territory defense in G. omarorum impacting
on individual spacing in the wild in a sex-dependent manner.

During the non-breeding season (corresponding to the austral
autumn-winter, from June to August), adults of G. omarorum
occupy individual spots in the wild separated at least one meter
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from the closest neighbor. Sex of individuals does not bias
spacing, as closest neighbors are randomly opposite-sex or same-
sex. Body size, but not sex, correlates positively with territory
size (59). Motivation to maintain territories in the non-breeding
season may be related to the fact that these fish continuously
produce electric signals as a means of communicating and
imaging their world. Electrogeneration is an energetically
expensive process which has been associated with high basal
metabolic requirements (39, 66) and most likely imposes high
year-long foraging demands. Equally sized territories between
males and females may reflect the same energetic requirements
in both sexes.

GONAD-INDEPENDENT AGONISTIC
BEHAVIOR MEDIATES NON-BREEDING
TERRITORIAL BEHAVIOR

G. omarorum is one of the few teleost species in which
the hormonal regulation of non-breeding aggression has been
studied [see also damselfish, (22, 27, 67)], and the only teleost
species in which the determinants of natural non-breeding
spacing have been explored in the field (59).

The acquisition and defense of territories in non-breeding
G. omarorum have been empirically shown to be mediated by
agonistic encounters in laboratory settings (68). When staging
dyadic agonistic encounters using a neutral plain arena, all
fish engage in rapid escalated conflicts in which the dominant-
subordinate status is achieved in <5min. Subordinates end
the struggle when they decide to stop attacking and retreat.
In addition, they further signal their surrender electrically:
first interrupting their EOD to hide from the dominant,
then emitting transient electric submission signals, and finally,
adopting a lower post-resolution EOD basal rate (69, 70).
The intensity of submission signals emitted by the subordinate
individual is correlated to the aggression levels displayed
by the dominant (71). Body size is the only predictor of
contest outcome, while individual sex has no significant
influence (69). After resolution, dominants monopolize the
acquired territory and actively exclude subordinate fish to
the periphery of the tank (68). Laboratory evidence falls
in line with what is observed in the wild, where non-
breeding territory sizes are determined by body size and
are unrelated to sex. Several pieces of evidence support
that the non-breeding agonistic behavior of G. omarorum is
independent of gonadal hormones. First, intra and intersexual
non-breeding agonistic contests are indistinguishable (69, 72).
Secondly, aggressive challenges do not have an effect on
circulating 11-ketotestosterone (72). Moreover, the clearest
evidence of gonadal independence of non-breeding aggression
in G. omarorum is that agonistic behavior persists unchanged
after castration. Gonadectomized and control dyads do not
differ in contest outcome, dynamics, aggression levels, nor
submissive displays (21), demonstrating that the low levels of
non-breeding circulating gonadal hormones are not necessary for
the occurrence of this behavior.

NON-GONADAL ESTROGENS MODULATE
NON-BREEDING AGONISTIC BEHAVIOR

Brain estrogens are critical regulators of non-breeding
aggression. In the absence of high circulating testosterone,
brain derived estrogens may be synthesized from circulating
adrenal dehydroepiandrosterone (DHEA), proposed to have a
key role underlying non-breeding aggression in mammals and
birds. DHEA is reported to have higher plasmatic levels in the
non-breeding season in birds (26, 73), its levels may respond
to social challenges in birds and mammals (26, 74, 75) and
it can be metabolized in the brain into active androgens and
estrogens (76, 77). In contrast to the breeding season, in non-
breeding mammalian and avian models estrogens exert rapid
effects upon aggression which reflect non-genomic mechanisms
(30, 31, 78, 79). In turn, aggressive interactions can produce
changes in steroid hormone levels in specific brain areas of the
songbird model (76, 80).

In G. omarorum the influence of gonadal hormones in
the non-breeding aggression has been ruled out by castration
experiments (21), and the role of extra-gonadal steroid hormones
has been tested via pharmacological manipulations. Short term
involvement of androgens and estrogens was explored focusing
on the effects these hormones have on the rapid dynamics of
conflict and resolution. Acutely impeding aromatase action by
administration of its inhibitor (Fadrozole, 60min pre contest)
in intrasexual dyads had a profound effect in non-breeding
agonistic encounters of G. omarorum. Overall, results from both
male-male and female-female contests show that the inhibition
of estrogen synthesis causes a decrease in aggressive displays
revealed by an important delay in initiating overt aggression.
In addition, it decreases aggression levels and prevents potential
winners (larger fish) from achieving dominance (21, 81).
Direct short-term effects of androgens were ruled out, since
acute treatment with androgen receptor antagonists showed
no influence upon conflict engagement, aggression dynamics
nor the establishment of dominant-subordinate status (81). If
androgens were directly involved in the modulation of non-
breeding aggression inG. omarorum, their action may be evinced
in a longer time frame, as has been observed in other non-
breeding territorial fish in which chronic androgen receptor
blocking decreases aggression (22).

To date, the expression pattern of brain aromatase has been
identified in several teleost species (82–89); including a recent
study in the weakly electric fish Apteronotus leptorhynchus
(90), which also exhibits territorial aggression in non-breeding
conditions (43, 91). Aromatase mRNA was mapped in non-
breeding male and female A. leptorhynchus in the telencephalon,
preoptic area, hypothalamus, and pituitary gland, showing a
high degree of regional conservation with previous reports in
teleosts. Reports of the presence of high levels of aromatase
in the social behavior network strongly suggest these neural
circuits are affected by local estrogen production. Moreover,
testosterone aromatization has reported effects in social behavior
electric displays in Apteronotus (42, 92). The first transcriptomic
study carried out in G. omarorum during the non-breeding
season shows that aromatase, as well as other steroidogenic

Frontiers in Endocrinology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 468

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Silva et al. Steroid Regulation of Fish Aggression

enzymes are expressed in the preoptic area (93). This node
of the social brain has a well-documented role in aggressive
behavior (1, 94–97). Moreover, it has already been shown that
preoptic area neuropeptides have a status-dependent role in
the modulation of non-breeding aggression in G. omarorum
(70, 98). The analysis of local brain synthesis of estrogens and
androgens in this region regulating non-breeding aggression is
currently underway.

Overall, research in G. omarorum point to brain estrogen as
an important modulator of non-breeding aggression acting in
regions of the social brain through rapid mechanisms.

STATE OF THE ART AND PERSPECTIVES:
NEUROSTEROIDS UNDERLYING
NON-BREEDING AGGRESSION

Currently, G. omarorum is the strongest teleost model to
approach neuroendocrine mechanisms underlying non-breeding
aggression. Contributions in this model demonstrate that brain
estrogens are key regulators of non-breeding aggression in a
much broader sense than previously reported. Revised evidence,
brought together from both laboratory and natural settings, shed
light on the sequence of events and underlying mechanisms
leading to territory acquisition and spatial distribution in the
wild (Figure 1). Fish contenders competing for territory display
a short evaluation time and engage in escalated conflicts from
which a clear dominant-subordinate status emerges. Males and

females show no difference in aggressive behavior, but outcome
is biased by body size: the larger fish wins and acquires
the disputed territory. Agonistic behavior is independent of
gonadal hormones and fast acting androgens, although it
is strongly dependent on estrogenic action, revealed by the
rapid and dramatic effect of blocking estrogen synthesis upon
conflict engagement, aggression intensity and establishment of
dominance. Agonistic behavior is a key element for the non-
breeding distribution of fish in the wild in which animals hold
sexually monomorphic territories and body size is the strongest
determinant for territory size.

The year-long territorial behavior of G. omarorum opens
exciting avenues of research on steroid modulation of aggression,
and in particular, the yet unexplored role of both circulating
and brain-derived steroids in breeding territorial aggression.
We have two hypotheses on potential seasonal plasticity in
the role of steroids regulating aggression, which are leading
our current research. First, we understand that non-breeding
contests produce a fast rise in brain estrogen in regions of
the social behavior network. This estrogen peak has a rapid,
non-genomic effect, promoting aggressive behavior, the fast
establishment of dominance, and ultimately, at least in a short
time scale, it correlates to the size of the acquired territory in the
natural habitat. In absence of high circulating sex steroids, we
propose this brain hormonal signature is important in enabling
stable territory distributions in natural populations. Secondly,
based on the correlation between GSI and territory size in
the breeding season, and the independence of aggression from

FIGURE 1 | Events and underlying mechanisms of non-breeding territoriality in Gymnotus omarorum. Laboratory evidence shows that agonistic behavior mediates

territory acquisition, as after conflict resolution dominant animals monopolize the territory and actively exclude subordinate fish to the periphery of the tank. Body size,

but not sex, is a strong predictor of conflict outcome. Aggression is maintained even in gonadectomized animals, indicating its independence of gonadal hormones.

Behavioral pharmacology evinces aggression is also independent of rapid actions of androgens, although strongly dependent on rapid estrogenic action, as an

aromatase inhibitor greatly influences conflict engagement, aggression intensity and establishment of dominance. This evidence suggests that brain-derived estrogens

play a key role in agonistic behavior. Agonistic behavior most probably underlies territorial spacing in the natural habitat. Territory sizes are not sex-biased, but do

depend on body size, and we propose that at least in the short-term after dominance establishment, they also correlate to brain estrogen levels.
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gonads in the non-breeding season, we postulate that regulation
of aggression varies seasonally. We hypothesize that estrogens
and androgens maintain key roles as modulators, but their
main sources alternate from the brain (in the non-breeding
season) to the gonads (in the breeding season). In addition,
we propose that non-breeding aggression depends exclusively
upon brain-derived steroids, either produced de novo or from
circulating precursors. Studies testing these two hypotheses
are underway.

The contributions of G. omarorum, a teleost fish with
persistent aggression uncoupled from seasonal breeding, expand
concepts based on mammal and bird models to further
understand the breadth of estrogenic regulation of aggression.
Fish are the oldest and most diverse class of vertebrates.
Thus, common regulation strategies suggest either a very strong
conservation of the trait, or an independent evolution path

arriving at the same solution, both underscoring the relevance
and extensive impact of estrogens upon aggression.
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