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Fertility preservation has received unprecedented attention nowadays. In addition to

cryopreservation and re-implantation of embryos, oocytes, and ovarian tissue pieces,

in vitro culture system for follicles/oocytes has been considered as an alternative strategy

for fertility preservation. Since the metabolic dynamics and required nutrients are not

entirely the same in different stages of follicular development, optimization of each culture

step is needed. In this paper, literature regarding culture conditions in three steps were

analyzed. Known additives in activation stage included 740Y-P, bpV(HOpic), follicle

stimulating hormone (FSH), human serum albumin (HSA), ITS, growth differentiation

factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and cyclic adenosine

monophosphate (cAMP), with different degrees of activation promotion and potential

detrimental effect on DNA integrity. For isolated follicles growth stage, actin A, FSH,

basic fibroblast growth factor (bFGF), estradiol were proved to improve development or

proliferation. As for maturation, addition of growth hormone, melatonin, C-type natriuretic

peptide (CNP), GDF9, cilostamide, or forskolin helped to regulate maturation rate or

improve oocyte quality. Based on previous sequential culture system for human follicles,

optimization is needed to achieve higher maturation rate and better oocyte quality,

pursuant to current review, which demonstrated the effects of various additives on

different stages.

Keywords: in vitro culture, human follicle, human oocyte, in vitro maturation, fertility preservation

INTRODUCTION

In recent decades, considerable progress has been made in the field of assisted reproductive
technology (ART). Objectively, with improvement of the prognosis of malignant diseases and
progress in ART, an increasing number of female cancer patients have the opportunity to preserve
fertility through advanced technologies. Subjectively, young cancer patients are no longer satisfied
simply with the continuation of life span, but become aware of their fertility needs. Therefore,
fertility preservation has received unprecedented attention (1, 2). Thanks to current technology,
part of the ovarian tissue of the women who need chemotherapy due to malignancies could be
removed for cryopreservation before receiving treatment, so as to avoid the reproductive toxicity
of chemotherapy drugs, and then be auto-transplanted at the end of treatment. However, the risk
of re-implantation of tumor cells is faced by some patients during transplantation (3, 4). To solve
this problem, an in vitro culture (IVC) system for follicles and oocytes has been considered as an
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alternative fertility preservation strategy without the risk of re-
implanting maternal somatic tumor cells (5).

For most mammals, the formation of follicles takes place
pre-natally and constitutes the basic reserve unit of female
reproductive cells, which are recruited for growth throughout
the female’s reproductive age. Specifically, development of
follicles includes (1) initiation of primordial follicle growth and
development to the preantral follicle stage; (2) the formation
of antral follicles; and (3) rupture of the Graafian follicle
releasing a cumulus-oocyte complex (COC) at ovulation in
response to the mid-cycle luteinizing hormone (LH) surge (6).
The IVC system should support the development of oocytes
in all stages, from activation of primordial follicle to oocyte
maturation. Once the safety and effectiveness of the system are
confirmed, the maximum use of the ovarian follicle reserve
would be achieved, and the risk of tumor cells carried by
transplanted ovarian tissue would be eliminated. Moreover, for
younger patients like prepubertal girls, neither mature oocytes
nor embryo cryopreservation are available. Therefore, fertility
preservation may be achieved by the IVC system (3, 7, 8).

Most follicles are in the primitive stage, and their recruitment
is regulated by both endocrine factors and the ovarian
internal environment (9, 10). During in vivo follicle growth,
oocytes acquire the competence to resume meiosis, complete
fertilization, and support early embryonic development.
Thorough comprehension to this complicated growth procedure
is essential for researchers to construct an IVC system meeting
all requirements, with consideration for maintaining DNA
integrity and stability (11, 12). In previous studies, a two-step
culture system was designed for follicular development in mouse
models, where the IVC oocytes were fertilized and healthy
offspring were successfully obtained (13, 14). Similarly, mature
oocytes from IVC cattle follicles were fertilized and a healthy
calf was born with higher birth weight (15). These results in
animal models proved the feasibility of follicular IVC. However,
the inconsistency of follicular growth environment between
humans and animals and challenges of applying the system
to human follicles still need to be considered (16). A single
research reported the multi-step IVC system for the whole
course of human oocyte development, and some second meiotic
metaphase (MII) oocytes were obtained (17). Since the metabolic
dynamics and required nutrients are not entirely the same in
different stages of follicular development, optimization of each
step is needed to achieve a higher maturation rate and better
oocyte quality, based on the sequential culture system. In this
paper, the effects of various additives on different stages are
demonstrated, and the current research progress of different
stages of human follicular IVC are reviewed, respectively.

INITIAL STAGE: IN VITRO ACTIVATION
(IVA) OF PRIMORDIAL FOLLICLES

Primordial follicle activation is the key initial step of oocyte
development, involving the interaction of inhibitory factors,
stimulating factors, and maintenance factors (18). Early studies
showed that the viability of primordial follicles isolated from

thawed human ovarian cortical tissues was comparable with that
from fresh tissue. However, a lower survival rate was observed
in IVC of isolated primordial follicles (19, 20). Consequently, a
consensus has been reached that the culture system based on
primordial follicles needs to start from human ovarian cortex
tissue, not isolated primordial follicles (17, 20–23).

Several pathways, including the phosphatidylinositol 3 kinase
(PI3K) pathway, the mechanistic target of rapamycin complex
1 (mTORC1) pathway, and the p27Kip1 (p27)-cyclin dependent
kinase (CDK) system, have been shown to regulate the activation
of dormant oocytes in the mammalian ovary (18). Some
components in these pathways were well-studied and used as
regulatory targets for IVC optimization.

The PI3K-PTEN-AKT-FOXO3 signaling pathway is the main
non-gonadotrophic growth factor signaling pathway regulating
the growth and differentiation of ovarian follicles (24–27). The
phosphatase and tensin homolog deleted on chromosome 10
(PTEN), as a negative regulator of PI3K, inhibits the levels
of phosphatidylinositol 3,4,5-triphosphate (PIP3), leading to
suppressed activation of PI3K signaling (28, 29). The Forkhead
box O3 (FOXO3), a downstream effector, also regulates this
pathway negatively and suppresses follicle activation, based on
mice experiments (24, 30). In women with premature ovarian
insufficiency (POI) or premature ovarian failure (POF), mutation
in FOXO3 genes was identified and lower FOXO3a expression in
ovarian tissue was detected (31, 32). Another component is the
mTORC1, a regulator of cell growth and proliferation, involved in
promoting primordial follicle activation (33). In previous studies,
IVA of primordial follicles was promoted through regulating
the pathway by mTOR and PI3K activator, thus improving
ART outcomes of patients with POI (26, 34). PTEN inhibition
of human ovarian tissue before auto-transplantation has been
proved to significantly enhance activation of residual follicles
in POI patients, and healthy baby was born (35). Noteworthily,
more than 50% POI patients in this study contained no residual
follicle and did not respond to the IVA agents, limiting the
application of IVA procedure in infertility treatment.

During IVC of the human ovarian cortex, more primordial
follicles were activated, and more secondary follicles were
isolated with PTEN inhibition. Unfortunately, the survival and
development of isolated follicles were poor (26, 36), which may
be related to the effect of PTEN inhibition on the DNA repair
mechanism in follicles (12). The study involving IVC of bovine
ovarian cortex demonstrated that PTEN inhibition activated
bovine non-growing follicles, but simultaneously increased DNA
damage and reduced DNA repair response (27). Recently, a
drug-free IVA method was used in infertility treatment for POI
patient, leading to successful pregnancies (37). This method may
eliminate the negative effect of activation agents on follicles, but
it may simultaneously reduce the yield of follicles, which makes
it insufficient for subsequent culture use.

The activation rate of primordial follicles varies with
different culture conditions, which seems to be related to
the preparation of the ovarian cortical tissue, indicating
that mechanical signal was also an important influencing
factor (10). The Hippo signaling pathway, which is known
for its role in conserving optimal organ size via growth
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inhibition, consists of several negative growth regulators
acting in a kinase cascade that ultimately phosphorylates
and inactivates key Hippo signaling effectors, Yes-associated
protein (YAP)/transcriptional coactivator with PDZ-binding
motif (TAZ) (26, 38). Fragmentation of human ovarian cortical
tissue can dramatically promote the activation of primordial
follicles, which was proved to be the result of interruption of
Hippo signal pathway. Ovarian fragmentation increased actin
polymerization and disrupted Hippo signaling by decreasing
pYAP levels together with increased nuclear localization of
YAP, leading to increased expression of CCN growth factors
and BIRC apoptosis inhibitors (26, 35). Intuitively, follicles at
the most advanced developmental stage were observed at the
periphery of the tissue, close to the section site (26). Taken
together, the activation of follicles can be significantly promoted
by intervening the important components of PI3K pathway,
while the Hippo pathway is blocked through the fragmentation
of the ovarian cortex (9, 25–27).

At present, common basic media for IVA include MEM-
alpha, Waymouth’s medium, D-MEM, and McCoys 5a (17, 34,
39, 40). Different laboratories seem to choose the medium
used according to their preferences and practices, because no
study comparing all media exists. In an early research, two
complex media (α-MEM and Waymouth’s) were compared with
a simple salt solution (EBSS), all of which contained 10% human
serum. Results showed that in ovarian tissue cultured in α-
MEM, follicle growth was significantly greater and development
was improved compared to that seen in follicles cultured with
Waymouth’s medium. A proportion of follicles cultured with
both α-MEM and Waymouth’s media reached secondary stages
on day 10 of culture. However, only follicles cultured with α-
MEM reached preantral stages until days 15 (41). Both media
contained amino acids, vitamins, and inorganic salts, but α-MEM
has some unique components, including alanine, serine, lipoic
acid, ribonucleosides, and deoxyribonucleosides. Meanwhile,
the vitamin concentration in α-MEM are higher than that in
Waymouth’s medium. Unfortunately, the study did not discuss
the specific reason of different effects of the two media. It would
be interesting to investigate how various nutrients in different
media act on primordial follicle IVA.

Further understanding of effect of specific factors on the
activation process was another hot topic to improve the quantity
and quality of IVC follicles. For example, on the basis of α-
MEM, the culture system with human albumin and ITS (insulin,
transferrin, selenium) is more favorable to the activation and
development of human follicles, leaving less atretic follicles,
than that with serum alone. And the addition of follicle
stimulating hormone (FSH) to the media greatly reduces atresia
and increases follicle diameter simultaneously (41). However, the
findings in different reports could be contradictory. One study
in 2005 showed that human follicular recruitment and activation
were promoted in culture media with 300 ng/ml anti-Mullerian
hormone (AMH) (40), while another research in 2006 disclosed
the inhibitory effect of 100 ng/ml AMH on human follicles
activation (42). The reason for the difference between findings
was unclear. It is possible that AMH influences primordial follicle
activation in a dose-dependent manner as shown in a study using

an ovine pre-pubertal ovarian cortex culture system (43). In fact,
no unified standard for the timing and dosage of important
additives has been developed. Currently, a consensus has been
reached that the interaction between oocytes and somatic cells
is essential for the activation and development of follicles (18).
The intercellular communication is influenced by the members
of TGF beta superfamily, especially the oocyte specific factors:
growth differentiation factor (GDF)-9 and bone morphogenetic
protein (BMP)-15 (44). In human follicles, GDF-9 and BMP-
15 are expressed both in oocytes and cumulus granulosa cells.
The increase of mRNA levels in cumulus cells is related to the
oocyte maturity and fertilization rate (45), and the addition of
GDF-9 or BMP-15 in IVC system can promote the activation
of human primordial follicles, with seemingly more beneficial
effects of GDF9 (46). Other factors, such as basic fibroblast
growth factor (bFGF), kit ligand (KITL), keratinocyte growth
factor (KGF), leukemia inhibitory factor (LIF), stem cell factor
(SCF), vascular endothelial growth factor (VEGF), and cyclic
adenosine monophosphate (cAMP), have also been proved to
improve the activation and survival of cultured follicles in vitro
(47–49). Shown in Table 1.

DEVELOPMENT STAGE: IN VITRO

GROWTH (IVG) OF SEPARATED
SECONDARY FOLLICLES

As mentioned above, the culture system based on primordial
follicles needs to start from human ovarian cortex tissue,
in which the activated follicles are capable of developing to
secondary stage, withmulti-layer granular cells. However, further
development will be inhibited if secondary follicles are not
separated from the cortex (17, 23, 39). Secondary follicles can
be separated by an enzymatic method, mechanical method or
combination of the two methods. Mechanical isolation, with
a fine syringe needle, has been commonly used for follicle
isolation (17, 50, 51). This method preserves the natural follicular
morphology, maintaining an intact theca cell layer and a normal
basement membrane. However, it is inevitably laborious and
inefficient (52), especially for denser human ovarian tissue.
Enzymatic follicle isolation typically involves collagenase and
DNase enzymolysis, by which the COCs were obtained frommice
ovaries, and offsprings were produced following appropriate
culture, indicating that intact follicle structure is not an absolute
requirement during follicle IVC (53). A later study on molecular
level showed that theca cells of mechanically-isolated secondary
follicles induced the expression of IGF1 and promoted follicular
growth in mice, while many follicles with theca cells still showed
no growth during culture (54). It seems that theca cells affect
follicular development to some extent, but may not be the only
and necessary factor, as long as migration of granulosa cells
from oocyte could be minimized (53). Interestingly, one study
even demonstrated that although incubated with enzymes for 1 h,
most enzymatically isolated follicles contained more theca cells
compared with mechanically isolated follicles, which is contrary
to our general thought (55). However, the influence of the
operating technology of the experimenters cannot be excluded.
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TABLE 1 | Reported additives in human follicle in vitro activation stage.

Additives Species Dose Mechanism Effect Detection method

740Y-P

(26, 34, 35)

Human 150µg/ml PI3K/AKT activator More follicles activated, no survival

difference;

Increase in p-PTEN levels and Akt

and rpS6 phosphorylation;

Higher serum AMH;

Healthy baby achieved.

Histological analysis;

TUNEL apoptosis assay;

Immunohistochemistry for

Ki67, GDF9, rtPCR for TSC1,

LATS1, Kit Ligand; E2 and

AMH assay.

bpV(HOpic)

(26, 34, 35)

Human 30µM PTEN inhibitor

bpV (HOpic) (36) Human 1µM PTEN inhibitor More follicles activated, with limited

growth and reduced survival of

isolated follicles.

Histological analysis;

Immunohistochemistry for

FOXO3.

rhAMH (40) Human 300 ng/ml May rescue some follicles

from entering atresia

Enhance follicles recruitment,

survival and growth.

Histological analysis

rrAMH (42) Human 100 ng/ml Act as a negative paracrine

feedback signal

Suppress the initiation of the growth

of primordial follicles, without

detrimental effect on viability or

follicle density.

Histological analysis

FSH (41) Human 300

mIU/ml

Prevent apoptotic atresia;

Mitogenic function

Reduce the proportion of atretic

follicles; Increase follicle size and

healthy follicles.

Histological analysis

HSA+ITS (41) Human 2.5% HSA;

1%ITS*

Promote cell proliferation; Act

as free-radical scavengers.

Reduce the proportion of atretic

follicles; Increase follicle size and

healthy follicles.

Histological analysis

GDF9 (46) Human 10 ng/ml BMP15 activates the

intracellular signal-mediated

pathways

Smad1, Smad5, and Smad8;

GDF9

activates Smad2 and Smad3

More follicles activated; Histological analysis;

Immunohistochemistry
100 ng/ml More follicles activated; increase

PCNA expression;

BMP15 (46) Human 10 ng/ml More follicles activated;

100ng/ml Increase PCNA expression;

cAMP (48) Human 0.5mM Induce formation of the FSH

receptor, as an intracellular

second messenger

More follicles activated; Histological analysis

*1% ITS includes 10 mg/ml insulin, 5.5 mg/ml transferrin, and 6.7 ng/ml sodium selenite.

rhAMH, recombinant human anti-Mullerian hormone; rrAMH, recombinant rat anti-Mullerian hormone; FSH, follicle stimulating hormone; HSA, human serum albumin; GDF9, growth

differentiation factor 9; BMP15, bone morphogenetic protein 15; cAMP, cyclic adenosine monophosphate.

Most recently, a research compared four isolation methods
(two mechanical and two enzymatic) with mice, concluding
that mechanical methods were preferable, with better follicular
growth, survival, and MII rate. In addition, mincing isolation
with a cell dissociation kit (SigmaAldrich) was more effective
than conventional mechanical isolation (56). Overall, there
is no one method that is absolutely superior to the others.
And considering the difference between ovaries of mice and
humans, both methods need to be improved and well-designed
comparative researches on human samples are required.

IVG of isolated secondary follicles also depends on oocyte
somatic interaction (57). At this stage, addition of activin and
low-dose FSH, based on IVA medium, can help to maintain
the intercellular connection, improve the quality of oocytes and
promote the formation of antrum, which has been verified in
dog, bovine, and human experiments (17, 39, 58, 59). Addition of
200 ng/ml bFGF in IVG medium also promotes the development
of human ovarian early follicles (60), as shown in Table 2.

In addition to optimizing the composition of culture medium,
the physical environment of isolated follicle culture is also widely

concerned. Conventional planar 2D culture plates may destroy
the connection between human oocytes and granulosa cells,
and inhibit the development of follicles (61). Therefore, some
3D culture systems were established to support the IVG of
pre-antral follicles, and tissue engineering technology was also
applied to this stage (62). Human preantral follicles can be
encapsulated in bio-matrices such as alginate to complete growth
and development in vitro (63). Alginate is a polysaccharide found
in algal cell walls, which can form rigid and controllable gel.
Studies have shown poor growth of mouse follicles embedded in
1% alginate gels (64), while 0.5% alginate gel supports the growth
of human oocytes well (63). The research using microfluidic
technology to encapsulate follicles also proved the function of
mechanical heterogeneity in follicle development and ovulation
(65). This indicated the effect of rigidity of the gel and the
significance of balancing flexibility of the gel to accommodate
cell proliferation with its rigidity to avoid collapse of the follicle
structure (66). Other scaffolds such as de-cellularised ovarian
tissue and 3Dmicroporous scaffolds were also applied to support
human pre-antral follicle growth (67, 68).
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TABLE 2 | Reported additives in human follicle in vitro growth stage.

Additives Species Dose Mechanism Effect Detection method

Actin A

(39)

Human 100 ng/ml Regulate granulosa cell growth and

differentiation

Increase follicles diameter;

Higher estradiol secretion;

More healthy follicles

Histological analysis;

Diameter measurements;

Detection of estradiol in culture

media by enzyme immunoassay

FSH (59) Human 1.5 U/ml Increase E2 production Promote follicle antrum formation

and growth

Histological analysis;

E2 assay.

bFGF (60) Human 200 ng/ml Promote GC proliferation, suppress

apoptosis in preantral follicles, and

enhance early follicle cell

differentiation.

Higher diameter and survival rate,

with good viability.

Histological analysis;

Confocal analysis.

FSH, follicle stimulating hormone; bFGF, basic fibroblast growth factor.

In previous multi-step IVC system of human follicles, isolated
secondary follicles were directly placed in a 96 well V-bottomed
plate, without any extracellular matrix or scaffold. Sixty-two
percent of the follicles completed the process of growth,
differentiation and follicle antrum formation, but only 8% of
the follicles finally reached MII stage (17). Another team’s
research showed that the follicles encapsulated in alginate can
reach 110µm in diameter after 30 days of culture, while the
oocytes in these follicles cannot reachMII stage (63). Considering
that human immature follicles gradually move from the rigid
collagen-dense cortex zone to the less dense perimedullary region
as they grow (69, 70), this team released a portion of follicles
from the alginate hydrogels at antral stage, and then continued
the culture in low-attachment plates for up to 40 days in further
study. Results showed that follicles cultured with only alginate
encapsulation produced oocytes that either remained in the
germinal vesicle (GV) stage or degenerated, while 20% (four out
of 20) of follicles cultured using the two-step strategy produced
meiotic competent MII oocytes (61). In the future, more research
is needed to compare different culture environments to find out
which one best supports the development of follicles in vitro.

MATURATION STAGE: IN VITRO

MATURATION (IVM) OF OOCYTES

Since human immature oocytes were cultured by IVM
technology, resulting in a live birth after fertilization in 1991
(71), many studies regarding the establishment and optimization
of the IVM system have been reported. The source of oocytes
selected for IVM seems to be a crucial factor as the successful
maturation of immature oocytes is lower than that of oocytes
obtained from stimulated ovaries (72, 73). The developmental
competence of IVG derived oocytes is different from that of
natural or controlled ovulation cycle derived oocytes. Therefore,
if IVG is to be used in clinical practice, IVM conditions need to
be optimized (74).

In 2008, Telfer et al. developed a two-step culture system,
which initially demonstrated that individual human pre-antral
follicles grown in vitro from the primordial stage, within human
ovarian cortical strips, can be isolated and have the potential to
grow to the antral stage (39). From then, scientists have been

working on bridging the gap between IVG of follicles and IVM
of oocytes. The oocytes produced by IVG need to be transferred
to the maturation medium when they reach a certain stage, so
as to complete the final meiotic resumption and maturation. In
2015, a study comparing alginate encapsulation culture and two-
step culture of isolated follicles revealed that the diameters of
oocytes that reached the MII stage was not significantly different
from that of oocytes that remained in GV stage, indicating
that the oocyte meiotic competence could be achieved although
the terminal follicle size cannot reach the size of preovulatory
follicles in vivo (61). In the later modified multi-step IVC system,
follicular antrum formation was observed within 6–8 days of
isolated follicle culture, and at the time COCs were removed for
subsequent culture, without waiting for the follicle diameter to
increase to the preovulatory follicle level. After IVM, oocytes
with a diameter over 100µm were obtained and few of them
developed to MII stage (17). These results indicated that a more
direct and efficient IVC process could be achieved based on the
development of oocytes rather than the diameter of follicles.

However, the maturation rates of IVG derived oocytes were
still not ideal. In the most recent multi-step culture system,
32 COC from IVG were selected for IVM, and nine oocytes
emitted polar bodies after 24 h of maturation (17). Optimization
is required not only for the IVM stage, but also for the whole
culturing course. Nevertheless, most of the studies focused
merely on thematuration stage of the oocytes, so the oocytes used
in the experiments were obtained mainly from immature oocytes
in the COH cycle, while IVG derived oocyte maturation was less
reported. While almost all the literature on IVM optimization
was based on oocytes harvested from stimulated ovaries, a review
of the results of these literature still helps to optimize IVM
following IVG.

Common basic media for IVM include α-MEM, SAGE, TCM-
199 (17, 61, 75), although which medium is better for oocyte
maturation is still uncertain. To explore the best conditions
of IVM, a good understanding of the mechanism of oocyte
maturation is needed. cAMP plays a crucial role in regulating
oocyte maturation. The granulosa cells in the outer layer contain
C-type natriuretic peptide (CNP), while the natriuretic peptide
receptor (NPR2) is expressed in the cumulus cells around the
oocytes. The paracrine factors of oocytes promote the activation
of NPR2 in the cumulus cells, and the CNP binds to the
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TABLE 3 | Reported additives in human follicle in vitro maturation stage.

Additives Species Dose Mechanism Effect Detection method

Melatonin (75) Human 10

µmol/L

Maintain the mitochondrial oxidative

phosphorylation function in the

oocytes by effectively inhibiting

environmental stress, providing

sufficient ATP for subsequent

embryo development.

Increased high-quality blastocyst

formation rate, with low aneuploidy

rate.

Blastocyst grading and examination

of aneuploidy;

Single-cell RNA-sequence analysis;

Detection of ROS and calcium

levels in human oocytes;

Mitochondrial function assay in

human oocytes

GH (81) Human 200 ng/ml Accelerate meiotic progression,

balance redox homeostasis of

cellular environment, and promote

oocyte developmental competence

Promote maturation of human

oocytes Oocyte RNA Sequencing;

Real-Time PCR for Validation

CNP (80) Human 25 nM Binds the Natriuretic peptide

receptor 2 (NPR2), induces the

production of cGMP

Increase the meiotic maturation rate Evaluation of blastocyst yield;

Documentation of aneuploidy rate

in blastocysts; Assessment of

cumulus-oocyte TZPs; Evaluation of

chromatin configuration in GV

oocytes

GDF9 (82) Human 200 ng/mL Promote cumulus expansion Increase the embryo formation rate

and blastocyst viability

Assessment of maturation,

fertilization, embryo formation,

blastocyst formation rate, and

blastocyst viability (by Propidium

iodide/Hoechst staining).

Cilostamide

(79)

Human 20µM PDE3 specific inhibitor Positively influence oocyte

developmental competence by

exhibiting a synergistic effect on the

prevention of gap junction

communication loss and

resumption of meiosis

Intercellular gap junction

communication and maturational

status were examined by

fluorophotometry;

Forskolin (79) Human 50µM Adenylate cyclase activator

GH, growth hormone; CNP, C-type natriuretic peptide.

NPR2 receptor in the cumulus cells to produce cyclic guanosine
monophosphate (cGMP), which enters the oocytes through gap
junctions, inhibits the activity of phosphodiesterase (PDE3A),
maintains a high level of cAMP, and thus keeps the meiosis arrest
of oocytes. When PDE3A is activated by LH, the cAMP level in
oocytes would be down-regulated, resulting in resumption from
meiotic arrest of the immature oocytes in the GV stage or the first
meiotic metaphase. Subsequently, the oocytes reach MII stage
and complete maturation (76).

Accordingly, synchronization of nuclear and cytoplasmic
maturation processes within the oocyte could be achieved
through controlling COC cAMP level. Experiments showed that
artificial regulation of meiotic resumption by cAMP elevating
agents improved subsequent human oocyte developmental
competence (77, 78). Combined treatment of cilostamide
(PDE3 specific inhibitor) and forskolin (adenylate cyclase
activator) positively influences the IVM oocyte developmental
competence (79). Using CNP in the medium increased the
meiotic maturation rate of IVM human oocytes (80). Some
other factors also have been proved to promote oocyte
maturation or benefit subsequent processes (Table 3). The
addition of GDF9 had no effect on maturation rate, while
it significantly enhanced fertilization, embryo formation, and
viability rates of blastocysts (82). And the growth hormone (GH)
was applied to improve the IVM maturation rate of human
oocytes (81). More specifically, melatonin had no significant

effect on the maturation rate of oocytes, while it increased
the blastocyst formation rate after fertilization from 24.5 to
49.3%, by protecting mitochondrial function (75). High-glucose
concentrations altered DNA methylation levels of Peg3 and
adiponectin in human IVM oocytes (83).

CONCLUSION AND PROSPECTS

Based on the animal experiments and the basic human follicle
IVC system established, the concept of achieving MII oocytes
from human primordial follicles through IVC to obtain offspring
after in vitro fertilization (IVF) seems promising. However,
currently, the clinical use of human follicular IVC systems is
still limited by low MII rates, ambiguous fertilization capacities,
and unknown safety. Based on the information provided
by this review, future studies may focus on the following:
(1) IVA: clarifying the safe concentration and safe exposure
duration of existing activators, or further exploring the drug-
free activation; (2) IVG: exploring the optimal method and
timing of human follicle isolation, and developing the 3-
dimension system, combined with bioengineering technology,
such as microfluidic technology (84, 85), to simulate the in vivo
follicular development environment; (3) IVM: establishing a
whole-course culture system to improve the maturation rate and
developmental potential of IVG-derived oocytes, in addition to
studying this stage alone; (4) to explore the fertilization ability
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and embryo developmental potential of mature oocytes obtained
by IVC within ethical agreements.

In conclusion, IVC is likely to provide an ideal option for
the fertility preservation of young cancer patients and for the
infertility treatment of patients with POI or POF in the future.
However, before this technology is applied to clinical practice, a
large number of studies are required to optimize each stage of
follicular development in vitro, establishing a relatively unified,
standard, efficient and safe culture system.
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