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G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal

hippocampus mediates actions of estradiol on anxiety, social recognition and spatial

memory. In addition, GPER participates in the estrogenic regulation of synaptic function

in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While

the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal

hippocampus are well characterized, little is known about the regional distribution of

GPER in these brain regions and whether this distribution is affected by sex or the

stages of the estrous cycle. In this study we performed a morphometric analysis of

GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral,

basomedial and central subdivisions of the amygdala and in all the histological layers of

CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER

immunoreactive cells was estimated in these different structures. GPER immunoreactivity

was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal

hippocampal formation. The number of GPER immunoreactive cells was higher in males

than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala

(P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and

radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of

the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral

amygdala (P < 0.05); higher in diestrus females than in estrus females in the central

(P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and

higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and
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radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer

(P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that

estrogenic regulation of the amygdala and hippocampus through GPER may be different

in males and in females and may fluctuate during the estrous cycle.

Keywords: amygdala, hippocampus, estrous cycle, limbic system, GPER, estrogens, estrus, diestrus

INTRODUCTION

The hippocampus and the amygdala are two anatomically and
functionally interconnected brain regions that participate in the
regulation of stress responses (1, 2), fear (3–5), emotions (6–8),
learning (9), and memory (8, 10). Both structures are integrated
in the limbic system, which is altered in different pathological
conditions, such as depression, anxiety, stress and schizophrenia,
among others (11–20).

Some of the behaviors regulated by the hippocampus, the
amygdala and their associated limbic structures are modulated
by estradiol and testosterone (21–24) and are affected by sex (25–
28) and by the phases of the estrous cycle (29–33). This hormonal
regulation may be mediated by the modification of synaptic
activity and plasticity in both the hippocampus (33–38) and the
amygdala (29–31, 39, 40) and may represent a direct effect of
testosterone and estradiol on these two brain structures, which
express both androgen (41–43) and estrogen receptors (43–46).

Expression of classical estrogen receptors (ER)α and ERβ

in the hippocampus and amygdala is well documented (44–
47). After the discovery of the membrane-associated G protein-
coupled estrogen receptor 1 (GPER), several studies have also
explored its localization and function in the brain (48). GPER
protein has been localized in the developing (49–51) and adult
rodent hippocampus (52–59). In addition, GPERmRNA (60–62)
and protein (63, 64) have been also detected in the adult rodent
amygdala. However, the possible changes in GPER distribution
in function of sex and the ovarian cycle in the hippocampus and
amygdala have not been explored. Therefore, in this study we
have analyzed the possible differences in GPER immunoreactivity
between male, diestrus and estrus females in different anatomical
subdivisions of the rat hippocampus and amygdala.

MATERIALS AND METHODS

Animals and Experimental Procedure
Wistar albino male and female rats from our in-house colony
were kept on a 12:12-h light–dark cycle and received food
and water ad libitum. Animals were handled in accordance
with the guidelines published in the “NIH Guide for the care
and use of laboratory animals,” the principles presented in the
“Guidelines for the Use of Animals in Neuroscience Research” by
the Society for Neuroscience, and following the European Union
(2010/63/UE) and the Spanish legislation (L6/2013; RD53/2013).
Experimental procedures were approved by our Institutional
Animal Use and Care Committee (UNED, Madrid). Special care
was taken tominimize animal suffering and to reduce the number
of animals used to the minimum necessary.

Twenty-four adult rats 2 months old (eight males and 16
females) were separately housed in plastic cages. After 2 weeks
of habituation and handling, the monitoring of the estrous cycle
in female rats was performed during 7 days by vaginal smears
(65, 66). At the day 7, female rats were tested for the last
vaginal smear in order to select the animals in estrus or diestrus
(diestrus-2). Subsequently, all the animals, male and female,
were deeply anesthetizedwith pentobarbital (NormonVeterinary
Division, Madrid, Spain, 50 mg/kg) and perfused through the
left cardiac ventricle with 50ml of saline solution (0.9% NaCl)
followed by 250ml of fixative solution (4% paraformaldehyde in
0.1M phosphate buffer, pH 7.4). Brains were quickly removed
and immersed for 4–6 h at 4◦C in the same fixative solution
and then rinsed with phosphate buffer. Brains were placed
for 72 h in a 30% sucrose solution in PBS, frozen in liquid
isopentane at−35◦C, and stored in a deep freezer at−80◦C until
sectioning. Brains were serially cut in the coronal plane at 20µm
thickness with a cryostat, obtaining 5 series of adjacent serial
sections. In each series, each section was 100µm distant from
the following one. The plane of sectioning was oriented to match
the drawings corresponding to the transverse sections of the rat
brain atlas of Paxinos and Watson (67). Sections were collected
in multiwell plates with a cryoprotectant solution and kept at
−20◦C. Immunohistochemical assay for GPER was performed
on different series.

Immunohistochemistry
The presence of GPER was detected by immunohistochemistry
performed on free-floating sections according to the following
steps. Before the reaction, the sections collected in the
cryoprotectant solution were washed overnight at 4◦C in PBS
0.1M, pH 7.3–7.4. The following day, free floating sections
were first washed for 30min at room temperature in PBS
0.1M, pH 7.3–7.4, containing 0.2% Triton X-100 and 0.2%
BSA. Sections were then treated for 10min with a solution of
PBS 0.1M, pH 7.3–7.4, containing methanol/hydrogen peroxide
(PBS/methanol 1:1 with 0.3% hydrogen peroxide) to quench
endogenous peroxidase activity. Sections were washed for 30min
at room temperature in PBS 0.1M, pH 7.3–7.4, containing 0.2%
Triton X-100 and 0.2% BSA and then incubated for 48 h at 4◦C
with a rabbit polyclonal GPER antibody (ABCAM, Cambridge,
UK, reference ab39742) diluted 1:250 in 0.1M PBS, pH 7.3–
7.4, containing 0.2% Triton X-100, 0.2% BSA and 3% normal
serum goat. A biotinylated goat anti-rabbit secondary antibody
(Thermo scientific, Pierce, Rockford, IL, USA) was then used
at a dilution of 1:300 for 120min at room temperature. The
antigen–antibody reaction was revealed by incubation with
avidin-peroxidase complex (Thermo scientific, Pierce, Rockford,
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FIGURE 1 | Representative GPER immunostaining showing cell perikaryon and the primary processes labeling in neuronal and glial cells. (A) Amygdaloid nucleus and

(B–D) Hippocampal formation. Scale bar 10µm. Thin arrows, GPER immunoreactive cells with glial morphology. Large arrows, GPER immunoreactive cells with

neuronal morphology. Arrowheads, immunoreactive neuronal processes.

IL, USA) for 90min. The peroxidase activity was visualized
with a solution containing 0.187 mg/mL 3,3- diamino-benzidine
(Sigma, Madrid, Spain) in PBS 0.1M, pH 7.3–7.4. The sections
were washed in the same buffer and collected on chromallum
coated slides, air dried, cleared in xylene, and cover slipped
with Depex (VWR International Eurolab, Barcelona, Spain)
for quantitative analysis. One of each five consecutive sections
was stained with 0.1% cresyl violet (pH 7.4) to facilitate the
identification of the selected structures.

The GPER antibody used in the present study has been
previously shown to recognize the full-length receptor protein
in lysates of selected brain regions by Western blotting (68–72).
Furthermore, immunostaining is abolished in rat brain sections
when the GPER antibody is preincubated with the immunizing
peptide (73). In agreement with our previous findings, GPER
immunostaining was absent in rat brain sections preincubated
with the GPER blocking peptide and when the first antibody
was omitted.

Morphometric Analysis
The morphometric analysis of GPER immunoreactive cells
was performed on coded sections without knowledge of the

experimental group. The number of GPER positive cells was
assessed in the amygdala and the dorsal hippocampus using
two coded sections per animal. Sections selected for analysis
corresponded to the following coordinates: bregma −2.8 to
−3.14mm for the amygdaloid nucleus and bregma −2.8 to
−3.8mm for the dorsal hippocampal formation (67). The
following regions were considered for the morphometric analysis
of GPER immunoreactive cells: (i), the posterodorsal medial
(MePD), anteroventral medial (MeAV), basolateral (BLA),
basomedial (BMA), and central (CeM) amygdala; (ii), the
stratum oriens (SO), the stratum radiatum, analyzed together
with the stratum lacunosum-moleculare (SRLM) and the stratum
pyramidale (SP) in dorsal Ammon’s horn and (iii), the stratum
granulosum (SG), the stratum moleculare (SM) and the hilus in
the dorsal dentate gyrus.

Data presented for each region are the sum of the number
of GPER immunolabeled cells in two brain sections per rat. For
the amygdala, all cells located within the anatomical borders of
each subnuclei were considered for quantification. Cresyl violet
stained sections were used as reference for the delimitation of
the analyzed structures. Given the anatomical heterogeneity of
the hippocampus, counts were limited to the dorsal hippocampus
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and performed separately in CA1-CA3 and in the dentate gyrus.
Cells were counted in eight fields fromCA1-CA3, four fields from
the strata granulosum and moleculare of the dentate gyrus and
two fields from the hilus. Each field had an average area of 9.63×
103 µm2 for the SO; 7.49 × 103 µm2 for the SP; 23.76 × 103

µm2 for the SRLM; 6.52 × 103 µm2 for the SG; 14.54 × 103

µm2 for the SM and 21.5× 103 µm2 for the hilus. Selected fields
were acquired by a digital camera (Olympus DP25) connected to
a Nikon eclipse E600 microscope using x40 and x20 objectives.
All GPER positive cells showing a cell nucleus and located within
the boundary of the selected anatomical regions were included
in the analysis, regardless of differences in cell shape, size and
level of immunostaining. As a note of caution, it is important
to consider that our morphometric approach is not unbiased
from possible differences among the experimental groups in the
volume of the anatomical structures analyzed. Thus, it should
be considered a semi-quantitative estimation of the number of
GPER positive cells.

Statistical Analysis
Data were analyzed by one-way ANOVA followed by
Bonferroni’s post-hoc test, using the SPSS-17.0 software
(SPSS Inc, Chicago, USA). A value of P < 0.05 was considered
statistically significant. Data are presented as the mean± SEM.

RESULTS

Morphology of GPER Immunoreactive Cells
Cells showed a punctiform staining in the brain sections
incubated with the GPER antibody (Figure 1). The staining was
cytoplasmic, and the cell nucleus was always negative. Numerous
cells showed a clear neuronal morphology with cytoplasmic
immunostaining in the cell perikaryon and the primary dendritic
processes. Dendritic staining was particularly evident in the
pyramidal neurons of the hippocampus (Figure 1B), but it
was also detected in neurons from the other studied regions
(Figure 1A). In addition to neurons, a population of GPER
immunoreactive cells showed a small perikaryon surrounded by
tiny cell processes, a morphology that is characteristic of glial
cells. These cells with glial morphology were observed in all
the studied brain regions and in some of these regions, such
as in the stratum radiatum, the stratum lacunosum and the
stratummoleculare of the hippocampus, they represented the vast
majority of the immunoreactive cells (Figures 1C,D).

GPER Positive Cells in the Amygdaloid
Nucleus
Representative examples of GPER immunoreactivity in the
amygdala of male and female animals are shown in Figure 2.
Qualitative observation of GPER immunopositive cells in
the amygdaloid nucleus revealed some differences in the
pattern of staining among the different experimental groups.
These differences were confirmed by the morphometric
analysis. ANOVA analysis revealed significant differences
among experimental groups in the central amygdala (CeM)
[F(2, 13) = 23.10; P = 0.001; Figure 3A], posterodorsal medial
amygdala (MePD) [F(2, 14) = 17.49; P = 0.002; Figure 3B] and

basolateral medial amygdala (BLA) [F(2, 12) = 25.89; P = 0.001;
Figure 3C]. The post-hoc analysis revealed lower number of
GPER immunopositive cells in estrus females that in males in
the CeM (P = 0.001) and the MePD (P < 0.05) (Figures 3A,B).
In contrast, females in diestrus showed a higher number of
GPER immunoreactive cells than males in the BLA (P < 0.05)
(Figure 2C). Moreover, estrus females showed a lower number
of GPER immunoreactive cells than diestrus females in the CeM
(P < 0.01), MePD (P < 0.01), and BLA (P < 0.01). No significant
differences between the experimental groups were found in
the basomedial (BMA) [F(2, 12) = 0.828; P = 0.38; Figure 3D]
and anteroventral medial (MeAV) amygdala [F(2, 13) = 0.76;
P = 0.41; Figure 3E].

GPER Positive Cells in the Dorsal
Hippocampus
Representative examples of GPER immunoreactive cells in the
dorsal hippocampal formation are shown in Figure 4. ANOVA
analysis showed significant differences in the stratum oriens
(SO) [F(2, 10) = 12.13; P = 0.01; Figure 5A] and the strata
radiatum-lacunosum-moleculare (SRLM) [F(2, 10) = 16.40; P =

0.005; Figure 5B]. The post-hoc analysis revealed a significantly
lower number of GPER immunoreactive cells in diestrus females
compared to males in the SO (P < 0.01) and the SRLM (P <

0.05). Moreover, diestrus females displayed also a lower number
of GPER immunopositive cells than estrus female animals in
the same regions: SO (P < 0.05) and SRLM (P < 0.05).
In contrast, no significant differences among the experimental
groups were detected in the stratum pyramidale (SP) [F(2, 10) =
0.08; P = 0.78; Figure 5C].

Significant differences in the number of GPER
immunoreactive cells among experimental groups were also
detected in the dentate gyrus. Thus, ANOVA analysis showed
significant differences in the stratum moleculare (SM) [F(2, 10) =
12.69; P = 0.009; Figure 5E] and the hilus [F(2, 10) = 10.89; P =

0.013; Figure 5F], but not in the stratum granulare (SG) [F(2, 10)
= 1.30; P = 0.29 Figure 5D]. Diestrus females showed a lower
number of GPER immunoreactive cells than males in the SM
(P < 0.01). In addition, diestrus females showed also a lower
number of GPER immunopositive cells than estrus females in
both the SM (P < 0.05) and the hilus (P < 0.05) (Figures 5E,F).

DISCUSSION

Previous studies have shown that GPER is widely distributed in
the brain (50, 53, 55, 56, 60, 73). Indeed, GPER has been shown
to be expressed by neurons, astrocytes and oligodendrocytes (56,
57, 59, 74–77) and GPER immunoreactivity has been detected
by electron microscopy in both neuronal and glial profiles in
the hippocampus (59), which is consistent with the detection
of GPER immunoreactivity in cells with either neuronal or glial
morphology in our study. Furthermore, we have detected a
punctiform pattern of immunoreactivity that is absent in the cell
nucleus, in agreement with the reported subcellular localization
of GPER, either in the plasma membrane or in the endoplasmic
reticulum and Golgi apparatus (52, 54, 57, 78–80).
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FIGURE 2 | Representative examples of GPER immunohistochemical localization in rat amygdaloid nucleus in male animals (left column; A,D,G,J,M) and in females

during diestrus (central column; B,E,H,K,N) and estrus (right column; C,F,I,L,O). (A–C) Central amygdala (CeM), (D–F) Basolateral amygdala (BLA), (G–I) Basomedial

amygdala (BMA), (J–L) Medial posterodorsal amygdala (MePD), (M–O) Medial anteroventral amygdala (MeAV). *Optic tract. Scale bar, 50µm.
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FIGURE 3 | Number of GPER immunoreactive cells in the amygdaloid nucleus of male, diestrus females and estrus female rats. (A) Central amygdala. (B) Medial

posterodorsal amygdala. (C) Basolateral amygdala. (D) Basomedial amygdala. (E) Medial anteroventral amygdala. Data are represented as mean±SEM.

*, ***Significant differences (*p < 0.05 and ***p < 0.001) vs. male values. && Significant differences (p < 0.01) vs. females in diestrus.

To explore possible changes in GPER immunoreactivity
during the estrous cycle we performed a semi-quantitative
analysis of the number of GPER immunoreactive cells. Although
our findings need to be confirmed by unbiased stereology, they
suggest that the immunoreactive levels of GPER fluctuate during
the estrous cycle in the amygdala and the dorsal hippocampus
with regional specificity. Thus, significant differences in the

number of GPER immunoreactive cells are observed between
estrus and diestrus in the central, posterodorsal medial and
basolateral amygdala; in the stratum oriens and the strata
radiatum-lacunosum-moleculare of the Ammon’s horn and in
the molecular layer and the hilus of the dentate gyrus. These
fluctuations in the number of GPER immunoreactive cells
between estrous cycle stages are associated with transient
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FIGURE 4 | Representative examples of GPER immunohistochemical localization in rat hippocampal formation in male animals (left column; A,D,G) and in females

during diestrus (central column; B,E,H) and estrus (right column; C,F,I). (A–C) stratum oriens (SO) and stratum pyramidale (SP) in CA1, (D–F) stratum pyramidale (SP)

and strata radiatum-lacunosum-moleculare in CA1. (G–I) Dentate gyrus, stratum granulare (SG) and hilus. Scale bar, 20µm.

sex differences in GPER immunoreactivity that are also
regionally specific.

Our findings extend the results of previous studies showing
changes during the estrous cycle in the number of GPER
immunoreactive axonal, dendritic and glial profiles in the mouse
hippocampal formation (59). Sex differences in GPER expression
have been also reported in primary hippocampal neurons (49).
Another study has reported increased GPER mRNA levels in the
amygdala of male hamster compared to females (60). In addition,
differences in themRNA levels of GPER between different estrous
cycle days have been detected in other rat brain regions, such as
the nucleus of the solitary tract, the ventrolateral medulla and the
periaqueductal gray (81).

One of the limitations of the immunohistochemical analysis
is that it cannot discriminate between full length functional

receptors and other inactive forms. Therefore, we can only
speculate on the possible functional significance of the
fluctuation in the number of GPER immunoreactive cells
in the amygdala and hippocampus during the estrous cycle
and the associated sex differences. Differences in GPER levels
may contribute to synaptic changes during the estrous cycle in
the posterodorsal medial amygdala, the basolateral amygdala,
the central amygdala and Ammon’s horn (82–86) and may
be also associated with the fluctuation in adult neurogenesis
in the dentate gyrus of adult females in response to the cyclic
changes in plasma estradiol levels (33). Specifically, GPER has
been shown to be involved in the regulation of excitatory and
inhibitory transmission in the basolateral amygdala (61, 63, 86)
and in the regulation of adult neurogeneis in the hippocampus
(58). In addition, previous studies have shown that GPER in
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FIGURE 5 | Number of GPER immunoreactive cells in the in hippocampal formation of male, diestrus females and estrus female rats. (A) Ammon’s horn, stratum

oriens (SO). (B) Ammon’s horn, strata radiatum-lacunosum-moleculare (SRLM). (C) Ammon’s horn, stratum pyramidale (SP). (D) Dentate gyrus, stratum granulare

(SG). (E) Dentate gyrus, stratum moleculare (SM). (F) Hilus. Data are represented as mean±SEM. *, ** Significant differences (*p < 0.05; **p < 0.01) vs. male values. &

Significant difference (p < 0.05) vs. females in diestrus.

the basolateral amygdala mediates effects of estradiol on anxiety
(64). Furthermore, GPER in the medial amygdala and the
dorsal hippocampus participate in the modulation of social
recognition by estradiol (23, 24, 87). Moreover, GPER in the
dorsal hippocampus also mediates effects of estradiol on object

recognition and spatial memory (23, 24, 87–90). Therefore,
the observed modifications in GPER immunoreactivity in the
amygdala and hippocampus may affect the actions of estradiol
on these structures to regulate anxiety, social recognition, object
recognition and spatial memory.
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