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COVID-19, caused by SARS-CoV-2, is characterized by pneumonia, lymphopenia,

exhausted lymphocytes and a cytokine storm. Several reports from around the world

have identified obesity and severe obesity as one of the strongest risk factors for

COVID-19 hospitalization and mechanical ventilation. Moreover, countries with greater

obesity prevalence have a higher morbidity and mortality risk of developing serious

outcomes from COVID-19. The understanding of how this increased susceptibility of

the people with obesity to develop severe forms of the SARS-CoV-2 infection occurs

is crucial for implementing appropriate public health and therapeutic strategies to

avoid COVID-19 severe symptoms and complications in people living with obesity.

We hypothesize here that increased ACE2 expression in adipose tissue displayed by

people with obesity may increase SARS-CoV-2 infection and accessibility to this tissue.

Individuals with obesity have increased white adipose tissue, which may act as a reservoir

for a more extensive viral spread with increased shedding, immune activation and

pro-inflammatory cytokine amplification. Here we discuss how obesity is related to a

pro-inflammatory and metabolic dysregulation, increased SARS-CoV-2 host cell entry

in adipose tissue and induction of hypercoagulopathy, leading people with obesity to

develop severe forms of COVID-19 and also death. Taken together, it may be crucial to

better explore the role of visceral adipose tissue in the inflammatory response to SARS-

CoV-2 infection and investigate the potential therapeutic effect of using specific target

anti-inflammatories (canakinumab or anakinra for IL-1β inhibition; anti-IL-6 antibodies for

IL-6 inhibition), anticoagulant or anti-diabetic drugs in COVID-19 treatment of people with

obesity. Defining the immunopathological changes in COVID-19 patients with obesity can

provide prominent targets for drug discovery and clinical management improvement.

Keywords: adipose tissue, COVID-19, Obesity, SARS-CoV-2, hypercoagulopathy, ACE-2

INTRODUCTION

On December 2019, a series of pneumonia cases without a recognized etiology was reported
in Wuhan, a central China city (1). Rapidly spreading throughout the globe, Coronavirus
disease (COVID-19) was recently discovered to be caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). The Word Health Organization (WHO) declared SARS-CoV-2
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an international public health emergency on January 2020
and pandemic on March 2020. On June 25, 2020, ∼9,527,124
COVID-19 cases were confirmed in the world and 484,972 deaths
were considered to be caused by this disease. As a means of
decelerating disease progression, health authorities advise their
citizens to wear masks, wash hands (2) and increase in public and
physical distancing (3).

COVID-19 symptoms may or may not include fever, fatigue,
dry cough, dyspnoea, anosmia, dysgeusia, and diarrhea (4–
6). Respiratory symptoms are believed to be caused by the
occurrence of diffuse alveolar damage, tissue fibrosis, and chronic
inflammatory infiltrates (7). Some of the COVID-19 patients
can often also present with prominent changes in coagulation
function (8). Common comorbidities observed in COVID-19
patients are hypertension, cardiovascular disease, type 2 diabetes
(9), chronic obstructive pulmonary disease (10), and obesity (11).

Obesity is a major public health issue globally affecting a
half a million people (12). As an inducer of cardiometabolic
dysfunction, obesity is associated with increased risk for many
diseases, such as Type 2 Diabetes (T2D) (13), dyslipidemia (14),
hypertension (12), coronary disease (15), and coagulopathy (16).
Chronic inflammation, defined as a low grade but persistent
process, disrupting homeostasis and driving organ dysfunction
(17). During obesity, chronic inflammation is not only associated
with metabolic disturbances and decrease in heart health, but
also impacts immune system function (18, 19). In this review
we present evidence that indicates that people with obesity are
more susceptible to develop severe forms of COVID-19 and
higher mortality due to intrinsic alterations in blood coagulation
parameters, inflammation, and immune response.

INCIDENCE OF COVID-19 IN PEOPLE
WITH OBESITY

Obesity represents a risk factor for many chronic diseases,
including hypertension, dyslipidemia, diabetes mellitus type 2
(T2DM), cardiovascular disease (20), and several types of cancer
(21). As a consequence of excessive or abnormal fat tissue
accumulation, overweight and obesity can alter innate and
adaptive immune responses, making the immune system more
prone to infections and less responsive to vaccinations, antivirals,
and antimicrobial drugs (22). There is growing evidence that
implicates obesity as one of the main risk factors for triggering
severe forms of COVID-19 and poor outcomes (23).

Several studies have reported that obesity may affect the
severity of COVID-19, with a direct correlation between
increasing BMI and the proportion of patients with severe
COVID-19 (24). It has been reported that comorbidities
related to obesity are also correlated with increased COVID-
19 mortality and morbidity, such as cardiovascular disease
(22.7%), hypertension (39.7%), diabetes (19.7%), respiratory
disease (7.9%), and cancers (1.5%) (25).

Several reports have shown a significant incidence of
people with obesity presenting higher COVID-19 mortality and
morbidity in different countries. According to WHO data, the
United States of America ranks first in the world in terms of

prevalence of obesity (36.2%), overweight (31.7%), as well as in
the number of total deaths from COVID-19. Some American
studies have indicated obesity as as important comorbidity deeply
related to the development of severe forms of COVID-19 (26,
27). In a study developed in a large academic hospital in New
York City investigating 3,615 individuals who tested positive
for COVID-19, 775 (21%) had BMI values among 30–34 kg/m2

and 595 patients (16% of the cohort) displayed BMI values
higher than 35 kg/m2 (28). Diabetes and obesity also increased
the risk of COVID-19 infection in Mexico (29). In a French
hospital that evaluated 124 patients admitted to intensive care
by COVID-19, it was found that 28.2% of the cases had a BMI
> 35 kg/m2 and required invasive mechanical ventilation (30).
In Spain, from 48 critically ill COVID-19 patients admitted
to ICU, 48% presented obesity and 44% arterial hypertension
as most prevalent comorbidities (31). In Italy, the severity of
COVID-19 and the tension in the health system related to the
disease have been remarkable, with an estimated fatality rate of
7.2% (32). Recent Italian studies have highlighted the role of
comorbidities in their COVID-19 cases, underlying obesity in
the severity of this disease (33). Despite the low prevalence of
obesity in China, the severely ill COVID-19 patients were older
and had comorbidities, such as obesity and diabetes mellitus
more often than non-severely ill individuals (34). In Republic
of Korea, clinical data of COVID-19 early cases were collected
and demonstrated that of the 28 hospitalized patients, 17.9% had
one ormore coexistingmedical conditions being obesity themost
common comorbidity (35).

Therefore, considering that obesity is one of the strongest
risk factors for COVID-19 severity, it is important to better
understand the correlation between obesity and COVID-19 and
the mechanisms that could be involved in this process. In
this way, it is crucial to analyze deeper this issue, focusing
on the association among SARS-CoV-2 host cell entry, adipose
tissue biology, and all the inflammatory, vascular and metabolic
dysfunctions that may define COVID-19 progression.

SARS-CoV-2 HOST CELL ENTRY

Genomic analyses demonstrated that SARS-CoV-2 is 96%
identical at the whole-genome level to a bat coronavirus SARS-
CoV (36). It has been demonstrated that host cell entry of SARS-
CoV-2 depends on the same receptor used by SARS-CoV to entry
host cell, the Angiotensin-converting enzyme 2 (ACE2) (36, 37).
ACE2 receptor was first described in 2000 (38, 39) and it was
associated with multiple pathophysiological processes, including
the pathogenesis of cardiovascular and renal diseases such as
hypertension, myocardial infarction and heart failure (40), acute
lung injury (ALI) (41), and acute respiratory distress syndrome
(ARDS) (42, 43).

ACE2 gene contains 18 exons and 20 introns, maps to Xp22
chromosome and spans 40 kb of the genomic DNA (44). ACE2
protein is a type I transmembrane glycoprotein of 805 amino
acids (∼120 kDa), containing a single extracellular catalytic
domain whose sequence is 41.8% identical with the domain
of angiotensin-converting enzyme (ACE) (43). ACE2 is part of
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the renin-angiotensin-aldosterone system (RAAS), which is a
peptidergic system that acts in the homeostatic regulation of the
renal and cardiovascular systems, regulating extracellular fluid
volume (40). Renin (an aspartyl proteinase secreted by kidney
into the circulation) cleaves its starting substrate angiotensinogen
to angiotensin I, which is hydrolyzed by ACE to angiotensin II.
ACE2 cleaves angiotensin II to Angiotensin 1-7. Angiotensin II
promotes inflammation, oxidative stress, vasoconstriction, salt
and water reabsorption (45). Consequently, increased ACE2
activity can shift the balance to the Angiotensin 1-7 axis, leading
to disease and inflammation protection.Moreover, ACE2 is a zinc
metalloprotease multifunctional enzyme that can act on several
vasoactive peptides (46), regulating important cardiovascular and
renal functions. Therefore, ACE2 has an ambiguous role acting
as both an important physiological receptor and a SARS-CoV-2
backdoor (47).

SARS-CoV-2 bind to its host cell receptor is a critical initial
step for this virus entry into target cells. SARS-CoV-2 use the
homotrimeric spike glycoprotein S on the viral envelope to bind
their cellular receptors, which facilitates viral attachment to the
surface of target cells, inducing endocytosis of virion particle,
catalyzing the fusion between viral and host cell membranes,
and allowing the entry of the virus genome into the host cell
cytoplasm. Each monomer of trimeric S protein is about 180
kDa, and contains two subunits, S1 and S2. S1 mediates viral
attachment to host cell and S2 intermediates membrane fusion.

SARS-CoV-2 entry in host cell requires S protein priming
by cellular proteases, such as the endosomal cysteine proteases
cathepsin B and L (CatB/L) and the cellular and the serine
protease TMPRSS2 (37). SARS-CoV-2 entry into susceptible
cells is a complex process that requires the combined action
of receptor-binding and proteolytic processing of the S protein
to promote an efficient virus-cell fusion (48), followed by
endosomal acidification (Figure 1). Contrasting SARS-CoV, cells
infected with SARS-CoV-2 form typical syncytium, suggesting
that SARS-CoV-2 may mainly use the plasma membrane fusion
pathway to enter and replicate inside host cells (49). This plasma
membrane fusion pathway is more efficient for most viruses since
it may delay host cell antiviral immunity activation compared to
the viral and endosomal membrane fusion pathway (50, 51).

Considering the recent findings showing that SARS-CoV-2
mainly uses TMPRSS2 for plasma membrane fusion, clinically
proven inhibitors of the cellular serine protease TMPRSS2
might constitute an option for blocking SARS-CoV-2 host cell
membrane entry. These results have important implications
for our understanding of SARS-CoV-2 transmissibility and
pathogenesis and reveal a target for therapeutic intervention.

Several studies have demonstrated how SARS-CoV-2 uses
the human ACE2 as the main receptor to viral entry into
host cell (36, 48, 52). Overexpression of human ACE2 led to
more severe disease in a mouse model of SARS-CoV infection,
indicating that viral entry into host cells is a key step for the
establishment and progression of this disease (53). Moreover,
Zhou and colleagues demonstrated that overexpressing human
ACE2 in HeLa cells allowed increased SARS-CoV-2 infection and
replication (36). ACE2-expressing cells may act as target cells

and are susceptible to SARS-CoV-2 infection (54) and S protein-
targeted neutralizing antibody may be prominent antiviral tools
against SARS-CoV-2 infection. Several cellular types have been
identified with high ACE2 expression including myocardial cells,
type II alveolar cells, proximal tubule cells of the kidney, ileum
and esophagus epithelial cells, and bladder urothelial cells (54),
epithelial cells of oral mucosa (55), nasal epithelial cells (56), and
interestingly, adipocytes (57).

SARS-CoV-2 AND ADIPOSE TISSUE

In patients with obesity, in which white adipose tissue (WAT) is
exacerbated and brown adipose tissue (BAT) is decreased (58),
RAAS is chronically activated and predisposes the individual to a
plethora of dysfunctions, including heart and kidney pathologies.
These alterations are associated not only with high blood pressure
(59) but also related to insulin signaling in peripheral tissues
(60), inflammatory status in pancreas and death profile of β cells
(61). Increased oxidative stress is believed to be the root of the
cytotoxic effects induced by Ang II and aldosterone during RAAS
aberrant activation (62). The resulting insulin resistance acts as a
driving force for the progression of cardiometabolic syndrome,
commonly associated with obesity (63).

The counterbalance for this blood pressure-increasing action
of RAAS is the alternative pathway, which consists in the
agonism of the G-protein-coupled Mas receptor by Ang-(1-
7). This compound is generated by the enzymatic activity of
ACE2 in both AngI and AngII. Ang-(1-7) induces vasorelaxation
and cardioprotection (64). ACE2/Mas axis induction associates
with BAT activation and WAT browning, processes that are
related to anti-obesity effects (65). Due to many alterations in
the physiology during obesity, including RAAS dysfunction, BAT
tend to present decreased size and activation, increasing the
chance of comorbidities (58).

RAAS components, including ACE2, are expressed in
adipocytes and are crucial for their glucose and lipid metabolism
homeostasis (63). In vivo experiments in mice showed that
high-fat diet (HFD)-induced obesity is associated with increased
adipose tissue ACE2 expression (40). Thus, we hypothesize
here that increased ACE2 expression in adipose tissue displayed
by people with obesity may increase SARS-CoV-2 infection
and accessibility to this tissue. Moreover, obesity causes
hyperglycemia via insulin resistance whereas growing evidence
demonstrates that SARS-CoV-2 may cause hyperglycemia as well
by infecting and killing B-cells (66). In addition, some drugs often
used for the treatment of patients with obesity complications
(such as antihypertensives, statins, thiazolidinediones) can up-
regulate ACE2, thus could potentially increase the viral up-
take (67–70).

Obesity is characterized by dysfunction of immune
system (19). During obesity, systemic inflammatory status
is influenced by intense pro-inflammatory cytokines secretion
(71), increasing the chance of cytokine storm occurrence
(72). In addition, obesity associates with Type I Interferon
(IFN) decreased secretion, key players in antiviral immune
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FIGURE 1 | SARS-CoV-2 host cell entry cell depends on the angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. The virus uses the homotrimeric peak

glycoprotein S present on viral envelope surface to physically interact with its cell receptor, which facilitates binding to the surface of target cells, enables endocytosis

of the virion particle and entry of the viral genome into the host cell cytoplasm. This cell entry process requires priming of protein S by cellular proteases, such as the

serine protease TMPRSS2. After endosomal acidification, viral proteins are synthesized in host ER for viral replication and virion particles shedding occurs through

Golgi apparatus. ACE2 is expressed in adipocytes and adipose tissue may act as a reservoir for SARS-CoV-2.

response (73). Human studies showed that H1N1-infected
patients with obesity stayed longer under ICU care (74), and
investigations with Diet-induced obese (DIO) murine model
informed that over nutrition impaired antiviral response against
Influenza (75). Thus, individuals with obesity present immune
system dysfunction that increase respiratory viral infection
susceptibility (19).

It is currently known that adipocytes (76), which are the main
cellular components of adipose tissue, and lung cells are targets
for SARS-CoV-2 infection (77). Influenza A also presents shared
tropism for lungs (78) and WAT (76). In an elegant study, Maier
and colleagues showed that symptomatic adults with obesity shed
influenza A virus more than 40% longer than non-obese adults.
They suggested that WAT dysregulation, common in individuals
with obesity, is related to prolonged viral shedding duration (76).

The alarming COVID-19 morbidity and mortality rates of
individuals affected with heart pathologies may be related to
epicardial adipose tissue (EAT). Classified as a visceral AT,
EAT may act as a SARS-CoV-2 reservoir, prolonging viral
shedding to cardiac tissue. In addition, EAT obtained from
subjects with obesity tend to present higher levels of IL-6
and TNF-α (79), cytokines abundantly secreted in COVID-19
patients. Furthermore, the ACE2/Mas axis dysfunction, observed

in individuals with obesity and in subjects affected by COVID-19,
associates with EAT inflammation, probably due to Ang(1-7)
level decrease, once this protein is associated with diminished
proinflammatory macrophage polarization in EAT (80). Once
metabolic syndrome, common in individuals affected by obesity,
is associated with increased amounts of EAT (81), alterations
in EAT amount and inflammatory status may be suggested
to influence COVID-19 cardiac morbidity in individuals living
with obesity. EAT measurement may play a crucial role
in the management of COVID-19 progression in cardiac
patients (82).

In a study investigating the influence of obesity in the
prognosis of asthma patients, Elliot and others showed that
individuals affected by obesity display WAT deposits in large
airway walls. They found that BMI value impacts proportionally
WAT deposits size, which favors both airway wall thickness
increase and neutrophil infiltration within pulmonary tissue (83).
Increase in lung wall thickness associates with difficulties in gas
exchange (84), and immune cells infiltration is related to tissue
damage and fibrosis (85). It is important to have in mind that
the increased expression of ACE2 in WAT during obesity makes
these intra-pulmonary deposits a susceptible point for SARS-
CoV-2 infection within the lung tissue. In addition, the prolonged

Frontiers in Endocrinology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 530

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Pasquarelli-do-Nascimento et al. COVID-19 Patients With Obesity: Hypercoagulopathy

viral shedding that may occur in WAT would facilitate for the
occurrence of pulmonary damage and consequent respiratory
failure in cases of obesity (76).

Also found in lungs, adipose-like cells called lipofibroblasts
(LiFs) affect pulmonary function, since the transdifferentiation
of these cells to myofibroblasts leads to pulmonary fibrosis (PF)
(86). LiFs present lipid droplets (LDs) within their cytoplasm
containing high levels of perilipin-2. Located in the alveolar
interstitium, these cells reside in the proximity of ACE2-
expressing type 2 alveolar epithelial cells (AEC2), to whom they
provide surfactant molecules. AEC2 are considered to be the
biggest pool of ACE2-expressing cells in the lungs and LiFs
proximity may indicate higher chance of PF in the lungs of
infected individuals with obesity (87). In addition, the possibility
of LiFs to also express ACE2 should be assessed, once PF is a
common feature among deceased COVID-19 patients.

Although WAT dysfunction is associated with high rates
of COVID-19 morbidity and mortality in individuals with
obesity, WAT can be a promising source of mesenchymal stem
cells (MSCs). As described by Leng and others, intravenous
administration of clinical-grade MSCs was capable of improving
pulmonary functional activity into seven COVID-19 patients
(88). Due to its accessibility and amount of stem cells,
subcutaneous WAT (scWAT) is the main source of MSCs, the
AT-derived stem cells (ASCs). Once ASCs display high secretory
activity, they possess therapeutic potential for the treatment of
pulmonary damage caused by COVID-19 (89).

Therefore, we suggest that individuals with obesity tend to
be more susceptible to SARS-CoV-2 infection and COVID-
19 progression. These patients show aberrant RAAS activation,
high ACE2 levels, low Ang(1-7) amounts, decreased antiviral
immunity, higher amounts of EAT and presence of lipid deposits
in large airways, which potentially act as viral reservoirs in heart
and lung proximities, and higher chances of LiF-myofibroblast
transdifferentiation and consequent pulmonary fibrosis. These
features help to explain the disturbing statistics related to
susceptibility, morbidity, and mortality of individuals affected
with obesity. Research under potential applicability of ASCs is
crucial for alleviating the impact of SARS-CoV-2 infection on this
risk group (Figure 2).

INFLAMMATORY ALTERATIONS IN
OBESITY AND COVID-19

Exacerbated inflammation is associated with increased risk
of severe disease and mortality in patients with COVID-
19 (90). COVID-19 patients commonly present intense pro-
inflammatory markers activation such as IL-1, IL-6, IL-17, IL-
18, IFN, and C-reactive protein (90, 91) with deep lymphopenia
and substantial mononuclear cell infiltration in the lungs, heart,
lymph nodes, spleen, and kidney (92, 93). Considering that
the mortality and morbidity observed in COVID-19 patients is
associated with excessive inflammation, a better understanding
of the immunological parameters seen in patients infected with
SARS-CoV-2 and people with obesity is necessary to better

correlate COVID-19 and obesity, improving the identification of
therapeutic targets.

Inflammation is an essential factor for the protection
against countless threats that affects the organism during
a lifetime. Deficiencies on immune system activation arises
several disorders, which can be deleterious depending on the
immunosuppressive potential of the disease (94). On the other
hand, the chronic or excessive activation of the immune system
also contributes to homeostasis breakdown and play a key role
on classic inflammatory diseases progression, such as obesity
and other metabolic disorders (95, 96). Obesity has been
characterized by low grade chronic inflammation. This process
leads to exacerbated and prolonged activation of both innate
and adaptive immune responses, bringing on tissue damage and
metabolic and physiologic alterations.

WAT is the central organ that orchestrates obesity and
is composed by different kind of adipocytes, immune and
endothelium cells, among others. During obesity, pro-
inflammatory cytokines are overexpressed concomitantly
with adipocytes hypertrophy and hyperplasia (71). The
uncontrolled increase in the number and content of adipocytes
lead to hypoxic microenvironment that is associated to cellular
necrosis, activating local immune response (97). In the WAT,
immunological cells, such as macrophages, natural killers (NK),
T and B lymphocytes are major sources of interleukin-6 (IL-6)
and tumor necrosis factor-alpha (TNF-α), which are central
cytokines on driving inflammation linked to comorbidities
establishment (98–100). In addition, macrophages are recruited
by increased expression of monocyte chemoattractant protein-1
(MCP-1) and polarized to their pro-inflammatory profile due
to the abundance of IL-6 and TNF-α (101–103). The huge
macrophage infiltrate in the adipose tissue that accompanies
obesity increases the source of inflammatory mediators, thus
maintaining a chronic and persistent inflammation that affects
systemic metabolism and immune response (99).

In obesity, inflammatory markers are found altered not only
in the adipose tissue, but also in the serum, liver, skeletal
muscle, lung, among other organs (71, 104, 105). As a result, the
impact of immunomodulatory potential of obesity compromises
systemically the response against homeostasis breakdown. Some
comorbidities, such as insulin resistance, T2DM, hypertension,
pulmonary illness, fatty-liver, and cardiovascular diseases are
direct related to the chronic inflammation provided by obesity
(106–108). In addition, these inflammatory modulations alter
how the organismwill face different pathogens infections, leading
obesity to be considered a risk factor of a great number of them.

The intensive secretion of IL-6, TNF-α, and MCP-1
sustains the unbalanced inflammation on individuals with
obesity. Together, these inflammatory mediators lead to several
alterations on systemic responsiveness to nosocomial infections,
increasing the incidence of generalized inflammation by the
cytokine storm release (109, 110). Moreover, population with
obesity also maintains a chronic inflammation on respiratory
tract, presenting a higher susceptibility for acute lung injury
caused by viral infections, such as H1N1 (110, 111). However,
despite intensive inflammation has been considered factor that
plays a major role in the higher mortality of population with
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FIGURE 2 | Obesity increases SARS-CoV-2 infection vulnerability in affected individuals by interfering in RAAS activation, antiviral immunity, fat tissue accumulation,

and differentiation status of pulmonary fibrosis related cells. While lean individuals tend to show adequate RAAS activation, including ACE2 and Ang(1-7) levels,

effective antiviral immune responses and absence of both adipose tissue (AT) deposits in airways and LiF-myofibroblast transdifferentiation, subjects with obesity

display aberrant RAAS activation, favoring high ACE2 expression and low Ang(1-7) availability, decrease of immune responses against viruses and presence of both

AT deposits in airways and LiF-myofibroblast transdifferentiation. ScWAT-derived stem cells (ASCs) could be applied in COVID-19 treatment.

obesity on several viral illnesses (110), there are other alterations
on immunological system that contribute to this scenario.
Currently, it has been shown a downregulation of a central
pathway during immune system activation against viral infection,

being also a factor responsible for the greater involvement
observed during obesity (73).

Studies have shown impairment of IFN secretion on
individuals with obesity, besides other pro-inflammatory
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cytokines are being overly produced (73, 112). IFN is the
most important cytokine for combating viral infections and
reducing this signalization pathway makes the organism more
susceptible to the severity of viral disease (113, 114). Moreover,
influenza vaccination seems to have a worse performance
on obese or overweighed population, demonstrating that
the efficacy of adaptive immune response is also decreased
(115, 116). During influenza vaccination in humans, type I
IFN signalization has been shown to be modulated throughout
dendritic cells activation, which is central for long-term CD8+
T cells immunity (117). In addition, the use of type I and
III IFN as vaccine adjuvants have demonstrated benefits for
adaptive immune response development in vivo (118). The
leptin overproduction found in individuals with obesity leads
to an aberrant type I interferon secretion, thus impacting how
the organism will handle vaccination-induced immunity (112).
Currently, it is not possible to affirm if SARS-CoV-2 vaccine
response will be less effective on individuals with obesity.
However, the available data regarding the immune response
of obese or overweighted individuals in vivo demonstrate
that hiporresponsiveness to a COVID-19 vaccine could be a
concern (119–121).

Thereby, it is clear that therapeutic targets may not be
focused on turning off the pan activation of the immune
system, but through the induction of the appropriate mediators
for better combating the infectious agent. Moreover, the
maintenance of controlled levels of inflammatory mediators
is essential for homeostasis establishment and tissue recovery.
Therefore, therapeutic targets aiming inflammatory response
may be proposed to improve treatment of COVID-19 patients
with obesity, once this group is at higher risk for developing
severe viral illness considering their intrinsic alterations in
inflammatory profile.

COAGULATION ALTERATIONS IN OBESITY
AND COVID-19

Alterations in blood coagulation parameters have been
increasingly implicated in COVID-19 severity, mortality,
and morbidity (122–124). Several recent studies have shown that
COVID-19 is commonly complicated with coagulopathy and
disseminated intravascular coagulation (DIC) or associated with
hypercoagulability together with a severe inflammatory state
(125), leading to higher mortality (1, 8, 126). COVID-19 patients
with acute respiratory failure present a severe hypercoagulability
rather than consumptive coagulopathy (127). A significant
portion of the patients hospitalized with COVID-19 usually
present a pattern of coagulopathy characterized by elevations in
D-dimer levels (8) and fibrin/fibrinogen degradation products,
while abnormalities in prothrombin time, partial thromboplastin
time, and platelet counts are relatively uncommon in initial
presentations (123). Indeed, the DIC seen in the COVID-19
infection is clinically evidenced with high concentrations of
D-dimer, being a poor prognostic characteristic (128) and higher
risk of mortality (9). COVID-19 patients show a fulminant
activation of coagulation and consumption of coagulation

factors, with severe thrombocytopenia (low platelet count) (129).
Likewise, obesity is highly related to a hypercoagulopathy status.

Excess body weight and especially abdominal fat accumulation
can increase cardiovascular diseases morbidity and mortality,
directly and indirectly. Direct effects are mediated by the
structural and functional adaptations of the cardiovascular
system to accommodate excess body weight, as well as by
adipokine effects on inflammation and vascular homeostasis,
leading to a pro-inflammatory and pro-thrombotic state. Indirect
mechanisms occur concomitantly to other factors, such as
insulin resistance, T2DM, visceral adiposity, hypertension, and
dyslipidemia (130, 131).

Apart from metabolic and hemodynamic changes, central
adiposity is also characterized by a systemic oxidative stress
process, leading to the loss of the antithrombotic properties
of endothelium (132). This mechanism partially supports the
obesity as a pro-thrombotic clinical condition, presenting
increased platelet activation and decreased fibrinolysis
(133). Stimulation of vascular endothelium, platelets, and
other circulating vascular cells by exacerbated production of
proinflammatory cytokines by people with obesity promotes the
upregulation of procoagulant factors and adhesion molecules,
downregulation of anticoagulant regulatory proteins, increased
thrombin generation, and enhanced platelet activation (134).

Adipose tissue could play a crucial role in the induction
of a procoagulant state in obesity. Obesity is associated
with overproduction of procoagulant microparticles (MP) and
increased Tissue factor (TF), a primary initiator of the blood
coagulation cascade through its Factor VII receptor activity,
leading to hypercoagulopathy (135, 136). Moreover, release of
adipokines/inflammatory factors by adipose tissue, such as TNF-
α, IL-8, and IL-6, can lead to the release of ville Willebrand factor
(vWF) from the endothelium and elevate platelet activation
and aggregation, inducing coagulation factors production and
changes in the vessel wall, thus contributing to the thrombosis
event (137). Platelets store cytokines and growth factors and
the entire subcellular apparatus for protein synthesis involved in
the coagulation cascade, IL-1β, plasminogen activator inhibitor-
1 (PAI-1) and TF (138). The inflammatory effects of cytokines
also result in endothelial injury (139) and the substantial
increase in the production of pro-inflammatory cytokines results
in a cytokine storm, leading to an elevated risk of vascular
hyperpermeability, organ failure, and death (140). Moreover,
the platelets of individuals with obesity exhibit a series of
abnormalities contributing to the status of hypercoagulability
observed in these people (141). In this way, an inherent
exacerbated inflammation state and a tendency to develop
hypercoagulation together are the main causes for people
with obesity present higher mortality rates due to COVID-19
(Figure 3).

It has also been shown that pro-trombotic factors are
positively related to central fat. People with obesity have higher
plasma concentrations of all pro-thrombotic factors (factor VII,
fibrinogen, and vonWillebrand factor), as compared to non-
obese individuals (142). Similarly, plasma concentrations of PAI-
1, a physiological inhibitor of plasminogen activators (urokinase
and tissue types) synthesized by adipose tissue, is highly elevated

Frontiers in Endocrinology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 530

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Pasquarelli-do-Nascimento et al. COVID-19 Patients With Obesity: Hypercoagulopathy

FIGURE 3 | People with obesity display higher risk of mortality and morbidity in COVID-19 due to exacerbated inflammatory status and hypercoagulation tendency.

Individuals with obesity show systemic chronic inflammation, which favors macrophage activation, cytokine storm occurrence (aberrant secretion of pro-inflammatory

cytokines IL-6, IL-1, and TNF) and cytotoxicity (LDH release). This inflamed status associates with the increased clotting risk (hypercoagulation) presented by these

patients. All these features make subjects with obesity more prone to develop pathological alterations in the physiology of lungs, AT, liver, heart, and intestines, which

negatively influences gut microbiome composition. The impact of obesity-associated chronic inflammation on systems’ physiology, including on antiviral immune

responses, and the increased levels of coagulation-inducing mediators (fibrinogen and D-dimer) in COVID-19 patients help to explain the higher risks of these

individuals to die of COVID-19 and to suffer with this infection compared to non-obese individuals.

in plasma of people with obesity (143–145), predisposing those
individuals to thrombotic complications. All of these conditions
contribute to the progression of the prothrombotic state found in
obesity (Figure 4).

Genetic factors are also correlated with higher susceptibility
to coagulation impairment among individuals (146). Similarly,
growing evidence has also supported the role of genetic factors
as influencers in COVID-19 respiratory failure. In this context, a
report has shown an association between ABO blood system and
COVID-19 symptoms variation among individuals (147). This
genome meta-analysis is in accordance with previous reports, in
which blood-type O individuals are less affected by respiratory

complications than type A (148, 149). These data are interesting,
once blood-type O individuals are also less susceptible for
thromboembolism development compared to non-type O (A,
B, or AB) (150, 151). Until this moment, there is no evidence
that obesity can be modulated by blood type. However, blood
coagulation and COVID-19 severity need special attention since
they are both influenced by ABO system. Understanding the
inherent factors that support coagulation dysfunctions observed
in COVID-19 patients is important to the establishment of
therapeutics against this disease.

The impact of obesity, often related with other comorbidities,
has been highlighted in severe forms of COVID-19 (152). In
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FIGURE 4 | Mechanisms of the hypercoagulopathy and exacerbated inflammation observed in people with obesity. Obesity, which is intimately related with the

pathogenesis of hypertension and cardiovascular diseases (CVDs), is characterized by high levels of Plasminogen Activator inhibitor I (PAI), leptin, IL-6, MCP-1, and

free fatty acids (FFAs). These molecules induce white adipocyte hypertrophy, which then enables the occurrence of inflammation through cytokine storm. Inflammatory

mediators impact on the availability of tissue factor (TF), factor VII (FVII), and thrombin-inhibiting factors, disrupting procoagulant-anticoagulant balance, and leading to

hypercoagulation. Moreover, inflammation dysregulates fibrinolytic homeostasis through platelet dysfunction, increased FVIII and PAI-1 levels, and diminished ADMTS

13 activity, which enhance the risk of thrombosis. In addition, endothelial cell dysfunction, common in the obese phenotype, associates with Angiotensin II (Ang II)

elevated amounts, von Willebrand factor (vWF) release, and oxidative stress, which induce vasoconstriction and thrombus formation.

critically ill patients, coagulation alterations and inflammation
are observed, with increased D-dimer and fibrinogen levels
and, consequently, associated with a worse prognosis
(126). The inflammation and hypoxemia related with a
prothrombotic state are significant features of severe forms
of COVID-19.

In conditions of obesity, coagulation disorders are emerging
as an important issue in SARS-CoV-2 infection. Activation of
leukocytes, endothelial cells, and platelets through the cytokine
storm, positive regulation of TF and the subsequent generation

of thrombin and fibrin formation can mediate the metabolic
and cardiovascular complications associated to obesity (153).
Together with coagulopathy, the thrombus formation in the
microvascular environment contributes to tissue ischemia and
organ dysfunction (154).

Under physiological conditions, shear stress increases the
expression of ACE2, promoting the production of nitric
oxide and reducing inflammation and proliferation in vascular
endothelial cells. Endothelial cell activation/damage due to the
coronavirus binding to the ACE2 receptor promoting acute
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inflammation and hypercoagulation may be of importance
to explain the thrombotic burden observed (155). Primarily,
angiotensin II induces PAI-1 expression by endothelial cells
via the AT1 receptor, giving to a PAI-1/tPA shortcomig and a
hypercoagulable state (1). Additionally, angiotensin II stimulates
PAI-1 release from adipocytes and may in part account for
the increased severity observed in those individuals with high
BMI (156).

Clinically, the most prominent coagulation marker is
elevation of D-dimer levels that has been consistently reported
in many studies, representing a prognostic indicator for severity
and mortality of disease (157). The high D-dimer indicates that
other inflammatory markers including ferritin, IL-6, troponin
I and lactate dehydrogenase (LDH) are accompanied by a
secondary hypercoagulable condition (9, 158). It also has been
suggested that the sustained inflammation due presence of
continuous consumptive coagulopathy may contribute to the
thrombocytopenia (159).

Therefore, it is highly recommended that COVID-19 patients
with obesity are early and rapidly tested for coagulation
screening, including themeasurement of D-dimer and fibrinogen
levels, following thromboembolic prophylaxis for critically ill
hospitalized patients. Moreover, anti-coagulation drugs, such as
heparin, may be especially important for treatment of COVID-19
patients with obesity, potentially leading to lower mortality rates
in this high susceptible group of individuals.

OBESITY AND THERAPEUTICS AGAINST
COVID-19

Obesity-related conditions increase the risk of disease severity
caused by the SARS-CoV-2 (160, 161). Daily use of several
medications is necessary for controlling such conditions and an
important influence of them on the body’s responsiveness to
infections are being extensively discussed worldwide (162–165).
Studies regarding this interaction create potential therapeutic
targets aiming to soft or protect against the intense symptoms.
In the absence of a COVID-19 vaccine, the study of available
promising drugs is essential for combating the COVID-19, to
reduce the high mortality rate observed on people with obesity.

As previously discussed, the chronic inflammation presented
in the lung during obesity leads to a cytokine storm by
overexpressing pro-inflammatory mediators, such as IL-6 and
TNF-α (166). This is one of the mechanisms through which host
unbalanced inflammation worsens the prognosis of individuals
with obesity affected by COVID-19 (90, 167). Thereby, anti-
inflammatory drugs could have an important role on protecting
specially people with obesity against COVID-19 multi-organs
damage, once inflammation is an inherent characteristic of
obesity and COVID-19 aggravation. However, this has to be
carefully analyzed, once reducing pan inflammatory response can
also prolong the time required for effective virus clearance (167).

Effective class of anti-inflammatory drugs against COVID-
19 is a concern. It has been suggested an increasing risk for
developing severe COVID-19 by the use of non-steroidal anti-
inflammatory drugs (NSAIDs) and corticosteroids. The chronic
use of NSAIDs is associated to increased cardiovascular and

pulmonary outcomes (168, 169), complications which are also
found in COVID-19. Considering this, a synergism can in fact
occur, but no evidence regarding this interaction to SARS-CoV-
2 is available yet (170). Corticosteroids anti-inflammatory drugs
lead to a high suppression of innate immune system and delay
of viral clearance (171). Harmful responses have already been
found after corticosteroids medication for different respiratory
virus infection, such as influenza, SARS-CoV and MERS-CoV
(165, 172). Nevertheless, the use of this class of drugs seems to
have no positive interference on COVID-19 cases (173, 174).
However, a preliminary in vitro study showed SARS-CoV-2
replication suppression by the use of a corticosteroid (175).
Moreover, a correlation between lower gene expression of ACE2
and TMPRSS2 with inhaled corticosteroids medication in asthma
patients has already been demonstrated (176). The current
scenario of available data indicates that consistent evidences
about benefits or harms of corticosteroids use on COVID-
19 still need deep investigation for accurate conclusions. In
the absence of both positive and negative conclusion about
this question, clinicians are avoiding to prescribe this class
of pan anti-inflammatory drug for COVID-19 cases, since
controversial reports make the conclusion about their real impact
still unknown.

Considering the above mentioned points, reports have
suggested that specific cytokine blocking could be more
efficient for protection against COVID-19 than systemic anti-
inflammatory drugs (165, 177). In this context, the use of
monoclonal antibodies makes it possible to selectively inhibit
key agents that drive to hyperinflammation during COVID-
19. Preliminary evidence suggests that IL-6 blockade could be
helpful on curbing the cytokine storm, being a highly promising
treatment for severe COVID-19 (178). Nevertheless, the clinical
trials that could provide trustable answer about this question are
still in progress (179, 180). In addition, studies regarding TNF-
α therapy in COVID-19 are scarce and need urgent attention of
the scientific community, given the importance of this cytokine
on inflammatory diseases (181). As already been reported, SARS-
CoV increases this TNF-α production, leading to tissue damage
(182). Moreover, the treatment with anti-TNF antibodies reduces
the severity of lung disease for both influenza and respiratory
syncytial virus (183), indicating that it could be efficient on
COVID-19 cases.

Besides blocking such pro-inflammatory cytokines, the
improvement of antiviral responses is also an interesting point to
be considered. As earlier discussed, increasing evidence suggests
obesity-associated impairment of IFN secretion, enhancing the
susceptibility of this group for viral severe illnesses (73, 112).
Reports have shown that IFN-β treatment reduces SARS-CoV
RNA replication in vitro (184, 185). Indeed, type 1 IFNs are
being pointed as potential effective therapeutic for COVID-19
and seems to be even more effective for SARS-CoV-2 compared
to other coronaviruses (186). Moreover, given the impact of
this cytokine for adaptive immune system activation, it might
be suggested IFN also as a vaccine adjuvant for enhancing
effective anti-viral protective response for especially individuals
with obesity.

Obesity-induced chronic inflammation leads to alterations of
hemodynamic properties and increasing risk for coagulopathies
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establishment. Moreover, the activation of coagulation pathway
also triggers inflammation (167). Some recent case reports
brought thromboembolism as a COVID-19 complication (187–
189). Considering the interplay between coagulopathies and
inflammation, the combination of anti-inflammatories and
anticoagulants drugs could be key for avoiding systemic
complications in COVID-19 patients with obesity. Heparin and
its low-molecular derivate are examples of frequently used anti-
coagulant drugs for tromboprophylaxis due to their inherent
potential of preventing blood clot occurrence (190). Currently,
heparin is also known for its anti-inflammatory properties,
expanding its potential for the treatment of coagulopathies
(191). Heparin is already recommended as prophylactic agent
against thromboembolism for COVID-19 cases and preliminary
data suggests a better prognosis after the treatment (192, 193);
it is important to emphasize that heparin anti-inflammatory
properties in addition to its anticoagulant function may explain
its great potential compared to single target anticoagulant drugs
(191). In addition, a report has shown that heparin also binds
to the spike protein and partially inhibits SARS-CoV-2 invasion
in vitro, thus presenting anti-viral potential (194). Besides, other
anticoagulant drugs can also act on immune response, such as
antithrombins and anti-factor Xa. Study the effectiveness of these
drugs can be an important step for ameliorating complications
that specially overweighed individuals are suffering by COVID-
19 (167).

Chronic inflammation provided by obesity also intermediates
the establishment of metabolic disorders. Diabetes and
hypertension are considered a risk factor for developing
SARS-CoV-2 severe illness, both in the presence and absence of
obesity (160). The high mortality rate that affects these groups
brought questions regarding the impact of daily medication
on the viral infectiveness capacity. The use of angiotensin-
converting enzyme inhibitors (ACEi) and angiotensin-receptor
blockers (ARBs) seems to improve ACE2 expression on
pulmonary cells (195). Increasing the number of the viral
entry receptor could lead to higher severity of the disease.
However, the available data about these modulations of humans’
RAAS is too limited for conclusions (196). Until now, the
impact of discontinuing this medication on individuals with
diabetes or hypertension conditions can be much worse, due
to protection of vital organs provided by them (197, 198). In
addition, there is recent evidence that, in fact, those drugs
could protect against COVID-19, once the virus leads to a
reduction of ACE2; increasing the amount of this receptor
could interfere on the viral pathway somehow (198). Moreover,
ACE2 plays an important role on reducing inflammation,
what could ameliorate complications of COVID-19 (199).

A report has shown a reduction of IL-6 secretion and an
improvement of antiviral immune response, decreasing the
viral load (163). Regarding other medicines used for diabetes,
such as metformin, no interaction was found with ACE2
expression, indicating that its intake should not be a concern
(200). Analyzing the available data about anti-hypertensive
and anti-diabetic drugs, it is clear that the harms related to
their interaction with COVID-19 are not evidenced enough
compared to the known risks of stopping the treatment. Thereby,
the use of those medications may not be discouraged, once
these untreated comorbidities highly increase the mortality
risks for COVID-19, so as the risks of developing secondary
health problems.

CONCLUSION

A better understanding of the link between obesity and
severe complications following COVID-19 infection is
vital for implementing appropriate public health and
therapeutic strategies to avoid COVID-19 severe symptoms
and complications in people living with obesity. Adipose tissue
from people with obesity show high expression of ACE2 receptor
and can function as SARS-CoV-2 reservoir. Moreover, obesity
can cause hyperglycemia via insulin resistance. SARS-CoV-2
may also cause hyperglycemia as well by infecting and killing
pancreatic B-cells, leading to a worsen metabolic dysfunction
of people with obesity and a poor prognostic of COVID-19.
People with obesity present a pro-inflammatory and metabolic
dysregulation that may favor the occurrence of the cytokine
storm, implicated in COVID-19 pathophysiology of severe
cases. Pulmonary lipofibroblasts can transdifferentiate into
myofibroblasts aggravating the development of pulmonary
fibrosis and consequently, contributing to the clinical severity
of COVID-19, with development of a severe acute respiratory
syndrome. Taken together, it may be crucial to better explore the
role of visceral adipose tissue in the inflammatory response to
SARS-CoV-2 infection and investigate the potential therapeutic
effect of using specific anti-inflammatories (canakinumab or
anakinra for IL-1β inhibition), anticoagulant (heparin), or
anti-diabetic drugs in COVID-19 treatment since patients with
obesity may benefit to a greater extent from a treatment that
modulates these parameters.
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