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Insulin-like growth factor (IGF) 1 exerts a wide range of functions in mammalians

participating not only in the control of growth and metabolism, but also in other actions

such as neuroprotection. Nutritional status modifies the IGF system, although little

is known regarding how diet affects the newest members of this system including

pregnancy-associated plasma protein-A (PAPP-A) and PAPP-A2, proteases that liberate

IGF from the IGF-binding proteins (IGFBPs), and stanniocalcins (STCs) that inhibit

PAPP-A and PAPP-A2 activity. Here we explored if a 1-week dietary change to either a

high-fat diet (HFD) or a low-fat diet (LFD) modifies the central and peripheral IGF systems

in both male and female Wistar rats. The circulating IGF system showed sex differences

in most of its members at baseline. Males had higher levels of both free (p < 0.001) and

total IGF1 (p < 0.001), as well as IGFBP3 (p < 0.001), IGFBP5 (p < 0.001), and insulin

(p < 0.01). In contrast, females had higher serum levels of PAPP-A2 (p < 0.05) and

IGFBP2 (p < 0.001). The responses to a short-term dietary change were both diet and

sex specific. Circulating levels of IGF2 increased in response to LFD intake in females (p

< 0.001) and decreased in response to HFD intake in males (p < 0.001). In females, LFD

intake also decreased circulating IGFBP2 levels (p < 0.001). In the hypothalamus LFD

intake increased IGF2 (p < 0.01) and IGFBP2 mRNA (p < 0.001) levels, as well as the

expression of NPY (p < 0.001) and AgRP (p < 0.01), but only in males. In conclusion,

short-term LFD intake induced more changes in the peripheral and central IGF system

than did short-term HFD intake. Moreover, these changes were sex-specific, with IGF2

and IGFBP2 being more highly affected than the other members of the IGF system. One

of the main differences between the commercial LFD employed and the HFD or normal

rodent chow is that the LFD has a significantly higher sucrose content, suggesting that

this nutrient could be involved in the observed responses.
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INTRODUCTION

Insulin-like growth factor (IGF) 1 is involved in a wide range
of functions (1, 2) including promotion of systemic growth
through actions exerted directly on bone (3), anabolic effects
promoting protein synthesis and glucose uptake in muscle (4)
and stimulation of lipogenesis (5). Because of their structural
similarity, IGF1 shares metabolic functions with insulin (6) and
elevated levels of this growth factor reduce glycemia (7). In the
brain IGF1 is involved in numerous functions including glucose
metabolism (8), neural development (9), neural activity (10),
synaptogenesis (11), adult neurogenesis (12), cognition (10), and
amyloid clearance (13). It also exerts beneficial effects against
inflammation (14) and neurodegeneration (9).

The main source of circulating IGF1 is the liver. However,
there is also local production in most tissues including the brain,
which is largely due to production by astrocytes and microglia
(15, 16). The two ligands of the IGF system, IGF1 and IGF2, are
secreted and bound to one of six different IGF-binding proteins
(IGFBPs), thus modifying their biological activity. In addition
to binding IGF1 or IGF2, IGFBP3, and IGFBP5 bind the acid
labile subunit (ALS) to form a trimolecular complex of 150 KDa,
which increases the half-life of the ligand (17). In the proximity of
the target cell, proteases such as the metalloproteases pregnancy-
associated plasma protein-A (PAPP-A) and PAPP-A2, cleave the
junction between IGF1 or IGF2 with the IGFBP, allowing the free
ligand to bind its receptor (18). Stanniocalcins (STCs) are a third
level of regulation of this system, acting as endogenous inhibitors
of the activity of both PAPP-A and PAPP-A2 and consequently
reducing the release of both IGF1 and IGF2 (19, 20).

Nutritional status modifies circulating levels of IGF1, as well
as of other members of the IGF system (21–24). High fat
diet (HFD)-induced obesity has been shown to increase the
expression of IGF2 in adipose tissue (25) and to inhibit the
effects of IGF1 in chondrocytes (26), while IGF1 stimulates
adipose tissue proliferation (5). Moreover, IGFBP2 is reported
to participate in glucose metabolism and to be a target of leptin
(27). The more recently described members of this family are
also involved in metabolism as, for example, adult female PAPP-
A knockout mice have been shown to be resistant to high
fat/high sugar intake (28). High fat diet-induced and leptin-
deficient obesity is associated with reduced STC2 synthesis
in liver, with STC2 administration attenuating hyperlipidemia
and steatosis (29). Recently, circulating levels of PAPP-A and
PAPP-A2, as well as STC-2, were reported to be unchanged in
response to metreleptin treatment in adult men and women
(30). Thus, more information is required regarding the metabolic
implications of the IGF system including the pappalysins
and stanniocalcins.

Central IGF1 also modulates the neuroendocrine control of
metabolism (31), but less is known regarding the participation
of other members of this system at the central level in response
to metabolic changes or to specific nutrients. Moreover, in
recent years the important role of hypothalamic inflammation
in obesity and its secondary complications has been obviated.
As IGF1 exerts neuroprotective and anti-inflammatory effects
(14), obesity or nutrition-induced modifications in this system

could be involved in hypothalamic inflammation and central
metabolic control.

In this study we aimed to determine the possible changes in
the central and circulating IGF systems in response to short-term
high-fat diet (HFD) or low-fat diet (LFD) consumption. Low fat
diets have been commercialized as controls for the HFD, but
their use as such is questionable and thus, we also compared the
metabolic response between chow and LFD.

MATERIALS AND METHODS

Ethical Statement
All experiments were designed according to the European
Communities Council Directive (2010/63/UE) and the Royal
Decree 53/2013 pertaining to the protection of experimental
animals. This study was also approved by the Ethical Committee
of Animal Experimentation of the Hospital Puerta de Hierro
de Madrid and the Animal Welfare Organ of the Comunidad
Autónoma de Madrid.

Animals and Diets
Male and female postnatal day (PND) 50 Wistar rats were
purchased from Charles River Laboratories and acclimated to
the new environment for 13 days before dietary challenge. They
were then randomly distributed between the three experimental
groups for each sex (n = 6/group). Starting at PND 63, animals
were fed ad libitum with either a HFD (62% kcal from fat, 18%
kcal from proteins, 20% kcal from carbohydrates, 5.1 kcal/g,
LabDiet), a LFD (10% kcal from fat, 18% kcal from proteins,
72% kcal from carbohydrates, 3.76 kcal/g, LabDiet) or standard
rodent chow (6% kcal from fat, 17% kcal from proteins, 77% from
carbohydrates, 3.41 kcal/g, Panlab) for 1 week (more information
regarding the diets is shown in Table 1). The rats were given free
access to tap water. Body weight was measured every 3 days until
sacrifice on PND70. Food intake was determined throughout the
study. Total kcals and the amount of energy contributed by fat
were calculated. Energy efficiency was calculated as total weight
gain (g) divided by total energy intake (kcal) during the week
of study.

Tissues and Sacrifices
Twelve hours before sacrifice, animals were weighed and then
fasted. The animals were killed between 09:00 and 11:00 by
decapitation. Trunk blood was collected and after clotting it was
centrifuged at 3,000 rpm for 15min. The serum was aliquoted
and stored at −80◦C avoiding freeze-thaw cycles. Peripheral
glucose levels were measured by using a Freestyle Optimum Neo
glucometer (Abbott, Witney, UK).

After decapitation, hypothalami, defined rostrally by the optic
chiasm and caudally by the anterior margin of the mammillary
bodies, were dissected and then frozen at −80◦C. The inguinal
adipose depot (subcutaneous adipose tissue; SCAT) and the
perigonadal adipose depot (visceral adipose tissue; VAT) were
dissected and weighed. The amount of each adipose tissue depot
is expressed as percentage of body weight [weight (mg) relative to
body weight (g)].
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TABLE 1 | Composition of the diets employed; normal rat chow, low fat diet

(LFD), high fat diet (HFD).

Chow LFD HFD

ENERGY PROVIDED BY (kcal/g)

Protein 16.8 18 18.1

Fat 6.6 10.2 61.6

Carbohydrates 76.6 71.8 20.3

INGREDIENTS (%)

Protein 14.3 16.9 23.1

Fat 2.5 4.3 34.9

Lard – 1.9 31.66

Cholesterol (ppm) – 18 301

Omega-3 FA 0.11 0.19 0.39

Saturated FA 0.52 1.14 13.68

Monounsaturated FA 0.53 1.3 14

Polyunsaturated FA – 1.59 –

Carbohydrates 65.2 67.4 25.9

Sucrose 0.94 33.13 8.85

Starch/maltodextrin/dextrin 50.6 34.16 16.15

Fiber 3.7 4.7 6.5

ELISA and Colorimetric Assays
Serum levels of free IGF1 (AnshLabs, Webster, Texas, USA),
total IGF1 (Mediagnost, Reutlingen, Germany), IGF2 (BlueGene,
Shangai, China), IGFBP2 (Mediagnost), IGFBP3 (Mediagnost),
IGFBP5 (BlueGene), PAPP-A2 (BlueGene), insulin (Millipore,
Burlington, Massachusetts, USA), and leptin (Millipore)
were quantified by ELISA following the manufacturer’s
instructions. Non-esterified fatty-acids (NEFA) (Wako
Diagnostics, Richmond, Virginia, USA) and triglycerides
(Spin React, Girona, Spain) were measured by colorimetric
assays as described by the manufacturers.

Protein and RNA Extraction
Protein and RNA extraction from hypothalami was performed
by using an RNeasy Plus Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. After tissue lysis
and DNA elimination, 70% ethanol was mixed with the sample,
and then placed in an RNeasy spin column and centrifuged.
Protein was isolated from the same tissues by collecting the
first elution from the RNeasy R© Mini Spin columns. The
eluted volume was mixed with 4 volumes of cold acetone and
stored O/N at −20◦C. Samples were centrifuged at 3,000 rpm
at room temperature for 10min and the acetone removed.
The pellets were resuspended in a CHAPS hydrate (Sigma-
Aldrich, Darmstadt, Germany) solution containing 7Murea, 2M
thiourea, 4% CHAPS, 0.5% 1MTris pH 8.8, in distilled water and
stored at−80◦C until used. The Bradford method was employed
for protein quantification by using Protein Assay Dye Reagent
Concentrate (Bio-Rad Laboratories, Hercules, California, USA).

Western Blotting
For Western blotting, 20–40 µg of protein, depending upon the
target protein to be analyzed, were resolved in SDS-denaturing

polyacrylamide gels. Proteins were transferred to previously
activated PVDF membranes at 350mA for 90 min.

Non-specific binding was blocked by incubating with 5% non-
fat dried milk or bovine serum albumin (BSA, phosphorylated
proteins) in TBS-T [Tris-buffered saline and 0.1% (v/v) Tween
20], which was also used for preparing the primary and
secondary antibody solutions. The antibodies and their dilutions
are shown in Table 2. Clarity Western ECL Substrate (Bio-Rad
Laboratories) was employed to visualize the chemiluminiscent
signal by ImageQuant Las 4000 Software (GE Healthcare Life
Sciences, Barcelona, Spain). Each protein was normalized to actin
levels, or total protein levels for phosphorylated proteins, in the
same sample.

Real Time qPCR
For RT-PCR, 0.5–1µg of RNA was retro-transcribed to cDNA by
using a High-capacity cDNA reverse transcriptase kit (Applied
Biosystems, Carlsbad, California, USA) or NZY First-Strand
cDNA Synthesis Kit (NZY Tech, Lisbon, Portugal). TaqMan
probes (Table 3) were used for RT-PCR in an ABI PRISM 7000
or QuantStudio 3 Real-Time PCR System (both from Applied
Biosystems). Phosphoglycerate kinase 1 (Pgk1) and 18S (Rps18)
were used as endogenous housekeeping controls.

For the mathematical analysis, the 11CT method was
employed with expression of the housekeeping gene used as
the endogenous control. Relative levels of expression were
determined by normalizing the results to levels in the male
chow group.

Statistical Analysis
Data are presented as mean ± SEM. Statistics was performed
using SPSS 15.0 software. Two-way ANOVA with Bonferroni as
the post-hoc test was used in each case, with sex and diet used
as factors. Pearson correlation coefficient was also calculated to
assess the linear correlation between variables. Values of p < 0.05
were considered significant.

RESULTS

Body Composition
There was an effect of sex [F(1, 35) = 575.9, p< 0.001], with males
weighing more than females regardless of diet. Short-term HFD
intake induced body weight gain, but exclusively in males [F(2, 17)
= 4.9, p < 0.05; Table 4].

The amount of VAT [F(1, 35) = 24.1, p < 0.01] and SCAT
[F(1, 35) = 10.2, p < 0.01] were affected by sex, with males
having a greater percentage of adipose tissue in both depots
compared to females. No dietary influence was seen on either of
these parameters.

An effect of sex was observed on the number of kcal consumed
per rat [F(1, 17) = 31.8, p< 0.001;Table 4], withmales consuming
more energy than females regardless of diet. In addition, diet
had an overall effect on this parameter [F(2, 17) = 3.7, p = 0.05].
When caloric intake was adjusted according to body weight there
continued to be a sex effect [F(1, 17) = 13.3, p < 0.01], but in this
case females had a higher energy intake. There was also an effect
of diet [F(2, 17) = 4.0, p < 0.05]. Energy efficiency, expressed as
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TABLE 2 | Antibodies used for Western blotting.

Antibody Type Dilution Host Commercial

source

Reference

Actin Monoclonal 1:5,000 Mouse NeoMarkers 1295-P1

AKT Polyclonal 1:1,000 Goat Santa Cruz sc-1619

ERK Monoclonal 1:1,000 Mouse Santa Cruz sc-135900

GAPDH Polyclonal 1:4,000 Rabbit Sigma-Aldrich #G9545

GFAP Monoclonal 1:3,000 Mouse Sigma-Aldrich G-3893

Iba1 Polyclonal 1:1,000 Rabbit Synaptic Systems 234003

IRS1 Polyclonal 1:500 Rabbit Millipore #06-248

JNK Monoclonal 1/1,000 Mouse Santa Cruz sc-1648

pAKT (Ser 473) Polyclonal 1:1,000 Rabbit Promega G7441

pERK Polyclonal 1:1,000 Rabbit Cell Signaling #9101

PI3K p110β Polyclonal 1:1,000 Rabbit Santa Cruz sc-602

pIRS1 (Ser 789) Polyclonal 1:750 Rabbit Cell Signaling #2389

pJNK Polyclonal 1:3,000 Rabbit Promega V7932

α-goat HRP conjugated Polyclonal 1:2,000 Rabbit Thermo Fisher #31402

α-mouse HRP conjugated Polyclonal 1:2,000 Goat Invitrogen #31430

α-rabbit HRP conjugated Polyclonal 1:2,000 Goat Dako P0448

AKT, protein kinase B; ERK, extracellular signal-regulated kinases; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GFAP, Glial fibrillary acidic protein; Iba1, Ionized calcium binding

adaptor molecule 1; IRS1, insulin receptor substrate 1; PI3K, phosphatidylinositol 3-kinases; JNK, c-Jun N-terminal kinases; HRP, horseradish peroxidase.

TABLE 3 | List of Taqman probes used for RT-PCR.

Gene Reference

Agouti-related peptide (Agrp) Rn01431703_g1

Cocaine- and amphetamine-regulated transcript (Cart) Rn00567382_m1

Insulin-like growth factor 1 (Igf1) Rn99999087_m1

Insulin-like growth factor 1 receptor (Igf1r) Rn01477918_m1

Insulin-like growth factor 2 (Igf2) Rn01454518_m1

Insulin-like growth factor 2 receptor (Igf2r) Rn01636937_m1

Insulin-like growth factor-binding protein 1 (Igfbp1) Rn00565713_m1

Insulin-like growth factor-binding protein 2 (Igfbp2) Rn00565473_m1

Insulin-like growth factor-binding protein 3 (Igfbp3) Rn00561416_m1

Insulin-like growth factor-binding protein 4 (Igfbp4) Rn01464112_m1

Insulin-like growth factor-binding protein 5 (Igfbp5) Rn00563116_m1

Neuropeptide Y (Npy) Rn01410145_m1

Pregnancy-associated plasma protein A (Pappa) Rn01458295_m1

Phosphoglycerate kinase 1 (Pgk1) Rn00821429_g1

Pro-opiomelanocortin (Pomc) Rn00595020_m1

18S (Rps18) Rn01428915_g1

Stanniocalcin 1 (Stc1) Rn00579636_m1

Stanniocalcin 2 (Stc2) Rn00573702_m1

grams of weight gained per kcal consumed, was sex dependent
[F(1, 17) = 44.1, p < 0.001] with males having a higher index of
energy efficiency than females.

Kilocalories from fat were affected both by sex [F(1, 17) = 8.4, p
< 0.05] and diet [F(2, 17) = 126.5, p < 0.001], with an interaction
between these factors [F(2, 17) = 4.9, p < 0.05]. As expected, HFD
rats consumed more kcal from fat compared to chow and LFD

animals (p < 0.001). Moreover, fat consumption on the LFD was
also higher than on the chow diet in both sexes (p < 0.001).

Serum Levels of Metabolic Factors and IGF
Family Members
There was an overall effect of sex on serum leptin [F(1, 35) = 22.4,
p < 0.001], insulin [F(1, 34) = 18.6, p < 0.001], and triglyceride
[F(1, 35) = 15.9, p < 0.001] levels, as well as HOMA-IR index
[F(1, 33) = 15.3, p< 0.01], with males having overall higher values
than females in all cases (Table 4). There was no effect of either
sex or diet on glycemia or non-esterified fatty acids (NEFA) levels
(Table 4).

Males had overall higher serum levels of free IGF1 [F(1, 35)
= 67.6, p < 0.001; Figure 1A] and total IGF1 [F(1, 35) = 15.7, p
< 0.001; Figure 1B] than females, with no dietary effect found.
On a chow diet males had higher levels of IGF2 than females on
the same diet [F(1, 9) = 6.2, p < 0.05; Figure 1C]. In males, IGF2
levels were lower on the HFD compared to chow [F(2, 15) = 3.6,
p < 0.05]. In contrast, in females IGF2 levels were increased after
LFD consumption compared to both chow and HFD [F(2, 14) =
5.9, p < 0.05], with this resulting in females having higher levels
than males when on the LFD [F(1, 10) = 5.2, p < 0.05].

There was an effect of diet [F(2, 35) =3.6, p < 0.05; Figure 1D]
and sex [F(1, 35) = 24.9, p < 0.001] on serum IGFBP2 levels,
as well as an interaction between sex and diet [F(2, 35) = 7.0,
p < 0.01]. Females had higher levels than males when on
chow [F(1, 11) = 16.6, p < 0.01] or a HFD [F(1, 11) = 13.4,
p < 0.01]. In females, serum IGFBP2 levels were decreased
after LFD consumption compared to both chow and HFD
[F(2, 17) = 5.6, p < 0.05].

Males had overall higher circulating IGFBP3 [F(1, 35) = 53.2,
p < 0.001; Figure 1E] and IGFBP5 [F(1, 35) = 15.4, p < 0.001;
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TABLE 4 | Effects of 1 week on a high fat diet (HFD), low fat diet (LFD), or normal rat chow on body composition, glycemia, serum levels of insulin, Homeostatic Model

Assessment for Insulin Resistance (HOMA-IR), leptin, non-esterified fatty-acids (NEFA) and triglycerides, and energy intake in male and female rats.

Chow males HFD males LFD males Chow females HFD females LFD females Sig.

Body weight (g) 348.3 ± 12.0 359.5 ± 9.9 340.5 ± 2.7 186.7 ± 6.2 202.2 ± 6.1 199.0 ± 6.5 a, p < 0.001

Weight gain (%

baseline)

7.8 ± 0.5 9.5 ± 0.3# 8.2 ± 0.3 4.2 ± 0.6 6.3 ± 1.0 7.7 ± 1.4 a, p < 0.01

Total kcal/rat 482.5 ± 31.3 621.4 ± 80.9 556.5 ± 10.7 328.5 ± 17.5 398.7 ± 27.2 394.8 ± 20.8 a, p < 0.001

b, p = 0.05

Kcal/rat/day/100 g

body weight

19.4 ± 1.9 23.9 ± 2.7 22.5 ± 0.4 24.1 ± 0.2 27.1 ± 0.7 27.2 ± 0.3 a, p < 0.01 b,

p < 0.05

Kcal from fat (total) 28.5 ± 1.8 378.4 ± 49.5# 56.1 ± 0.4 20.1 ± 0.9@ 256.2 ± 7.3# 41.1 ± 1.8#;@ p < 0.001

Energy efficiency (%) 5.5 ± 0.3 5.4 ± 0.8 4.9 ± 0.3 2.5 ± 0.1 3.0 ± 0.2 3.7 ± 0.4 a, p < 0.001

Visceral adipose

tissue (%)

1.42 ± 0.18 1.74 ± 0.31 1.57 ± 0.08 0.70 ± 0.02 1.03 ± 0.14 0.96 ± 0.13 a, p < 0.01

Subcutaneous

adipose tissue (%)

0.89 ± 0.10 1.01 ± 0.10 0.96 ± 0.09 0.62 ± 0.05 0.80 ± 0.12 0.74 ± 0.06 a, p < 0.01

Glycemia (mg/dl) 77.5 ± 3.4 74.7 ± 3.4 74.8 ± 3.9 78.5 ± 5.3 67.0 ± 3.0 76.0 ± 2.2 ns

Insulin (ng/ml) 4.25 ± 0.75 3.33 ± 0.33 3.09 ± 0.37 2.28 ± 0.25 2.14 ± 0.11 2.04 ± 0.22 a, p < 0.001

HOMA-IR 23.2 ± 4.5 14.7 ± 2.1 17.6 ± 2.9 13.1 ± 2.1 10.3 ± 0.9 11.1 ± 0.4 a, p < 0.01

Leptin (ng/ml) 3.25 ± 0.79 5.91 ± 1.14 3.99 ± 0.75 1.37 ± 0.11 1.88 ± 0.45 1.80 ± 0.46 a, p < 0.001

NEFA (mmol/l) 0.95 ± 0.09 1.04 ± 0.13 1.19 ± 0.12 1.00 ± 0.09 0.94 ± 0.06 1.19 ± 0.08 ns

Triglycerides (mg/dl) 74.4 ± 15.3 53.8 ± 4.9 69.4 ± 12.8 44.1 ± 9.4 20.0 ± 1.7 35.8 ± 9.2 a, p < 0.001

a, overall sex effect; b, overall diet effect; #different compared to chow rats of the same sex; @different between sexes on the same diet. ns, non-significant. n = 6, except for energy

intake where n = 3.

Figure 1F] levels than females, with no dietary effect found. On
the contrary, females had higher PAPP-A2 levels [F(1, 30) = 4.3, p
< 0.05; Figure 1G] in serum compared to males.

Hypothalamic Response to Dietary
Changes
We found no effect of sex or diet on hypothalamic IGF1
mRNA levels (Figure 2A). Hypothalamic IGF2 mRNA levels
were affected by diet [F(2, 35) = 12.6, p < 0.01; Figure 2B], with
an increase in response to LFD, reaching significance in males.
Diet also affected IGFBP2mRNA levels [F(2, 35) = 12.4, p< 0.001;
Figure 2C], which were increased by LFD intake with this being
significant in males. Despite no sex differences being observed on
a chow diet, relative expression of IGFBP2 in response to LFD
was higher in males than females (p < 0.05). There was a positive
correlation between the relative levels of hypothalamic IGF2 and
IGFBP2 mRNA (r= 0.882, p < 0.001; Figure 2D).

There were no differences between groups in the relative
hypothalamic mRNA levels of IGF-1R, IGF-2R, IGFBP1,
IGFBP3, IGFBP4, IGFBP5, PAPP-A, STC-1, or STC-2 (Table 5).

The relative mRNA levels of neuropeptide Y [NPY; F(2, 34)
= 9.6, p < 0.01; Figure 3A] and Agouti-related protein [AgRP;
F(2, 34) = 3.9, p < 0.01; Figure 3B] were affected by diet, with an
interaction between sex and diet [NPY: F(2, 34) = 5.1, p < 0.05;
AgRP: F(2, 34) = 4.9, p < 0.05]. These orexigenic neuropeptides
increased in response to LFD, but only in males [NPY: F(2, 16) =
10.4, p < 0.01; AgRP: F(2, 16) = 5.8, p < 0.05]. On a LFD, males
had higher levels of both NPY [F(1, 11) = 6.4, p < 0.05] and AgRP
[F(1, 11) = 9.5, p < 0.05] compared to females.

Proopiomelanocortin (POMC) mRNA levels showed no
significant changes (Figure 3C). There was an overall dietary
effect on cocaine and amphetamine-regulated transcript (CART)
mRNA levels [F(2, 34) = 4.7, p < 0.05; Figure 3D], with levels
increasing in animals of both sexes on a LFD.

To assess if gliosis and hypothalamic inflammation were
present, we analyzed glial fibrillary acidic protein (GFAP),
ionized calcium-binding adapter molecule 1 (Iba1) and c-jun
N-terminal kinase (JNK) activation. There was effect of diet on
GFAP levels [F(2, 35) = 4.1, p < 0.05; Figure 3E], with an increase
in animals after LFD consumption. There was no effect on Iba1
or pJNK levels (Table 6).

To determine whether activation of the insulin/IGF signaling
pathways in the hypothalamus was altered pIRS1, PI3K, pAKT
(Ser473), and pERK were analyzed. There was an effect of diet on
pERK levels [F(2, 34) = 3.9, p < 0.05; Figure 3F], with an overall
increase in animals on a LFD. No differences in pIRS1, PI3K, or
pAKT were observed (Table 6).

DISCUSSION

Here we show that there were not only sex differences in the IGF
system’s response to a short-term dietary change, but baseline
serum levels of all members of the IGF system studied were
significantly different betweenmale and female rats.We observed
higher levels of free IGF1, total IGF1, IGFBP3, and IGFBP5, as
well as insulin in males compared to females. The GH secretory
pattern differs between male and female rodents (32, 33) and
could underlie some of these sex differences in the IGF system.
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FIGURE 1 | Serum levels of free insulin-like growth factor (IGF)-1 (A), total

IGF-1 (B), IGF 2 (C), IGF binding protien (IGFBP) 2 (D), IGFBP3 (E), IGFBP5

(F), and pregnancy-associated plasma protein (PAPP-A)2 (G) in rats on a high

fat diet (HFD), low fat diet (LFD) or a chow diet for 1 week. **p < 0.01; ***p <

0.001. a, overall effect of sex. n = 6.

Males have been reported to have higher IGF1 and IGFBP3
levels than females (34, 35), as found here. However, Frystyk
and colleagues reported no sex differences in free IGF1 levels.
It is possible that the employment of different methodologies to
determine free IGF1 levels underlies this discrepancy in results.
Although males were found to have higher circulating levels of
most members of the IGF system, females had higher circulating
levels of PAPP-A2, which could promote the availability of IGF1
for the tissues. The sex differences in the GH-IGF system are
at least in part due to differences in sex steroid levels both
during development and adulthood (36–38) and underlie the

differences between males and females in growth and body size.
More recently, the IGF system has also been implicated in the sex
differences in the response to or propensity to develop different
pathologies, as well as longevity (39).

Baseline sex differences in body weight and metabolism were
observed, with males having a greater body weight, weight gain,
energy intake, energy efficiency, and circulating leptin levels
compared to females, as previously reported (40–42), as well as
higher serum triglycerides levels. After 1 week on a HFD we
found few effects on body weight or body composition, which
is in accordance with some previous studies in rodents (42, 43),
but not others (44). The LFD group was included in this study as
this diet has been widely used as a control group in diet-induced
obesity (DIO) models (26, 45, 46), but the higher content of
carbohydrates, which is largely composed of sucrose, compared
to HFD may also have metabolic effects. Neither diet affected
final body weight in either sex, although the percentage weight
gain in males on the HFD was significantly greater compared to
the other groups. This is in accordance with their higher energy
intake, as well as greater intake of kcals from fat compared to the
other groups. Circulating levels of leptin are directly correlated
with the amount of adipose tissue (47) and neither serum leptin
levels nor adipose content were modified here on this short-term
HFD. No changes in circulating levels of triglycerides, insulin or
leptin levels were seen on the short-term HFD, as reported by
others in mice (48).

The circulating IGF system is modified in human subjects
with obesity. Serum levels of free IGF1 and IGFBP3, but not
of total IGF1, are reported to be higher and IGFBP2 lower
(22, 49) in children with obesity compared to control children.
Serum IGF1 levels have also been reported to be higher when
visceral adipose tissue content is elevated although a direct
correlation of circulating IGF levels and BMI was not observed
(50), suggesting the possible relevance of adipose distribution. In
the study reported here, the lack of changes in IGF1 and IGFBP3
is probably due to the limited time of exposure to this diet and the
lack of adipose accumulation. Indeed, the observed changes in
the IGF system in obese subjects aremost likely explained by their
overall metabolic status rather than a direct response to specific
nutrients or a specific diet as studied here.

Circulating IGF2 levels were affected by the short-term dietary
changes, even though there was no significant modification in
body weight; moreover, these changes were different between
the sexes. In males, circulating IGF2 levels were reduced during
HFD consumption, with HFD having no effect on this parameter
in females. The response of this growth factor to metabolic
changes is less clear with circulating IGF2 levels reported to being
both reduced (51) and increased (52, 53) in obese compared
to non-obese men and women. Shandu et al. found that serum
IGF2 levels were reduced in subjects who gained weight during
the study compared to those who maintained or lost weight
and that lower serum IGF2 levels are negatively correlated with
the risk to gain weight (51). Thus, the observed reduction in
circulating IGF2 levels in males on the HFD could be a predictor
of potential weight gain and metabolic risk. This reduction in
IGF2 was not observed in females and this could be related
to the observation that young adult female rodents tend be
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FIGURE 2 | Relative mRNA levels of the insulin-like growth factor (IGF) system in the hypothalamus: IGF1 (A), IGF2 (B), IGF binding protien (IGFBP)2 (C), and the

correlation of relative hypothalamic mRNA levels of IGF2 and IGFBP2 (D). **p < 0.01; ***p < 0.001; ns, non-significant; HFD, high fat diet; LFD, low fat diet. n = 6.

TABLE 5 | Relative gene expression of members of the IGF system in the hypothalamus.

Chow males HFD males LFD males Chow females HFD females LFD females Sig.

IGF-1R 100.0 ± 12.2 106.2 ± 11.3 113.8 ± 10.0 110.6 ± 15.9 99.2 ± 9.0 133.1 ± 23.7 ns

IGF-2R 100.0 ± 14.3 95.5 ± 17.2 116.6 ± 12.6 99.6 ± 8.1 89.7 ± 16.0 109.2 ± 17.8 ns

IGFBP1 100.0 ± 10.5 122.3 ± 24.9 132.7 ± 17.1 126.5 ± 14.3 105.9 ± 15.9 120.7 ± 16.5 ns

IGFBP3 100.0 ± 13.2 97.7 ± 11.8 120.4 ± 14.9 105.7 ± 9.2 117.5 ± 14.3 128.5 ± 14.9 ns

IGFBP4 100.0 ± 23.7 91.4 ± 24.2 145.8 ± 25.1 94.7 ± 27.0 91.1 ± 13.8 119.0 ± 24.5 ns

IGFBP5 100.0 ± 19.4 91.6 ± 13.0 128.2 ± 16.7 86.2 ± 7.2 89.9 ± 12.6 121.9 ± 26.3 ns

PAPP-A 100.0 ± 6.5 104.4 ± 20.4 125.7 ± 21.1 109.8 ± 17.9 120.7 ± 22.7 116.8 ± 15.9 ns

STC-1 100.0 ± 12.2 101.3 ± 12.0 123.1 ± 21.5 121.6 ± 12.0 94.5 ± 13.4 115.2 ± 17.7 ns

STC-2 100.0 ± 18.2 105.8 ± 11.4 129.3 ± 15.3 98.9 ± 9.4 98.0 ± 11.5 121.3 ± 19.4 ns

Data are represented as mean ± SEM. ns, non-significant. HFD, high fat diet; LFD, low fat diet. n = 6.

more resistant to HFD-induced weight gain (54, 55), which is in
concordance with this growth factor possibly being an indicator
of early metabolic changes.

Circulating levels of IGF2 were also affected by LFD intake
and this also occurred in a sex specific manner. Rats of both
sexes given the LFD had a higher energy intake compared to
those on the chow diet, which is possibly due to the novelty
and/or palatability of the diet and thus increased consumption,

although increased energy intake of LFD compared to chow over
a longer time-period has also been reported in male C57 mice
(56) suggesting that this increase is not due only to novelty. In
contrast to the HFD, LFD increased circulating levels of IGF2 and
this effect was only observed in females. IGF2 participates in bone
growth, adipose tissue accumulation and glucose metabolism,
stimulating glucose uptake by adipocytes and acting directly
at the level of the pancreas (57–59). Thus, it is possible that
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FIGURE 3 | Relative mRNA levels of neuropeptide Y (NPY; A), Agouti related protein (AgRP; B), proopiomelanocortin (POMC; C) and cocaine and amphetamine

regulated transcript (CART; D) and protein levels of glial fibrillary acidic protein (GFAP; E) and phophorylated extracellular signal-regulated kinase (pERK; F) in the

hypothalamus of rats on a (HFD), low fat diet (LFD) or a chow diet for 1 week. These images are all from the same blot, but were not contiguous and for this reason

they are individualy placed in order of the experimental groups in the graph. **p < 0.01; ***p < 0.001; b, effect of diet, ns, non-significant. n = 6.
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TABLE 6 | Effects of 1 week on a high fat diet (HFD), low fat diet (LFD) or chow diet on the phosphorylation of proteins involved in insulin and IGF signaling in the

hypothalamus of male and female rats (n =6), as well as, Iba1: ionized calcium binding adaptor molecule 1 (Iba1), a marker of microglia and cell stress markers (JNK:

c-Jun N-terminal kinases).

Chow males HFD males LFD males Chow females HFD females LFD females Sig.

Iba1 100.0 ± 10.9 88.6 ± 12.0 97.1 ± 15.5 93.0 ± 14.1 90.9 ± 15.6 95.1 ± 18.5 n.s.

pAKT 100.0 ± 9.0 100.4 ± 8.3 103.6 ± 13.7 91.6 ± 11.1 87.8 ± 12.8 100.9 ± 20.6 n.s.

PI3KI 100.0 ± 13.1 151.9 ± 18.0 140.1 ± 14.3 155.3 ± 23.8 142.3 ± 15.1 119.1 ± 19.9 n.s.

pIRS1 100.0 ± 22.1 148.3 ± 21.8 183.0 ± 30.0 152.4 ± 31.2 132.4 ± 33.3 196.7 ± 55.7 n.s.

pJNK 100.0 ± 1.1 104.9 ± 3.0 104.9 ± 5.9 101.9 ± 2.7 99.0 ± 1.8 98.6 ± 4.5 n.s.

Phosphorylated proteins were normalized with the total form of the protein. ns, non-significant.

the high sucrose content of the LFD is involved in stimulating
this rise in IGFBP2. LFD intake also decreased serum IGFBP2
levels, and again this effect of LFD was only found in females.
Plasma IGFBP2 levels are reported to be negatively correlated
with BMI (49, 60), as well as with adipogenesis and lipogenesis
(61). IGFBP2 is the second most abundant IGF-binding protein
in the circulation (62, 63) and has been suggested to be protective
against obesity and to improve glucose tolerance on a HFD
(27, 64). IGFBP2 binds IGF2 with a slight preference over
IGF1 [reviewed by (65)] and the decrease in IGFBP2 in LFD
females may lead to increased IGF2 availability. These changes
in circulating IGF2 and IGFBP2 in response to LFD are sex-
dependent and could be involved in the differential impact
of poor dietary habits on the homeostatic circuitry regulating
metabolism (37, 66).

In the hypothalamus we found no effect of short-term dietary
challenge on the mRNA levels of IGF1. In contrast, both IGF2
and IGFBP2 mRNA levels were increased in males after LFD
intake. The metabolic effects of IGF2 and IGFBP2 in the brain
are largely unknown, but our results suggest that these factors
may also participate in metabolic control in the hypothalamus.
The fact that the LFD had more effects on the IGF system
than did the HFD, at least during short-term intake, raises
two important considerations. First, studies where a LFD is
used as a control diet for HFD intake do not necessarily
reflect changes in response to high fat intake, but could reflect
what is occurring in response to the LFD. Thus, comparison
to a normal chow diet is important. Secondly, the question
becomes why does the LFD induce these changes? Although
the LFD and chow diet used here have similar percentages of
carbohydrates, proteins and fats, the carbohydrate composition
is quite different. The amount of sucrose is considerably higher
(33.1%) in the LFD compared to the chow (0.9%) or HFD (8.9%).
Thus, the possibility that the changes in IGF2 and IGFBP2 are
related to specific nutrients, such as sucrose, deserves further
investigation. Previous studies indicate sex specific metabolic
responses to sucrose intake (67) and even though no effect
was observed on body weight in either sex after 2 weeks
of a high-sucrose diet, Busserolles and colleagues found that
females were more resistant to the pro-oxidant effects of this
diet (68).

Excess HFD consumption can lead to important changes in
the brain, promoting gliosis and inflammatory responses (69,
70). This involves astrocyte and microglia activation, which is

initially protective (71, 72) but when prolonged can become
damaging (73), leading to neuronal death in the arcuate nucleus
(74). There was an overall effect of diet on hypothalamic GFAP
levels, with LFD inducing a slight increase in both males and
females, but no changes in the levels of the microglial marker
Iba1 or activation of inflammatory pathways were found in
response to either diet. Although HFD is reported to induce
hypothalamic gliosis/inflammation in less than a week, which
then wains only to reappear a couple of weeks later (70).
Other studies report that at 1 week of HFD intake no signs
of hypothalamic gliosis/inflammation can be detected (75, 76),
similar to that observed here. It is possible that the initial
protective glial/inflammatory reaction to excess fat intake begins
to switch after ∼1 week of continuous exposure to this toxic
diet, transitioning from a protective to a harmful response. This
hypothesis obviously needs further investigation.

The mRNA levels of NPY and AgRP increased after LFD
consumption, but only in males and with no effect of HFD. There
were no changes in POMC mRNA levels in response to either
diet. Insulin suppresses the hypothalamic orexigenic circuitry to
reduce food intake (77) and has been shown to decrease both
NPY and AgRP mRNA levels in hypothalamic cells in vitro (78).
As IGF1 and IGF2 have “insulin-like” effects it is possible that
they are involved in the modulation of metabolic neuropeptides.
Indeed, IGF1 has been shown to modulate POMC mRNA levels
(31), but whether IGF2 has metabolic effects at the hypothalamic
levels remains unknown. It is possible that the higher expression
of both orexigenic neuropeptides after LFD consumption in
males is due to the higher sucrose content of this diet. We
previously reported that normal male Wistar rats given a 33%
sucrose solution instead of water for 2months had increasedNPY
and AgRP mRNA levels, with no changes in POMC or CART
mRNA expression (79).

One of the novel observations reported here is that there
are sex specific changes in IGF2 and IGFBP2, both systemically
and centrally, in response to short-term dietary changes. Sex
differences in the response to metabolic challenges and the
propensity to become obese, as well as to develop complications
associated with obesity, have been widely reported (37, 66, 80).
The metabolic responses to manipulations of both IGF2 and
IGFBP2 have also been shown to be different between males
and females. For example, in IGFBP2 KOs males becoming
overweight in adulthood while this does not occur in females,
at least in young adults (81). Hypothalamic IGF2 expression
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is upregulated in the female offspring of mothers ingesting a
HFD, while this is not observed in males (82). Both IGF2
and IGFBP2 expression levels are modified by estrogens in
various tissues including the brain (83–85), suggesting that the
sex steroid environment participates in the control of these
two factors. Moreover, there is a clear interaction between
estrogens and the IGF system (86) and these two hormonal
systems are sexually dimorphic, as well as their interactions.
The physiological meaning or outcome of these sex differences
in the IGF system and their effects on metabolism have yet to
be determined, but it is clear that studies aimed to understand
metabolic disarray and in the search for treatments of obesity
must take this into consideration.

In conclusion, short-term LFD intake induced more changes
in both the central and peripheral IGF system than did HFD, with
these effects being different in males and females. As bodyweight
was not changed in response to either diet, it is possible that the
observed changes in the IGF system are related to the dietary
composition. This possibility deserves further investigation.
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