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Nutrients are required for growth and survival of all cells, but are also crucially involved

in cell fate determination of many cell types, including immune cells. There is a

growing appreciation that the metabolic micro-environment also plays a major role in

shaping the functional properties of dendritic cells (DCs). Under pathological conditions

nutrient availability can range from a very restricted supply, such as seen in a tumor

micro-environment, to an overabundance of nutrients found in for example obese

adipose tissue. In this review we will discuss what is currently known about the metabolic

requirements for DC differentiation and immunogenicity and compare that to how

function and fate of DCs under pathological conditions can be affected by alterations

in environmental levels of carbohydrates, lipids and amino acids as well as by other

metabolic cues, including availability of oxygen, redox homeostasis and lactate levels.

Many of these insights have been generated using in vitro model systems, which have

revealed highly diverse effects of different metabolic cues on DC function. However, they

also stress the importance of shifting toward more physiologically relevant experimental

settings to be able to fully delineate the role of the metabolic surroundings in its full

complexity in shaping the functional properties of DCs in health and disease.

Keywords: dendritic cells, metabolism, nutrient availability, tumor micro-environment, diabetes

INTRODUCTION

DCs are crucial for the regulation of immunity and tolerance during infections as well as during
immune homeostasis in steady state, by governing the activation and maintenance of different
CD4+ T helper subsets and CD8+ cytotoxic T cell responses. DCs are a heterogenic population
of cells that comprise several lineages, including conventional DCs (cDCs), plasmacytoid DCs
(pDCs), Langerhans cells (LCs), and inflammatory monocyte-derived DCs (infDCs) (1). Two
main lineages can be identified within the cDCs, IRF8-dependent cDC1s and IRF4-dependent
cDC2s (2). These different DC subsets have specialized largely non-redundant functions in priming
and regulation of T cell responses (2). For instance, cDC1s and cDC2s are considered to be
the most potent activators of T cells, that are particularly well-equipped to prime CD8+ and
CD4+ T cell responses, respectively. pDCs, on the other hand, play an important role in the viral
defense by producing large amounts of type I interferons. infDCs develop from monocytes during
inflammation and have been described to have a role in innate inflammatory responses as well as in
T cell priming (3). Given the scarcity of DCs in vivo, several in vitro experimental models have been
developed to study DC biology. In this respect monocyte-derived DCs (moDCs), obtained from
monocyte cultures supplemented with granulocyte-macrophage colony-stimulating factor (GM-
CSF) and IL-4 are a widely used model to study human DC biology and metabolism (4). moDCs
share phenotypical and functional similarities with cDCs, but closely resemble infDCs at the
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transcriptional level (5, 6). In vitro generated murine DCs
are commonly derived from GM-CSF-stimulated bone marrow
(BMDCs), which bear resemblance to antigen presenting
monocyte-derived murine inflammatory DCs. Flt3L-stimulated
bone marrow cultures (Flt3L-DCs) give rise to equivalents of
multiple steady state splenic DC subsets, including cDC1s,
cDC2s, and pDCs (7–9). Regulation of the functional properties
of DCs is dictated by their ontogeny, but also strongly influenced
by their micro-environment. While the effects of danger signals,
cytokines and chemokines are extensively reviewed elsewhere,
we will focus on the role of metabolic cues in tuning DC
function (10–12).

Over the last decade it has become increasingly clear that
immune cell activation, proliferation, fate and function are
closely linked to, and dependent on activation of specific
metabolic pathways (13). Since these metabolic shifts are largely
fueled and dependent on nutrients present in the immune
cell niche it is becoming evident that the metabolic micro-
environment is a vital factor in shaping the outcome of an
immune response (14, 15). This review describes the latest
insights into the nutritional requirements for DCs to drive an
effective immune response and how altered nutrient availability
in diseased states may affect the immunogenic or tolerogenic
properties of DCs. In this context we will particularly focus on
nutrient-limiting and excessive nutrient conditions as found in
cancer and diabetes, respectively. Overall we here aim to provide
an overview of how the metabolic micro-environment affects the
functional properties of DCs.

METABOLIC DEMANDS OF DCs DURING
AN IMMUNE RESPONSE

During homeostasis DCs reside in peripheral tissues in a
relatively quiescent state. However, upon sensing of changes
in this homeostatic state, either due to invading pathogens
or tissue-derived inflammatory signals, DCs undergo a
well-defined activation program that involves increased
capturing and processing of antigens for presentation in major
histocompatibility complex I (MHC-I) and MHC-II and the
induction of expression of chemokine receptors, cytokines,
and costimulatory molecules. This enables DCs to traffic, via
tissue-draining lymphatic vessels, to T cell zones of secondary
lymphoid organs to efficiently prime and control effector T cell
responses. Here, we discuss how the availability of carbohydrates
(glucose), amino acids and lipids influences these functions of
DCs during an immune response.

Glucose
A well-described phenomenon in immune cells, including DCs,
is the switch from catabolic metabolism, characterized by fatty
acid oxidation and mitochondrial respiration (Figure 1A) to
anabolic metabolism, with enhanced glycolytic rates and lowered
oxidative phosphorylation following activation (Figure 1B).
BMDCs increase glycolytic rates within minutes after stimulation
with LPS (TLR4), Poly(I:C) (TLR3), and CPG (TLR9) and also
for moDCs a rapid glycolytic increase has been observed upon

LPS stimulation (16–20). Likewise, human myeloid CD1c+ DCs
and human pDCs show a similar metabolic reprogramming
upon pRNA (TLR7/8) stimulation or viral infection (TLR7),
respectively (21, 22). Although this points toward increased
glucose utilization to fuel glycolysis as a conserved metabolic
response to TLR stimulation by DCs, the function of this
metabolic reprogramming and fate of glucose-derived carbons
can change over time after activation, as discussed below.

For LPS-induced BMDCs the switch to enhanced glycolysis is
essential, given that inhibition of glycolysis using 2-deoxyglucose
(2-DG) interferes with activation and their capacity to induce T
cell proliferation in vitro and in vivo (16, 23). Correspondingly,
changing glucose concentrations in culture media from 10 to
0mM diminished the upregulation of co-stimulatory markers
CD40 and CD86, and production of p40, subunit of IL-12 and
IL-23 in LPS-stimulated murine BMDCs (16). In the presence
of glucose, LPS stimulation enhances glycolysis via activation
of the PI3K/Akt pathway and promotes loss of mitochondrial
respiration via stabilization of Hypoxia-inducible factor 1-alpha
(HIF1α) and expression of Inducible nitric oxide synthase (iNOS)
in BMDCs (16, 17, 24). iNOS is involved in production of nitric
oxide (NO) which in an autocrine manner poisons oxidative
phosphorylation (17, 24). These TLR-induced events are largely
absent in BMDCs activated by LPS in the absence of glucose,
due to impaired mTOR activation, thereby further establishing
the crucial role for glucose in supporting TLR-induced DC
activation (Figure 1B). Mechanistically, BMDCs require glucose
as a carbon source for fatty acid synthesis (FAS) to support ER
and Golgi membrane expansion that is needed to accommodate
the increased demands for protein translation during activation
(23). To this end, glucose is metabolized in the TCA cycle to
citrate, which is used as a carbon substrate for FAS (Figure 1B).
In contrast to this anabolic role that glucose-derived carbon
plays during BMDC activation, once activated, glucose is used
in glycolysis by BMDCs purely for bioenergetic purposes (e.g.,
synthesis of ATP) to compensate for loss of OXPHOS due to
the autocrine effects of NO derived from iNOS that poisons
the ETC (17). Apart from direct usage of extracellular glucose,
BMDCs and moDCs can also utilize intracellular glycogen stores
to fuel glycolysis. These glycogen stores are formed prior to TLR
stimulation and essential for activation and subsequent T cell
stimulation in both moDCs and BMDCs by directly contributing
to FAS (Figures 1A,B) (19).

Upon TLR-ligation, DCs upregulate CCR7 and are attracted
toward lymphatic vessels that secrete CCR7 ligand CCL21
(25). In BMDCs the presence of glucose in the medium and
subsequent activation of glycolysis are required for CCR7
oligomerization and cytoskeletal changes that support the
mobility of DCs. Correspondingly, glucose depletion reduced
migration of splenic DCs toward CCL21 ex vivo and 2-DG
administration in an experimental model of allergic asthma,
reduced migration of CD11c+MHCIIhi DCs to the lung (26).
Similarly, BMDCs pulsed ex vivo with OVA plus LPS in
the presence of 2-DG, displayed impaired migration toward
skin-draining lymph nodes following subcutaneous injection.
Altogether this points toward an important role for glucose in
DC migration in vivo (Figure 1C) (16).
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FIGURE 1 | Metabolic demands of conventional DCs during homeostasis. (A) Quiescent DCs in peripheral tissues require, glucose and lipids as fuel for mitochondrial

ATP generation and to build up intracellular storage of lipids and glycogen. (B) After TLR ligation uptake of glucose and BCAAs increases and together with glucose

derived from glycogen this supports the switch from catabolic to anabolic metabolism, which is required for DC maturation. During this process, lipid bodies support

cross-presentation. Glutamine, cysteine, and glutamate promote DC activation via maintaining redox homeostasis and promoting antigen presentation. (C) Glucose

also promotes migration via stimulating CCR7 oligomerization and inducing cytoskeletal changes. (D) In the lymph nodes local glucose availability may be reduced

due to glucose consumption by T cells, which may allow for more sustained expression of costimulatory markers and thereby more potent T cell priming. Red boxes:

nutrients. Blue boxes: Functional consequences. Dotted arrow: presumed mechanism. ER, Endoplasmatic reticulum; Golgi, Golgi apparatus.

Interestingly, there are indications that the role of glucose
in priming of T cell responses by DCs changes once the
cells interact with T cells. It has been shown that the T cell-
priming capacity of BMDCs declines after 24 h following TLR
stimulation, which was associated with a reduction in expression
of costimulatory molecules (27). However, this reduction in
expression was prevented when 8 h after stimulation glucose
was replaced with galactose, a carbohydrate that cannot be
efficiently used in glycolysis. These data indicate that after the
initial need for glucose, sustained high glycolytic rates repress
BMDC activation (Figure 1D). Hence a local glucose-limiting
micro-environment when DCs interact with T cells, may actually

support T cell priming and an active immune response (24).
Interestingly, both in vitro and in vivo data suggest that reduction
of glucose availability may occur naturally during T cell priming
in lymph nodes, due to scavenging of glucose by T cells that are
being activated by DCs (24).

Many studies addressing the role of glycolysis, use glucose
analog 2-DG to mimic glucose starvation. 2-DG can reduce
mitochondrial metabolism independently of reducing glycolysis
(28). Moreover, treatment of LPS-activated moDCs with 2-DG
has been documented to result in ER-induced upregulation of
IL-23 expression, while glucose depletion did not. These data
indicate that the effects of 2-DG are not always connected to
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glycolysis and warrant caution when interpreting data from
studies that have used 2-DG to interrogate the role of glycolysis in
DC biology (29). In addition, most of the studies described above
have been performed in BMDCs, in which iNOS plays a major
role in the suppression of mitochondrial respiration in response
to TLR stimulation. Most other DC subsets, including moDCs
and primary human DCs, do not express iNOS (30). Hence, the
role of oxidative phosphorylation during an immune response
in human DCs may be underestimated and in physiological
settings DCs may rely less on glucose as predicted based on
BMDC experiments. Thus far, it has not been addressed whether
other nutritional carbohydrates shape DC function, but it is
worth investigating, given that an immunosuppressive role for
D-mannose was found in T cells (31). In conclusion, there is
clear evidence that many aspects of DC activation are dependent
on availability of glucose in the micro-environment. Glucose
initiates metabolic reprogramming required for activation and
boosts DC migration toward lymph nodes, while during T
cell interaction glucose may have an immunosuppressive effect
on DCs.

Amino Acids
Amino acids are important for fueling mitochondrial respiration,
for protein synthesis, as well as acting as a source of carbon
and nitrogen for the synthesis of various other macromolecules.
There are clear indications that amino acids in the environment
of DCs play an important role in regulating their function.
For example, lowering the supraphysiological amino acid
concentrations commonly found in standard culture media
to ones found in human plasma, increased the efficiency of
moDC differentiation (32, 33). Conversely, moDCs in media
containing imbalanced amino acid concentrations, as found in
plasma of liver cirrhosis patients, showed impaired expression of
maturation markers, secretion of IL-12 and migratory capacity in
response to LPS stimulation, compared to moDCs stimulated in
control medium (32, 33). The amino acid imbalance interfered
with mitochondrial metabolism of immature DCs, causing a
reduction in ATP levels and an increase in glucose consumption,
which could not be further increased by LPS stimulation. This
together supports the idea that several aspects of DC biology,
including differentiation, activation and core metabolism, are
sensitive to changes in amino acid concentrations in their
environment (33).

In addition to the aforementioned work implicating amino
acids in general in regulating DC function, there are several
studies that have specifically interrogated the role of individual
amino acids in this context. LPS stimulation of moDCs has been
shown to enhance the uptake of aspartate, cystine, glutamate,
and branched chain amino acids (BCAAs) valine, leucine,
and isoleucine (33). Depletion of BCAAs and in particular
valine from culture media of moDCs impairs maturation upon
LPS stimulation, characterized by lowered CD83 levels and
decreased ability to induce T cell proliferation. Additionally,
mTOR signaling was impaired, which raises the possibility
that BCAAs may affect DC maturation through modulation of
metabolism via the mTOR pathway (Figure 1B) (34). Of note,
as the above mentioned studies were performed in serum-free

media with high glucose concentrations (25mM), the relevance
of these results under more physiological settings remains to
be established. BCAAs are also important for maturation of
moDCs stimulated with TLR7/8 ligand protamine-RNA (pRNA).
In contrast to LPS stimulation, pRNA ligation boosts fatty acid
oxidation (FAO)-dependent mitochondrial respiration and high
intracellular levels of BCAAs are required to induce moDC
maturation via FAO (20). BCAA leucine may play a key role
in supporting FAO, as leucine can promote mitochondrial
biogenesis (35). LPS treatment also increases uptake of glutamate
and cystine in moDCs and inhibition of the cystine/glutamate
antiporter in these cells reduced glutathione synthesis, but did
not change the expression of maturation markers. Nevertheless,
treatingmurine splenic DCs with an cystine/glutamate antiporter
inhibitor resulted in lowered antigen presentation to both
class I and class II MHC-restricted T cells (Figure 1B) (36).
Hence, cystine and glutamate may be crucial metabolites
for DC maturation via their role in redox homeostasis and
antigen presentation.

As mentioned before, FAS is upregulated in BMDCs
following LPS-stimulation. In cancer cells glutamine can
contribute to lipogenesis via NADPH production that takes
place when glutamine is metabolized to lactate or when
glutamine is converted to citrate, facilitated by reductive
carboxylation (37, 38). However, depleting glutamine (from 2
to 0mM) from BMDC culture media did not affect CD40
and CD86 levels and inhibition of glutaminolysis had no
effect on the metabolic alterations 6 h after LPS stimulation
(19, 23). Interestingly, in BMDCs stimulated with TLR7/8
ligand imiquimod, glutamine deprivation, or disruption of
glutaminolysis enhanced mitochondrial reactive oxygen species
(ROS) production and subsequently IL-23 expression. This may
suggest that glutamine, by supporting NADPH production, may
contribute to scavenging of ROS in BMDCs, rather than to FAS-
dependent activation (Figure 1B) (39). In addition, glutamine
may fuel the TCA cycle to support oxidative phosphorylation
in DCs as human pDCs increased oxidative phosphorylation
following pRNA stimulation and inhibition of glutaminolysis
in these cells caused a significant decrease in activation, IFNα

secretion and mitochondrial respiration (21). Since activation
of human CD1c+ myeloid DCs using pRNA resulted in
reduced oxidative phosphorylation and as immunogenicity
remained unaffected by inhibition of glutaminolysis, this effect
of glutamine may be selectively associated with DC subsets that
depend on mitochondrial respiration upon activation, such as
pDCs (21).

Apart from glutamine, the importance of availability of
different amino acids on DC biology are still poorly defined
and are mainly addressed in moDCs. Possibly, due to the
low proliferative capacity of differentiated DCs and therefore
expected relative little dependency on anabolic metabolism,
general amino acid availability may be less of critical factor for
DC function than for other more proliferating cells. Nonetheless,
as studies exploring the role of glutamine onDC function suggest,
specific amino acids may be important in regulation of certain
metabolic properties of DCs that are essential for their functional
output. Hence, single amino acid depletion studies under more
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physiological nutrient levels may unravel novel roles of amino
acids in DC function.

Lipids
In contrast to activated DCs, in which glycolysis is often the main
bioenergetic pathway, immature quiescent BMDCs and Flt3L-
induced cDC1s rely on FAO for energy generation, which would
support a longer lifespan for these immature cells (Figure 1A)
(16, 17, 40). Lipids from the local micro-environment may
function as important nutrients for FAO in resting DCs. In
human Lin-HLA-DR+ and murine CD11c+ hepatic DCs, high
lipid content is associated with a stronger immune response
(41). These lipids derived from both fatty acid (FA) uptake and
synthesis and are stored in lipid bodies. Short term priming with
triacyl glycerides of murine DCs containing few lipid bodies did
not boost their immunogenic capacities, suggesting that pre-
stored lipids rather than direct lipid availability in the micro-
environment is important for hepatic DC immunogenicity (41).
Mechanistically, lipid bodies in murine BMDCs and splenic
CD11c+ DCs have been shown to boost CD8+ T cell priming
by supporting cross-presentation, a process by which peptides
from exogenous antigens are presented in MHC-I (42). It is
therefore tempting to speculate that resting DCs may not only
utilize FAs from the extracellular environment to fuel FAO for
their bioenergetic homeostasis, but also to form lipid bodies to
help prepare them for potent T cell priming after activation
(Figure 1A).

In contract to conventional DCs, FAO can increase upon
TLR7/8/9 stimulation of pDCs (20, 43). Interestingly, FAO in
murine bone marrow-derived pDCs is fueled with FAs that are
synthesized de novo (43). LPS is also known to increase FAS
in BMDCs, possibly suggesting that FAO during an immune
response predominantly depends on de novo synthesis and not
on the FA availability in the micro-environment (Figure 1B)
(18, 23). Correspondingly, in rats it was found that lipid content
between different cell types in the same micro-environment was
more similar than lipid content betweenDCs from distinct lymph
nodes. Additionally, in vivo LPS stimulation diminished the
differences observed between distinct DCs, supporting the notion
that lipid accumulation during inflammation is independent
of FA availability, while lipid storage during homeostasis
does appear to be determined by the micro-environment
(Figure 1A) (44).

In summary, it appears that during homeostasis lipid
availability influences the types and amount of lipids stored
in DCs and at least in some tissues this is important for
their immunogenic potential. During an immune response,
both conventional and pDCs accumulate lipids, most likely
independent of the FA availability in the local micro-
environment, but fueled by FAS. For cDCs the reduced
ability of activated DCs to burn FAs by FAO may also
contribute to lipid accumulation (16). Cultures in lipid-
restricted conditions, 13C-labeled lipid metabolic flux analysis
and lipid profiling of DCs during homeostasis and upon
activation can further elucidate the role of extracellular lipids on
DC function.

Concluding Remarks
The metabolic demands of DCs in non-pathological conditions
are dependent on the subset, their location and the maturation
stage, as summarized in Figure 1. Given that most of these data
are obtained from in vitro studies it is important to realize that
in vitro nutrient availability is often not limiting and exceed the
levels that occur in vivo. Furthermore, nutrient competition with
cells in the proximity of DCs and metabolites secreted by these
surrounding cells are metabolic settings that are hard to mimic
in vitro and difficult to measure in vivo, but likely to affect the
metabolic micro-environment. Nevertheless, it is evident that
nutrient availability is of great importance for the functional
output by DCs.

EFFECTS OF THE METABOLIC
ENVIRONMENT ON DCs IN CANCER

Metabolic Properties of the Tumor
Micro-Environment
Disturbance of nutrient homeostasis is a cause and consequence
of many pathologies. A well-studied and complex disease is
cancer, which is characterized by a wide range of local metabolic
alterations, including nutrient deficiency, hypoxia and oxidative
stress. Cancer is a heterogenous disease that arises from cells
with traits that allow uncontrolled proliferation. One of these
traits, or hallmarks, is avoiding immune detection, required
to prevent elimination by the immune system (45). Cells
within the tumor micro-environment (TME), including tumor
cells, fibroblasts, endothelial cells, and immune cells secrete
immunomodulatory signals that regulate the anti-tumor immune
response (46). Among these factors are cytokines, growth
factors and metabolites. During the initial phases of tumor
growth, tumor-associated DCs (TADCs) are able to recognize
tumor antigens and initiate an anti-tumor T cell response.
However, during tumor progression DCs gain tolerogenic rather
than pro-inflammatory properties (47–49). A major contributor
to immune suppression and another hallmark of cancer is
deregulated cellular metabolism (45). The best known metabolic
adaptation of cancer cells is the Warburg effect, the conversion
of glucose to lactate under aerobic conditions, which allows
for rapid production of ATP and biosynthetic precursors (50).
In addition, tumors also use amino acids and lipids to fuel
the TCA cycle, which promotes ATP generation via oxidative
phosphorylation and synthesis of macromolecules to support
cell growth and proliferation (51–53). Another cancer-specific
metabolic feature is the accumulation of oncometabolites due to
mutations in metabolic enzymes. L- or D-2-hydroxyglutarate (L-
or D2-HG) is a well-known oncometabolite that promotes tumor
growth by regulating DNA and histone modifying enzymes (54).
Finally, malignancies are often characterized by unusually high
concentrations of extracellular ATP and adenosine, hypoxia and
by large quantities of ROS in poorly vascularized regions (52, 55).
The above mentioned metabolic changes and stressors do not
only affect tumor cells, but also reach stromal cells residing
in the TME. Here we will describe how these metabolic cues
affect DCs.
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Nutrient Starvation
The excessive utilization of carbohydrates, amino acids and lipids
by cancer cells results in a limited nutrient supply for cells
residing in the TME. Although there are several seminal papers
showing how nutrient limitation in the TME impairs CD8+ T
cell function, there are few studies that have directly interrogated
the contribution of nutrient starvation to the known suppressive
effects of the TME on DCs (56, 57). Initially upon entering of
DCs into the TME, one could imagine that TADCs may be
able to utilize internal stores of glycogen and lipids to support
the metabolic demands for their survival and immunogenic
activation (19, 41). However, sustained limited access to glucose
may impair metabolic rewiring and thereby DC maturation and
migration to tumor draining lymph nodes (16, 24, 26). Likewise,
based on in vitro studies, as discussed in section Amino Acids,
it stands to reason that also insufficient access to amino acids
may compromise TADC function by affecting mitochondrial
respiration, redox homeostasis and antigen presenting capacity
(33, 36, 39). However, to date no studies have directly addressed
this. On the other hand, the effects of lipids on the function of
TADCs have been studied more extensively and hence will be
discussed in a separate section.

Tolerogenic properties of DCs have been linked to increased
FAO and mitochondrial respiration (18, 58). These processes
are both stimulated by activation of AMPK, an energy-sensing
enzyme that is activated under nutrient limiting conditions
(59). AMPK has been shown to be inactivated in DCs upon
LPS-induced activation (16). Conversely, in TADCs of mice
inoculated with MC38 colon adenocarcinoma cells, activation
of LKB1, one of the main activating kinases of AMPK, was
elevated (60). Hence, the nutrient-poor TME may boost AMPK
signaling in DCs to induce catabolic metabolism that favors
tolerogenic properties. Although no study to date has examined
it directly, it is likely that limited nutrient access in the
TME contributes to immune suppression of DCs (Table 1).
Addressing the influence of tumors with different bioenergetic
profiles on DC activation in vivo and in situ will provide more
insights into the effects of nutrient deprivation on DC-driven
immune suppression.

Lipid Accumulation in Tumor-Associated
DCs
Although tumor cells are generally characterized by high lipid
uptake, TADCs can also take up large amounts of FAs from
the TME (106). Acquisition of lipids by TADCs is facilitated by
the upregulation of genes involved in lipid uptake, including
lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4)
and macrophage scavenger receptor (Msr1). The lipids are
stored in large lipid droplets, which are associated with a
reduced capacity to activate T cells (72–74). As discussed earlier,
high lipid content in hepatic DCs is associated with higher
immunogenicity and LPS stimulation of BMDCs stimulates
lipid droplet formation (23, 41). However, in contrast to lipid
droplets of these DCs, lipid droplets from TADCs contain high
levels of oxidized polyunsaturated FAs. These oxidized FAs
cause accumulation of peptide-bound MHC-I complexes in late
endosomes and lysosomes via capturing of heat shock protein
70, an important mediator of cross-presentation (75, 76). This

TABLE 1 | Metabolic determinants from pathological environments that influence

DC function.

Effects associated with the

TME

Effects associated with

diabetes

References

Glucose (16, 19, 23, 26,

61–71)Local depletion Hyperglycemia

Impaired anabolic metabolism

≫ ↓ Activation

≫ ↓ Migration

AMPK activation

≫ ↓ Activation

Blood DCs

↓/↑ DC counts

= Activation

↑ Migration to metabolic

tissues

In vitro DCs

↓/ = Differentiation

↑ Activation

≫ ↑ Th17 T cell priming

Lipids (39, 72–83)

High intracellular storage Hyperlipidemia

Oxidized lipids

↓ Cross-presentation

↑ Fatty acid oxidation

≫ ↓ Activation

PA

↑ NFκB signaling

Metabolic rearrangements

≫ ↑ Activation

SA

↓ Activation

OA

= Activation

Oxygen levels (84–89)

Low Low

= Differentiation

↑ Innate immunity (immature DCs)

↑ Migration (immature DCs)

= /↑ /↓ Activation

↓ Migration (mature DCs)

ROS (90, 91)

High High

Short term ROS

↑ Activation

Long term ROS

Lipid oxidation

≫ ↓ Activation

Lactate (92–96)

High

Impaired mitochondrial

respiration

≫ ↓ Differentiation

↓ Cross-presentation

Epigenetic modifications

≫ ↓ Activation

ATP and adenosine (97–104)

High

ATP

↑ Migration

NLRP3 inflammasome

activation

≫ ↑ CD8+ T cell priming

↑ regulatory T cell priming

Adenosine

↓ Activation

2-Hydroxyglutarate

High (105)

↓ IL-12

↑ Catabolic metabolism

≫ = Activation

Epigenetic modifications

Overview of extracellular metabolic cues observed in cancer and diabetes that affect DC

function. ↑/↓/=: increased, decreased or equal effect compared to control conditions.≫

Consequence of aforementioned mechanism. Italics: presumed effect.
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limits cross-presentation and thereby priming of cytotoxic T cell
responses (Table 1). Given the importance of FAO in supporting
a tolerogenic phenotype by DCs it is tempting to speculate that
perhaps oxidation of these lipids in the mitochondria contributes
to DC tolerogenicity within the TME (Table 1) (18, 58). What
signals trigger the initial increase in lipid uptake by DCs in the
TME remains to be determined.

Hypoxia
Rapid tumor growth results in poorly vascularized regions
where oxygen supply is limited. The main metabolic response
to hypoxia is stabilization of HIF1α and subsequent activation
of glycolysis, which can also occur independently from HIF1α
activation during DC activation (16, 17, 107). This may explain
why some studies did not find changes in expression of
maturation markers or T cell priming capacity when moDCs
were stimulated with LPS after differentiation in a 1% O2

hypoxic chamber (Table 1) (84, 89). Also differentiation itself
of moDCs is mostly unaffected by hypoxic conditions (84–86,
89). Nonetheless there is also some evidence that 1% oxygen
can impair LPS-induced moDC maturation and T cell priming
potential (Table 1) (85, 87). In addition, hypoxia impaired
migration of in vitro cultured LPS-treated moDCs and human
primary myeloid DCs. Mouse CD34+-derived myeloid DCs
injected in the footpad of mice after they were treated with LPS
and deferoxamine (DFX), a drug that mimics hypoxia, showed
reduced migration to the draining lymph node compared to
untreated cells, indicating that hypoxia reduces migration both
in vitro and in vivo (87, 89). Interestingly, enhanced expression of
migratory genes was found in immature moDCs cultured under
low oxygen conditions (86). This could indicate that the hypoxic
TME has immunosuppressive effects via capturing mature DCs
and elimination of immature DCs. Interestingly, immature
moDCs cultured under hypoxic conditions had increased
expression of genes involved in sensing chemotactic signals from
pro-inflammatory sites and induced secretion of chemotactic
factors that attract neutrophils (84, 85, 87). Additionally, murine
myeloid DCs treated with DFX increased local leukocyte
infiltration in vivo (87). Altogether these data obtained from
moDCs, may indicate that an oxygen-poor environment triggers
DCs to boost innate rather than adaptive immune responses.
However, contrary to human moDCs, murine BMDCs cultured
in hypoxic conditions enhanced expression of costimulatory
molecules, pro-inflammatory cytokine secretion and T cell
proliferation upon LPS stimulation (Table 1) (88). Additional
studies are needed to determine whether these discrepancies
are due to inherent differences between human and murine
DCs in their response to hypoxia or caused by differences in
experimental setup. In addition, the metabolic context in which
DCs are exposed to hypoxia may also affect how DCs respond.
For instance, under nutrient replete conditions hypoxia may not
compromise DC function, such as in lymph nodes in which
hypoxic region have been described (108). In contrast, under
pathological conditions, such as in the TME where hypoxia may
be also accompanied by nutrient restriction, hypoxia may have
anti-inflammatory effects on DCs. Studies addressing the effects
of hypoxia on DC biology particularly in vivo during homeostasis

as well as in pathological settings are needed to fully understand
the role of oxygen availability on DC function in situ.

Oxidative Stress
The main sources of ROS in tumor cells are dysfunctional
mitochondria and NADPH oxidases. This is further enhanced by
intracellular ROS production of stromal cells, as a consequence of
the metabolic alterations within the TME (109, 110). Intracellular
ROS production in DCs during an immune response can
have both pro-inflammatory and anti-inflammatory effects, via
modulation of cross-presentation and of signaling pathways
(39, 61, 77, 110–112). In general, extracellular ROS seems
to have a pro-inflammatory effect, although data is limited
(Table 1). Treatment of immature moDCs with hydrogen
peroxide enhanced maturation and their capacity to induce T
cell proliferation upon LPS stimulation (90). The inflammatory
response of primary DCs to the malaria parasite Plasmodium
falciparum also increased upon exposure to cells treated with
xanthine oxidase, a malaria-induced enzyme that increases
extracellular ROS levels (91). However, while transient ROS
exposure following DC activation may have pro-inflammatory
effects, what the functional consequences are of chronic ROS
exposure, a situation DCs presumably have to deal within
the TME, remains unclear. Possibly, the highly oxidized lipids
that are found in TADCs, are one of the byproducts of
chronic ROS exposure (113). Through this mechanism long-
term ROS exposure in the TME could lead to impaired DC
immunogenicity. Studies addressing the functional consequences
of transient vs. chronic ROS exposure as well as of the different
types of ROS on DCs, will be required to better define what role
tumor-associated ROS and oxidative stress play in DC function
in the TME.

Lactate
Tumor cells are known for the Warburg effect, which goes
along with secretion of high levels of lactate. Lactate has a
major influence on the immune-priming efficiency of DCs.
Lactate derived from tumor spheroids, mesenchymal stromal
cells or endogenously produced, affects the differentiation and
maturation of moDCs. High concentrations of lactate reduce
the differentiation capacity of moDCs, as higher numbers of
monocyte like CD14+/CD1a− cells were detected at the end
of the cultures (92–94). This was accompanied by a lactate-
dependent reduction of oxidative phosphorylation, but enhanced
respiratory capacity in immature moDCs (94). Also maturation
of DCs is affected by high lactate levels, reflected by lower
levels of maturation markers, an increase in immunosuppressive
cytokine secretion, a decrease in pro-inflammatory cytokine
secretion and reduced ability to induce T cell proliferation (92,
93, 95). The latter can be caused by detrimental effects of lactate
on cross presentation. Using tumor conditioned Flt3L-DCs
stimulated with CpG/PolyI:C and OVA-peptide, it was found
that high lactate concentrations accelerate antigen processing via
lowering the endosomal pH, resulting in impaired preservation
of MHC-I epitopes. Thus, high concentrations of lactate in the
local environment of differentiating or maturing DCs induces
tolerance in DCs, via altering metabolism and antigen processing

Frontiers in Endocrinology | www.frontiersin.org 7 August 2020 | Volume 11 | Article 555

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Brombacher and Everts Nutrient Availability Shapes DC Function

(Table 1). Extracellular lactate can mediate its anti-inflammatory
function via binding to lactate receptor Gi-protein–coupled
receptor 81 (GPR81) as was recently shown in DCs derived
from murine mammary gland tumors (114). Alternatively,
lactate can enter the cells via monocarboxylate transporter 1
(MCT1) as was shown in moDCs (92). Intracellular lactate may
also hamper the immune response via a recently discovered
epigenetic modification termed lactylation. In M1 macrophages
endogenously produced lactate promoted lactylation of lysine
residues, thereby promoting M2-like gene expression (115).
Whether histone lactylation is another immunosuppressive
feature of lactate in DCs is an interesting question that warrants
further study.

ATP and Adenosine
Whereas during homeostasis extracellular ATP levels are
negligible, ATP is highly abundant in the TME where it
functions as a signaling molecule that provokes inflammation
(55, 116). It has been proposed that diffusion of ATP out of
the TME recruits DCs to the TME, given that BDMCs treated
with 500 uM ATP increased migratory speed (Table 1) (97,
98). Moreover, extracellular ATP released by tumor cells after
chemotherapy can promote anti-tumor immunity via signaling
through ATP-receptors P2RX7 on DCs, thereby activating the
NLRP3 inflammasome, enhancing IL-1β secretion and boosting
CD8+ T cell priming (99, 100). In contrast, moDCs co-cultured
with acute myeloid leukemia cells treated with chemotherapy
drugs displayed increased potency to expand regulatory T cells in
an extracellular ATP-dependent manner (Table 1) (101). Hence,
there is great value in understanding what factors determine
the balance between the pro- and anti-inflammatory effects by
extracellular ATP after chemotherapy, as it may be an important
predictor for treatment efficacy.

Paradoxically, immunosuppressive nucleoside adenosine,
derived from conversion of ATP by membrane-bound
ectonucleosides CD39 and CD73, is also abundantly present
in the TME (117, 118). Adenosine interacts with four different
receptors, of which A2AR and A2BR are most highly expressed
on immune cells (119). Irradiation of mouse breast tumors
caused upregulation of CD73 expression in tumor cells and
increased local adenosine concentrations. Anti-CD73 treatment
enhanced cDC1 tumor infiltration, increased the antitumor T
cell response and reduced tumor growth (102). Additionally,
in mice in which adenosine receptor A2BR was selectively
knocked out in CD11c+ DCs, the growth of B16-melanoma was
delayed, supporting a role for adenosine signaling in rendering
DCs immunosuppressive (103). Furthermore, LPS-stimulated
BMDCs treated with adenosine analog NECA increased
intracellular cAMP levels, which lowered secretion of IL-12 and
TNF-α secretion and enhanced IL-10 release via protein kinase A
(PKA) and exchange protein directly activated by cAMP (Epac)
signaling (104). Overall most studies indicate that extracellular
ATP enhances immunogenicity of DCs and anti-tumor immune
responses, while adenosine does the opposite (Table 1) (98, 120).
Shifting the balance in favor of ATP by blocking CD73, CD39 or
adenosine receptors is therefore a promising immunotherapy.

2-Hydroxyglutarate
In various tumors the oncometabolite 2-HG accumulates, which
in non-malignant tissues is found at low concentrations (54). 2-
HG has been shown to contribute to immune suppression in
the TME via anti-inflammatory effects on T cells (121, 122).
Immature moDCs cultured for 24 h with LPS and 2-HG secreted
reduced levels of IL-12, enhanced mitochondrial respiration and
lowered lactate secretion, indicating that accumulation of 2-
HG affects moDCs via metabolic reprogramming. However, the
ability of DCs to induce T cell proliferation remained the same,
suggesting that the 2-HG-induced metabolic rearrangement in
DCs does not affect their T cell priming capacity (Table 1) (105).
However, in this context 2-HG was added simultaneously with
the TLR ligand, while in the TME immature DCs may reside
in a 2-HG-rich environment without immediate activation.
Long-term exposure to 2-HG may have a stronger effect
on the immunogenic capacities of DCs, potentially via the
changes in gene expression, given that 2-HG affects activity of
DNA and histone modifying enzymes, but this remains to be
determined (54).

Concluding Remarks
Thus far the effects of metabolic perturbations characteristic of
the TME on DC biology have been primarily studied in in vitro
systems using moDCs. However, we have still limited knowledge
about the real contribution of those metabolic changes on the
functional properties of conventional as well as inflammatory
DCs residing in the TME in situ. Likewise, if and to what extent
these different metabolic perturbations interact and synergize to
affect the functional properties of DCs remains to be determined.
For successful activation of the immune system via DC-based
therapy it is important to know how DCs deal with these
metabolic rearrangements in the TME. For instance, how do
DCs respond to adjuvants in the metabolic context of the TME?
Is there a way to make these cells less vulnerable to potential
immunosuppressive metabolic cues from the TME? And once
out of the immunosuppressive metabolic TME, how quickly
can DCs regain immunogenic function, if at all possible? To
answer these questions and to gain better understanding of the
immunosuppressive effects of the metabolic TME on DCs, in
depth characterization of the metabolic TME and DC phenotype
in primary tumors will be key.

EFFECTS OF THE METABOLIC
ENVIRONMENT ON DCs IN DIABETES

Interplay Between Metabolic Disturbances
and Inflammation Leading to Diabetes
Not only nutrient deprivation, but also excessive amounts of
nutrients can disturb immune homeostasis and DC function.
A well-known example of a disease that is characterized by
elevated concentrations of glucose and lipids is diabetes. The
two main types of diabetes are type I and type II Diabetes
Mellitus (T1D/T2D), both characterized by dysfunctional insulin
regulation and subsequent hyperglycemia. While T1D develops
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as a consequence of an auto-immune reaction against beta-
cells, common causes for T2D are aging and obesity. Obesity
causes hyperglycemia, elevated levels of free fatty acids, hypoxia,
oxidative stress and an imbalance in many other metabolites,
hormones and cytokines (123–126). This causes a switch in the
composition and phenotype of immune cells in metabolic tissues
from an anti-inflammatory to a more pro-inflammatory profile
and thereby induces chronic low-grade inflammation, which
ultimately drives insulin resistance (127–129). cDCs and pDCs
are among the immune cells present in adipose tissue and there
is a clear correlation between insulin resistance and number of
CD11c+ DCs present in adipose tissue (62, 130–132). Moreover,
several studies have shown that in response to high-fat diet DCs
present in murine adipose tissue transition from Th1- to Th17-
priming cells, an inflammatory profile linked to the pathogenesis
of diabetes (62, 63, 133).

We will here describe how DCs are affected by the metabolic
changes in their environment and focus on hyperglycemia and
elevated levels of free fatty acids. Oxidative stress and hypoxia are
also major metabolic players in diabetes, but to our knowledge
there is no data available looking at the effects of these conditions
on DC function in diabetic context (125, 126). Hence, we refer
to the previous section for the effects of oxygen deprivation and
excessive ROS levels on DC function.

Hyperglycemia
Decreased insulin secretion by beta-cells and lowered sensitivity
to insulin signaling reduces the uptake of glucose by cells,
which subsequently results in elevated blood glucose levels. As
glucose availability plays a major role in DC activation it is
conceivable that this glucose imbalance affects DC function.
Several studies addressed the effects of hyperglycemia on primary
dendritic cells from blood. Both a reduction and an increase in
myeloid and pDC counts in blood of patients with T1D and
T2D have been reported (Table 1) (64–67, 71). Reduced counts
seems to be stronger in patients with poor glycemic control
(66). Pro- and anti-inflammatory cytokine secretion by DCs
from diabetic patients was not altered following ex vivo TLR
stimulation, indicating that high blood glucose levels do not
directly affect the function of circulating DCs, but primarily their
numbers (65, 68, 71). It should be noted that hyperglycemia
is not the only (metabolic) difference in blood from diabetic
patients and other factors may also influence DC frequencies
and function. Since a study in mice showed that hyperglycemia
does not influence CD11c+ DC differentiation in the bone
marrow, it is unlikely that the decrease in circulating DCs
is a consequence of impaired DC generation (69). Instead,
lower numbers of circulating DCs are possibly a reflection of
enhanced migration of DCs to metabolic tissues, where DCs
are known to accumulate and contribute to the low-grade
inflammation observed in metabolic tissues of T2D patients. As
previously mentioned DCs in obese adipose tissue drive a Th17
inflammatory response (62, 63). Interestingly, moDCs exposed
to 5.5, 15, and 30mM glucose for 24 h increase CD83 and CD86
expression and secretion of IL-6 and IL-12 in a dose-dependent
manner (61). IL-6 is involved in Th17 differentiation of naïve
T cells and was also found to be highly secreted by CD11c+

DCs from obese adipose tissue, suggesting that high glucose
levels in adipose tissue may contribute to conditioning DCs
for Th17 priming (Table 1) (63, 134). However, in vivo data
connecting glucose levels to DC function in metabolic tissues
is currently lacking. In vitro generation of tolerogenic moDCs
was less efficient with monocytes derived from T1D patients with
poor glycemic control in comparison to patients who maintained
glycemic control, supporting the hypothesis that a hyperglycemic
environment promotes a more pro-inflammatory profile (135).
On the other hand, moDCs derived from T2D donors compared
to healthy control donors expressed lower levels of maturation
markers (64). Moreover, moDC differentiation in high-glucose
medium (25mM) or media supplemented with sera from
hyperglycemic T2D patients reduced the number of moDCs,
expression of maturation markers and the capacity to induce
T cell proliferation after LPS stimulation. In addition, glucose-
rich micro-environments increase ROS production and promote
activation of the p38 MAPK andWnt/b-catenin pathways, which
are associated with tolerogenic properties of DCs (70, 136–
138). Together these in vitro studies may indicate that over-
abundance of glucose drives monocyte differentiation toward
less-proinflammatory DCs, while differentiated moDCs and
potentially CD11c+ DCs residing in adipose tissue may become
more immunogenic in a hyperglycemic environment (Table 1).

Free Fatty Acids
A cause and consequence of obesity and insulin resistance in
T2D is the release of free fatty acids by expanding fat mass (124,
139). FAs are well-known regulators of the immune response.
Polyunsaturated FAs (PUFAs) often have anti-inflammatory
effects while many saturated fatty acids (SFAs) serve as pro-
inflammatory molecules (140, 141). Examples of the latter are
palmitic acid (PA) and stearic acid (SA), which together with
unsaturated oleic acid (OA) are among the most abundant
dysregulated FFAs in obese and T2D patients (123, 142).
Especially PA is known for its pro-inflammatory effects and
detrimental role in T2D pathogenesis (143). This is partly
caused via its effects on DCs. PA in combination with LPS
can enhance Th1-associated inflammation, which is driven
by TLR4-dependent activation of the NFκB pathway and
ROS in moDCs (77, 78, 144). PA also boosts inflammatory
properties of activated BMDCs in a TLR4-independent manner,
via inhibition of hexokinase (HK) during the late stages of
metabolic reprogramming. This inhibition of HK and thereby
glycolysis resulted in enhanced mitochondrial respiration,
increased mitochondrial ROS levels, elevated activation of the
unfolded protein response (UPR) and subsequent induction of
IL-23 expression. UPR-dependent IL-23 expression was also
confirmed in mice fed a high fat diet (39). BMDCs derived
from obese mice additionally increased IL-1β secretion in a
NLRP3 inflammasome-dependent manner following stimulation
with PA (79). IL-1β and IL-23 are key cytokines involved in
promoting Th17 responses and hence PA is a potential driver of
insulin resistance (133). However, a direct causal link between
enhanced pro-inflammatory cytokine secretion by DCs and
Th17 induction in settings of FA exposure still needs to be
established as for instance DCs isolated from human blood
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displayed a reduced capacity to prime T cell responses upon
stimulation with PA, despite having increased IL-1β and TNF
secretion (80). In contrast to PA, SA does not seem to affect DC
function. SA treatment of LPS-stimulated moDCs did not affect
expression of maturation markers nor the capacity to induce
T cell proliferation (81). Although data on the effects of SA
treatment of DCs is still limited, this appears to be different from
what is known for macrophages, where SA and PA have been
reported to have a similar pro-inflammatory effect (145, 146).
OA is a mono-unsaturated FA that has beneficial effects on
insulin resistance. In macrophages, this is partly mediated by
counteracting the pro-inflammatory effects of SFA (143). Thus
far, there is no data available indicating an anti-inflammatory role
for OA in DCs. OA treatment had either no effect, or boosted a
pro-inflammatory immune response, but has never been tested in
combination with SFA stimulation (78, 80, 82, 83).

The balance in dietary intake of SFAs and PUFAs can have
great influence on the clinical outcome of diabetes. A comparison
of 6, 12, and 24% of SFA in the diet of mice without changing
the total dietary fat contribution had a profound effect on
macrophage function and insulin resistance, with 12% SFA as
the greatest contributor to inflammation and insulin resistance
(147). Human data is however thus far inconclusive about the
beneficial effects of PUFA-rich and SFA-poor diets on glycemic
control of T2D patients (148). Therefore, studies in humans
and mice with a focus on the composition in dietary fat and
profiling of DCs in metabolic tissues may tell us whether DCs
contribute to PUFA-mediated protection against diabetes and/or
SFA-mediated development of diabetes, potentially via a PA-
induced Th17 response.

In conclusion, compared to other immune cells, there is still
little known about the effects on DCs of the FFAs that are most
abundant in obesity and T2D patients. While PA stimulation of
DCs seems to have the expected pro-inflammatory effects, it is
remains unclear if SA and OA influence insulin resistance via
DCs (Table 1).

Concluding Remarks
T1D is characterized by an active immune response against
beta-cells, while T2D is associated with chronic low-grade
inflammation. Hence, it is perhaps somewhat surprising that ex
vivo data indicate that hyperglycemia has minimal effect on the
function of DCs, that most in vitro studies describe a tolerogenic
effect of excessive glucose levels on DC differentiation, and
that only in vitro mature DCs are likely to become more pro-
inflammatory. Although currently it cannot be excluded that
the latter observations may be due the use of in vitro model
systems, such as in vitro generated moDCs that possibly cannot
sufficiently mimic the metabolic alterations and glucose-rich
environment that cDCs and pDCs are exposed to in vivo, it
may in fact indicate that hyperglycemia is not a major driver
of the pro-inflammatory profiles of DCs observed in diabetes
and that other metabolic and/or immunological cues are more
important (62, 130–132). This idea would be consistent with
the fact that hyperglycemia is generally associated with impaired
immune response against for example infections and tumors
(149, 150). A better understanding of how overabundance of

various nutrients may act in concert to modulate DC function
and to thereby contribute to local inflammation in the context
of diabetes will be important for identification of the pathways
that lead to inflammation-driven insulin resistance that could be
targeted to control diabetes.

PERSPECTIVES AND OUTLOOK

It is becoming evident that the metabolic micro-environment
has a major influence on DC function and that disturbance
of metabolic homeostasis can impact immune responses. We
aimed to provide an overview of key metabolites that influence
DC phenotype and function. Cancer and diabetes are examples
of highly prevalent disorders in which metabolic homeostasis
is disturbed, but many more pathologies are associated
with dysregulated metabolism. Eating disorders alter nutrient
availability, organ-specific pathologies, such as hepatic steatosis
impair systemic metabolism and oxidative stress is associated
with many diseases including atherosclerosis, cardiovascular
diseases and neurodegenerative disorders. Hence, understanding
the impact of nutrient availability on the function of immune
cells, including DCs, is relevant for a broad range of diseases.
Reprogramming the metabolic state of DCs by intervening
with nutrient availability can be an effective way to control
inflammation. This could be achieved by systemic approaches,
including nutritional interventions which are commonly used to
control inflammation (151). For instance, lowering caloric intake,
by reducing fat and glucose content, can improve glycemic
control and subsequently reduce diabetes-associated low-grade
inflammation (152–154). Given the pro-inflammatory effects
of high glucose and SFA concentration on tissue-associated
DCs, it is reasonable to assume that dietary interventions that
lead to normalization of glucose and SFA concentrations in
the tissue that these cells reside in, will render them less
pro-inflammatory, thereby contributing to reduction of local
tissue inflammation and eventually improvement of metabolic
homeostasis. Alternatively, molecular approaches that directly
target cellular nutrient uptake or bioenergetic pathways can
make DCs potentially less vulnerable to extracellular nutritional
changes and interventions that target energy-sensing enzymes
like AMPK can also control inflammation (155). In addition,
targeting metabolism of non-immune cells can also have a
beneficial effect on the metabolic micro-environment of DCs.
For example, therapies that interfere with cancer metabolism
to directly impair tumor growth could also have indirect anti-
tumor effects by potentially creating a TME with higher nutrient
availability that would be more permissive to effective anti-tumor
immune responses (156).

Current studies addressing the effects of the metabolic
micro-environment on DCs are mostly performed in vitro
using human moDCs or murine BMDCs. While these studies
have provided us important new insights into how nutrient
availability can shape DC function, in vitro culture conditions
often do not fully mimic the complexity and concentrations
of various nutrients and metabolites these cells are exposed to
in situ. For instance, In vitro-generated DCs are commonly
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cultured in media supplemented with 10% fetal calf serum
(FCS) and glutamine. Serum is a source for lipids, vitamins,
hormones, growth factors, and other compounds, but the
exact amounts of these compounds are unknown, differ per
batch and may not correspond with concentrations found in
tissues that DCs reside in Yao and Asayama (157). Moreover,
commonly used culture media, such as RPMI 1640 and
DMEM contain supraphysiological levels of glucose (11 and
25mM, respectively, vs. ∼5.5mM in situ) and lower levels
of electrolytes including calcium and magnesium (158). The
effects of nutrient availability on the function of DC subsets
in a more physiological environment, with other metabolic and
non-metabolic immunomodulatory signals around, need to be
further evaluated, to be able to better assess what the in vivo
contribution of the metabolic micro-environment is on the
functional properties of DCs. To tackle this issue, there have
been recent efforts to develop human plasma-like, physiological
medium, which contains components, such as amino acids,
metabolites, salt ions, and vitamins that are absent from standard
media and holds physiologically relevant concentrations of
common media components. To minimize the effects of FCS-
derived components, medium can be supplemented with either
a low percentage (2.5%) of FCS or dialyzed FCS (159–161).
Studies using these media found enhanced in vitro T cell
activation and increased biological similarity between cultured
breast cancer cells and primary mammary tumors, providing
promising first evidence that these types of media could
be used to better mimic physiological setting in vitro than

classically used culture media (160, 161). These tools will
likely also be key to further the field of DC metabolism
and to better delineate the interplay between DC function
and extra- or intracellular metabolism. In addition, various
novel mass-spectrometry, high dimensional flow cytometry and
transcriptomics platforms have been developed in recent years
that enable one to assess metabolic profiles in tissues at high
spatial resolution as well as to characterize metabolic and
immunological phenotypes of immune cells present in those
tissues at the single cell level. These novel techniques will no
doubt greatly improve our understanding of how nutrients shape
DC function in situ.

Even though many open questions remain, recent work has
revealed profound effects of the metabolic micro-environment
onDC function in health and disease, whichmay pave the way for
developing DC metabolism-based approaches to treat metabolic
and inflammatory disorders.
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