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Physiological functions of juvenile hormone (JH) and molting hormone have been

demonstrated in insects. JH,molting hormone and their mimics (insect growth regulators,

IGRs) show endocrine-disrupting effects not only on target pest insects but also on

other arthropod species such as crustaceans. However, little is known about the

endocrine-disrupting effects of IGRs on benthic crustaceans. In this study, laboratory

experiments were conducted to investigate effects of representative innate JH in

crustaceans (methyl farnesoate, MF) and molting hormone (20-hydroxyecdysone, 20E,

active form of ecdysteroid) on larval stages of the kuruma prawn Marsupenaeus

japonicus, which is a decapod crustacean living in warm seawater. Larval development

of kuruma prawn progresses in the order of nauplius, zoea, mysis, and then post-larvae

with molting and metamorphosis, but it is unknown whether both MF and 20E have

crucial roles in metamorphosis and molting of this species. Treatments of either MF or

20E on shrimp larvae were attempted at each developmental stage and those effects

were validated. In terms of EC50 values between mortality and metamorphosis, there

were apparent differences in the transition from nauplius to zoea (MF: 7.67 and 0.12µM;

20E: 3.84 and 0.06µM in survival and metamorphic rates, respectively). In contrast,

EC50 values in MF and 20E treatments showed high consistency in the transitions

between zoea to mysis (EC50 values for survival; MF: 1.25 and 20E: 0.22µM), and

mysis to post-larvae (EC50 values for survival; MF: 0.65 and 20E: 0.46µM). These data

suggest that nauplius has strong resistance against exposure to MF and 20E. Moreover,

both chemicals induced high mortality triggered by the disruption of molting associated

with metamorphosis. To our knowledge, this is the first experimental evidence that

investigates in vivo physiological functions of MF and 20E in the larval stages of kuruma

prawn, shedding light on not only ecotoxicological impacts of IGRs released into nature,

but also endocrine mechanisms underlying larval development with metamorphosis in

benthic decapod crustaceans.
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INTRODUCTION

Recent advances in arthropod phylogeny have revealed that the
Crustacean clade is not monophyletic, and can be divided into
three extant clades (Ostracoda, Malacostraca, Branchiopoda).
A current hypothesis supports that the clade of Hexapoda
(insect species) is nested within the Crustacea, which forms a
new clade known as Pancrustacea, although its details are still
controversial (1, 2). This finding has provided impetus into the
belief that the comparative analysis of crustaceans and insects
is indispensable to understanding the evolutionary origin of a
range of characteristics that are believed to be insect-specific.
Indeed, both crustaceans and insects share various fundamental
traits such as endocrine-driven developmental and reproductive
processes, which are regulated primarily by juvenile hormone
(JH) and molting hormone (ecdysteroids).

Methyl farnesoate (MF) is thought to be the equivalent
of JH in crustaceans. Previous studies have demonstrated
that MF may play a similar role to JH in insects, by
regulating molting, sexual maturation, and reproduction in
concert with ecdysteroids, the main active form being 20-
hydroxyecdysone, or 20E (3–5). To date, the hormonal actions
of MF and 20E are triggered by activation of the JH receptor
(JHR) complex (methoprene-tolerant and steroid receptor
coactivator) and ecdysone receptor complex (ecdysone receptor
and ultraspiracle), respectively, which are the nuclear receptors
responsible for transcriptional regulation of the aforementioned
biological processes in crustaceans as well as insects (6–10). Based
on those findings, endocrine-disrupting chemicals targeting
the JHR and/or EcR have been designed and developed as
insect growth regulators (IGRs) that disrupt metamorphosis
and/or molting in pest arthropods resulting in the effective
suppression of pest outbreaks (11, 12). However, due to highly
conserved endocrine systems between insects and crustaceans,
the environmental residues of these IGRs may also affect
ecologically and economically important non-target species, such
as aquatic crustaceans (e.g., prawns and crabs). Despite much
earnest research to investigate the toxic effects of IGRs using
tiny crustaceans such as water fleas, little is still known about
endocrine-disrupting effects of IGRs on benthic crustaceans. This

knowledge gap is largely due to a lack of established model
crustacean species that can be applied for physiological and
toxicological studies.

In Malacostracan crustaceans, the eyestalk neurosecretory
system, which is referred to as the X-organ–sinus gland
complex, plays a pivotal role in larval development associated
with molting and metamorphosis. However, the endocrine
mechanisms underlying larval development are still largely
unknown. Generally, biosynthesis and secretion of ecdysteroids
are negatively regulated by molt-inhibiting hormone, and those
of MF are also suppressively controlled by mandibular organ-
inhibiting hormone (MOIH) secreted from the X-organ–sinus
gland complex in eyestalks, indicating that both endogenous
ecdysteroids and MF titers increase when both eyestalks were
ablated (13, 14). Based on this knowledge, numerous studies
found that eyestalk ablation of larvae resulted in the formation
of larval intermediates in the blue crab (Callinectes sapidus) and

the American lobster (Homarus americanus), and took place in
extra-larval stages causing a consequent delay in metamorphosis
in the mud crab (Rhithropanopeus harrisii), shrimps (Palaemon
macrodactylus, Palaemonetes varians), and in the swimming crab
(Portunus trituberculatus) (15) reviewed in (4). However, the
mechanisms by which these hormones exert their effects remain
poorly understood.

Kuruma prawn, Marsupenaeus japonicus, is a member of the
family Penaeidae (Class Malacostraca, Order Decapoda), and is
widely distributed from Japan and Southeast Asia to Western
Pacific Oceans (16). Due to the economic importance of this
species, annual catches have declined sharply since the 1990s
(17). To overcome this situation, research into seed production of
kuruma prawn, which was reared from eggs to juveniles that were
then released into sea water to maintain natural populations,
was conducted (18). Based on a long history of seed production
of kuruma prawn, its larval developmental process is well-
described. Nauplius larvae hatch about 13–14 h after ovulation at
27–29◦C, and repeat molting six times (stages I–VI) within 36 h,
resulting in metamorphosis to the zoea stage. Likewise, the zoea
molts three times (stages I–III) within 4 days andmetamorphoses
into the mysis stage. Finally, the mysis molts three times (stages
I–III) within 3 days and metamorphoses into the post-larval
stage (4). Although 20E-driven ecdysteroid signaling pathways
are known to regulate molting in crustaceans, less is known about
the regulation of larval development and metamorphosis by MF
and 20E. In this study, we treated kuruma prawn larvae at each
developmental stage with either MF or 20E and validated toxic
effects such as rates of mortality and metamorphosis.

MATERIALS AND METHODS

Animals
Sexually matured female kuruma prawns (M. japonicus) were
purchased from a local fishery shop at a fishing port of Isshiki in
Nishio City, Aichi Prefecture, Japan, in April 2018. All prawns
were transferred to the Mie Prefectural Fish Farming Center
(Mie, Japan) and all experiments were conducted there. Prawns
were maintained in a tank with natural seawater at 24◦C under
natural daylight and fed daily with polychaeta worms as raw bait
for 1 day prior to treatment of eyestalk ablation that stimulates
ovarian maturation and then spawning within a few days. Newly
hatched nauplius larvae (ca. 10,000 individuals), which were
obtained from seven females, were transferred to a 100 L black
tank with natural seawater at constant 24◦C under natural
daylight. The culture feed series of kuruma prawn larvae was as
follows: from egg to zoea stage I (3 days after beginning) was
the commercial diatom Chaetoceros gracilis (Pacific Trading Co.,
Ltd., Fukuoka, Japan); from zoea stage 2 to mysis stage I was both
commercial diatom and a prawn diet (Vitalprawn: Higashimaru
Co., Ltd., Kagoshima, Japan); thereafter, both the commercial
prawn diet and nauplius Artemia larvae were added until prawns
grew to the post-larval stage.

Preparation and Treatment of Chemicals
A stock solution of 10 mg/mL MF (Echelon Bioscience, Salt Lake
City, UT, USA) was dissolved in 100% ethanol (EtOH,Wako Pure
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FIGURE 1 | Effects of MF treatment on nauplius stage IV. Regression curves of survival rate at 48 and 72 h (A). Gray shade indicates 95% confidence interval. Each

EC50 value of survival rate at 48 and 72 h (B). Metamorphosis rates after exposure to MF at 0, 24, 48, and 72 h (C).

Chemical Industries Ltd., Osaka, Japan) and kept at −20◦C until
use. Based on this stock solution, a dilution series was prepared,
as follows: 5.0, 2.5, 1.25, 0.625, and 0.3125 mg/mL. These stock
solutions were directly added to 500mL of natural seawater
containing 10 individuals each. Likewise, a stock of 100 mg/mL
20E (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 100%
EtOH and kept at −20◦C until use. A second dilution series
was prepared as follows: 50, 25, 12.5, 6.25, and 3.125 mg/mL.
These stock solutions were directly added to 500mL of natural
seawater containing 10 individuals each. Beakers were prepared
in triplicate for each condition.

The final concentrations of MF for nauplius stage IV were
32.0, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.25, 0.125µM. Then, based on
result of nauplius experiment, the range of concentrations of
experiment of both zoea stage III and mysis stage III was decided
as 2.0, 1.0, 0.5, and 0.25µM. Similarly, the final concentrations of
20E for nauplius stage IV were 16.0, 8.0, 4.0, 4.0, 2.0, 1.0, 0.5, 0.25,
0.125, and 0.0625µM, and for both zoea stage III and mysis stage
III, they were 2.0, 1.0, 0.5, and 0.25 µM.

After 24 h, starting from hatching, most prawns grow to
nauplius stage IV. Those were exposed to MF or 20E, and
mortality, molting, and metamorphosis (from nauplius stage
VI to zoea stage I) were recorded for 72 h. The half maximal
effective concentrations (EC50) and 95% confidence interval

(CI) of mortality and metamorphosis rates of tested chemicals
were calculated using R software (19). All data is available
upon request.

RESULTS

Effects of MF and 20E on the Nauplius
Stage
Treatment of nauplius stage IV prawns with either MF or
20E caused a dose-dependent decline in survival rates, and
EC50 values at 72 h were apparently lower (MF: 1.74µM;
20E: 0.29µM) than at 48 h (MF: 7.67µM; 20E: 3.84µM)
(Figures 1A,B, 2A,B). In the solvent control group,metamorphic
transitions from nauplius stage VI to zoea stage I occurred
within 48 h, but metamorphosis was delayed in a dose-dependent
manner in both MF and 20E treatment groups (Figures 1C,
2C). The EC50 values of metamorphosis for MF and 20E were
0.12 (95% CI: 0.05–0.20) and 0.06 (95% CI: 0.04–0.07) µM,
respectively. No metamorphosis took place after exposure to
8.0µM MF and >2.0µM 20E. All individuals that died during
this experiment were exclusively nauplius at stage VI. Moreover,
transitions from nauplius stage IV to stage VI occurred at 24 h
after initial exposure in all treatment groups (Figures 1C, 2C).
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FIGURE 2 | Effects of 20E treatment on nauplius stage IV. Regression curves of survival rate at 48 and 72 h (A). Gray shade indicates 95% confidence interval. Each

EC50 value of survival rate at 48 and 72 h (B). Metamorphosis rates after exposure to 20E at 0, 24, 48, and 72 h (C).

The results show that 20Ewasmore toxic thanMF to the nauplius
stage in terms of the rate of mortality and metamorphosis.

Effects of MF and 20E on the Zoea Stage
When the zoea larvae at stage III were exposed to a concentration
series of MF or 20E, survival ratios decreased sharply in a dose-
dependent manner at 48 h (Figures 3A,D). The EC50 values of
survivability of zoea larvae for MF and 20E were 1.25 (95%
CI: 0.99–1.52) and 0.22 (95% CI: 0.10–0.33) µM, respectively
(Figures 3B,E). Although the metamorphic transition from zoea
to mysis occurs normally within 48 h, no metamorphic transition
occurred in the 20E treatment at more than 0.5µM, unlike in
the MF treatment groups (Figures 3C,F), and all individuals
that died were zoea at stage III, except for the 2.0µM MF
treatment group.

Effects of MF and 20E on the Mysis Stage
When mysis larvae at stage III were exposed to a concentration
series of MF or 20E, survival ratios decreased dose-dependently
at 48 and at 24 h, respectively (Figure 4). The EC50 values of
48 h survivability of mysis lavae for MF and 20E were 0.65 (95%
CI: 0.46–0.83) and 0.46 (95% CI: 0.34–0.59) µM, respectively
(Figures 4B,E). Even though the metamorphic transition from
mysis to post-larvae occurs normally within 48 h, there was a

dose-dependent decrease in metamorphic rate in response to
MF treatments. In contrast, post-larvae were found in the 20E
concentration series. No prawns survived exposure to 2.0µM of
either MF or 20E (Figures 4C,F). All individuals that died during
this experiment were stage III mysis.

DISCUSSION

This study demonstrated that exogenous treatment of either MF
or 20E to larval stages of kuruma prawn caused the retardation
of molting associated with metamorphosis and a decline in
survivability of larvae in a dose-dependent manner. Interestingly,
EC50 values at 48 h after the exposure to these compounds
indicated that 20E more effectively decreased survivability and
delayed metamorphosis than MF (Figure 5). At the nauplius
stage, there were the huge gaps in EC50 values between survival
and metamorphosis in both MF and 20E treatments. However,
each EC50 value between MF and 20E was very consistent
when transitions occurred from zoea to mysis, and from mysis
to post-larva (Figure 5). These findings suggest that nauplius
larvae have higher tolerance against the lethal effect of MF
and 20E than other stages (e.g., zoea and mysis), and that
there are different endocrine cassettes regulating transition from
nauplius to zoea and later metamorphosis (zoea to mysis,
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FIGURE 3 | Effects of MF and 20E treatments on zoea stage III. Regression curves of survival rate at 48 and 72 h in response to MF and 20E treatments (A,D). Gray

shades indicate 95% confidence intervals. EC50 values of MF and 20E treatments (B,E). Metamorphosis rates after exposure to MF and 20E at 0, 24, and 48 h (C,F).

and mysis to post larvae stages). In terms of the effects of
MF on larval development and metamorphosis, some studies
have reported similar results, such as the administration of
MF, which delayed larval development and metamorphosis in
freshwater prawn (Macrobrachium rosenbergii) (20, 21), or MF
treatment, which induced precocious metamorphosis in the
barnacle (Balanus amphitrite) (22, 23). Likewise, the precise
regulation of the endogenous level of 20E plays a key role
in the success of molting. Supporting evidence from various
crustaceans consistently suggests that a pulse of the endogenous
20E titer is required for a complete molting cycle (12, 24).

Our data showed that either exogenous MF or 20E treatment
to kuruma prawn larvae decreased the survival rate, and retarded
larval development and metamorphosis. The EC50 values that
we observed were similar to those in previous studies using
the freshwater tiny crustacean (Daphnia magna), which is a
well-known environmental indicator. For example, mortality
in response to 20E treatment occurred with 5.119µM (25),
and males were induced by treatment with 0.278µM MF
(26). Moreover, using chemically-synthesized insecticides with
MF- or 20E-like bioactivity, many studies investigated their
endocrine-disrupting effects in various crustaceans. In the mud
crab (R. harrisii), treatment with 0.159µM fenoxycarb reduced

survival and extended the duration of larval metamorphosis from
zoea to megalopa (27). The LC50 (50% lethal concentration)
values at 24 h for fenoxycarb andmethoprene, two JH-mimicking
chemicals, were 4.74 and 6.31µM, respectively (at 48 h, values
were 3.52 and 4.48µM), in the cherry shrimp (Neocaridina
davidi) (28). Natural concentrations of methoprene in freshwater
have typically ranged from 3.0 to 30.0 nM (29, 30), suggesting
that IGRs with JH-activity might have toxic effects on crustacean
development in wild populations. Similarly, treatment with
3.37–33.7µM of RH 5849 (1,2-dibenzoyl,l-t-butyhly drazine),
which has IGR-bearing ecdysteroid activity, accelerated larval
molting in the crab (R. harrisii) and enhanced attachment
and metamorphosis in the barnacle (B. amphitrite) (31), while
exogenous treatment with 0.5µM 20E inhibited molting and
ovulation in the water flea (D. magna) (32). Taken together with
findings in other crustaceans, the present study demonstrates that
larval development in the kuruma prawn may be highly sensitive
to MF- and 20E-like chemicals. In addition to short-term assay,
the long-term (chronic) assay will be more clearly demonstrated
that impacts of those chemical exposure on larval development
of kuruma prawn in the ecological point of view.

Recent advances in omics approaches enable the depiction
of the expression pattern of many genes and to estimate the
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FIGURE 4 | Effects of MF and 20E treatments on mysis stage III. Regression curves of survival rate at 48 and 72 h in response to MF and 20E treatments (A,D). Gray

shades indicate 95% confidence intervals. EC50 values of MF and 20E treatments (B,E). Metamorphosis rates after exposure to MF and 20E at 0, 24, and 48 h (C,F).

regulatory interactions involved in metamorphosis in the prawn
(M. rosenbergii) (33), the shrimp (Neocaridina denticulata)
(34), and the spiny lobster (Sagmariasus verreauxi) (35, 36).
Although the aforementioned transcriptome studies provided
various new insights, the number of unannotated genes has
hampered the completion of more comprehensive analysis
due to the lack of publicly available genomes. To address
this resource problem, the complete genome of the Pacific
white shrimp (Litopenaeus vannamei) was decoded, providing a
new hypothesis of the regulatory mechanisms underlying adult
molting via sterol regulatory elements (SRE)-binding protein
and opsin (37). In addition to next generation sequencing, mass
spectrometry technology (e.g., LC- and GC-MS) has allowed
the metabolite profiling (38), and quantification of endogenous
juvenoid in hemolymph of freshwater prawn M. rosenbergii (39)
and ecdysteroid titers in the extracts of tiny crustaceans (40,

41), enabling the monitoring of the pulse (rise and decline) of
those hormones during metamorphosis. It will be necessary to
elucidate the fluctuating dynamics of MF and 20E titers during
larval development in kuruma prawn. Some advanced studies
found that this can be successfully achieved by integrating the
data acquired from in vivo pharmacological assays and omics

approaches (28, 42, 43), suggesting that this approach will be
applied for comprehensively understanding the mechanisms of
diversified crustacean metamorphosis. Additionally, treatments
of those inhibitors/antagonists will be useful for understanding
their physiological function. Indeed, the fenarimol, which is an
inhibitor of ecdysteroid synthesis, could be applied in themolting
research, because it has been used in Daphnia (40). Although less
is known about the inhibitor/antagonist of JH, some potential
JH antagonists have been identified using the yeast two-hybrid
system transformed with the mosquito JH receptor as a reporter
system (44).

In conclusion, we conducted laboratory experiments to
investigate the toxic effects of MF and 20E using larval stages
of the kuruma prawn. We demonstrated that both MF and
20E induced high mortality caused by disruption of molting-
associated metamorphosis, although the nauplius showed strong

resistance to MF and 20E. This is the first experimental evidence
of the in vivo physiological functions of MF and 20E in the
larval stages of kuruma prawn, shedding light on not only the
ecotoxicological impacts of IGRs released into nature, but also on
the endocrine mechanisms underlying larval development with
metamorphosis in benthic decapod crustaceans.
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FIGURE 5 | Relationships between EC50 of survivability and metamorphosis at 48 h after exposure of MF and 20E. N6, nauplius stage VI; Z1, zoea stage I; Z3, zoea

stage III; M1, mysis stage I; M3, mysis stage III; PL, post-larvae. Error bars indicate 95% confidence intervals. NA indicates that data is not available.
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