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Diabetic retinopathy (DR) is a diabetic complication which affects retinal function and

results in severe loss of vision and relevant retinal diseases. Retinal vascular dysfunction

caused by multifactors, such as advanced glycosylation end products and receptors,

pro-inflammatory cytokines and chemokines, proliferator-activated receptor-γ disruption,

growth factors, oxidative stress, andmicroRNA. These factors promote retinal endothelial

dysfunction, which results in the development of DR. In this review, we summarize the

contributors in the pathophysiology of DR for a better understanding of the molecular

and cellular mechanism in the development of DR with a special emphasis on retinal

endothelial dysfunction.
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INTRODUCTION

Diabetic retinopathy (DR) is one of the major complications of diabetes. In 2019, there were about
463 million adults with diabetes worldwide according to the International Diabetes Federation.
Diabetes has been one of the most common causes for death in adults aged 20–74 years old (1).
DR is resulted from long-term accumulated damages by hyperglycemia or other factors (such as
hypertension) to the microvessels in the retina (2). It is a major cause of blindness and other
relevant retinal diseases (such as diabetic macular edema and DME) and has received particular
attention (3).

Although diagnosis and treatment at the early stage can reduce vision loss in some patients,
DR remains a serious threat to vision and patients’ quality of life. DR and relevant retinal
diseases are related to retinal vascular dysfunction. Although DR now is more precisely defined
as a neurovascular disease rather than a microvascular disease (4), retinal microvasculopathy
remains the main pathological change of DR. Hyperglycemia causes retinal microvasculopathy,
inflammation, and retinal neurodegeneration, all of which result in the breakdown of the
blood–retinal barrier (BRB) and damages the endothelium to form acellular capillaries and edema
in retinal vascular structure (5).

Diabetic retinopathy has two stages: non-proliferative diabetic retinopathy (NPDR) and
proliferative diabetic retinopathy (PDR). NPDR is an early stage of DR which is characterized by
loss of pericytes from retinal capillaries to form acellular capillaries, increase vascular permeability,
and break down the inner endothelial BRB (6). It is usually asymptomatic. PDR is an advanced
stage at which new, vulnerable, and tortuous blood vessels are formed in the retina. They can cause
fibrovascular epiretinal membranes, vitreous hemorrhage, and retinal detachment, all of which
contribute to vision loss (6).

The underlying molecular mechanisms associated with vascular dysfunction, especially
endothelial dysfunction, in DR aremultifactorial. Extensive studies have been performed to identify
factors that are associated with endothelial dysfunction in DR, such as advanced glycosylation end

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00591
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00591&domain=pdf&date_stamp=2020-09-04
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gfndefy2009@163.com
mailto:jxnczyl@163.com
https://doi.org/10.3389/fendo.2020.00591
https://www.frontiersin.org/articles/10.3389/fendo.2020.00591/full


Gui et al. Endothelium and Retinopathy

products (AGEs) and receptors (RAGE), disruption of
peroxisome proliferator-activated receptor-γ (PPARγ),
chronic inflammation, leukotasis (7–10), oxidative stress,
and dysregulated growth factors, cytokines, and microRNA
(miRNA) networks (10–13). Here, we review the available data
and summarize on AGE, PPARγ, inflammation, miRNA, and
signaling pathways that contribute to endothelial dysfunction in
the development of retinal microvasculopathy and analyze the
challenges in understanding the pathology of DR.

ADVANCED GLYCOSYLATION END
PRODUCTS AND RECEPTORS IN
ENDOTHELIAL DYSFUNCTION OF DR

AGEs are glycated proteins or lipids which are resulted from
exposure to hyperglycemia over time. Hyperglycemia causes the
activation of the polyol pathway to produce fructose, fructose-
3-phosphate, and 3-deoxyglucosone, which are glycosylating
agents (14). Glucose and the increased glycosylating agents form
covalent bonds with the proteins or lipids to form AGEs.

AGEs are detrimental to vascular cells and have been
shown to promote the development and progression of DR
(Figure 1) (15, 16). A single dietary AGE can acutely impair
endothelial function in diabetic and non-diabetic subjects (17).
AGE accumulation in cells is a result of their generation from
glucose-derived dicarbonyl precursors through non-enzymatic
glycation reaction, which is called the “Maillard reaction” (18).
Intracellular AGEs interfere with cell function by disrupting
molecular conformation, altering enzyme activity, reducing
degradation ability, and inhibiting receptor recognition (19).

Studies have shown that accumulation of AGEs in the retinal
blood vessel walls is detrimental (10, 20, 21). It causes increased
permeability of retinal endothelial cells (ECs) to induce vascular
leakage (20). AGEs can upregulate AGE receptor (RAGE)
gene expression levels in pericytes and microvascular ECs
(21). Activation of RAGEs transduces multiple signals, leading
to increased oxidative stress and synthesis of growth factors,
adhesion molecules, and pro-inflammatory cytokines (22–24)
and resulting in activation of nuclear transcription factors, such
as NF-κB (25, 26).

The interaction of AGEs and RAGE increases reactive
oxygen species (ROS) product in ECs (22, 27, 28). Both
nicotinamide adenine dinucleotide phosphate (NAPDH)
oxidase and the mitochondrial electron transport system
are involved in ROS generation by AGE signal transduction
in ECs (29) as the inhibition of both significantly reduced
AGE-induced ROS production (29). Hyperglycemia-induced
mitochondrial superoxide can be abrogated by inhibition of
AGE-RAGE-mediated mitochondrial permeability transition
in vitro (30). Similarly, lowering AGEs with alagebrium reduced
mitochondrial superoxide generation. The AGE-mediated ROS
generation is at least partly through NF-κB activation and
subsequent TNF-α production in ECs (31).

The interaction of AGEs and RAGE also promotes expressions
of growth factors, proinflammatory cytokines and chemokines,
and adhesion molecules through the mitogen-activated protein

kinase (MAPK) pathway, leading to NADPH oxidase-mediated
ROS generation and translocation of NF-κB (23, 32).

AGEs upregulate VEGF expression in retinal ECs (33). VEGF
expression and PKC activation induced by AGEs in retinal
ECs were inhibited by the PKC inhibitor and the antioxidant
drug and compounds, but not compound that did not have
antioxidant property. VEGF is known to stimulate angiogenesis
and neovascularization, which are involved in the pathogenesis of
proliferative retinopathy (15). The levels of VEGF in ocular fluid
are associated with the breakdown of the BRB, which increases
microvascular permeability (34).

In addition to VEGF, other angiogenic factors, including
angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), fibroblast
growth factor (FGF), and platelet derived growth factor (PDGF),
have been shown to be upregulated in retinal capillary ECs
through Akt-mediated signaling activated by AGEs (15). AGEs
can stimulate basic FGF expression in cultured Müller cells to
affect pathogenesis of DR (35).

Endothelial cell-expressed RAGE can act as Mac-1 (CD11b)
ligand and work cooperatively with Intercellular Adhesion
Molecule-1 (ICAM-1) to mediate leukocyte adhesion during
the acute inflammation in vivo (36). VEGF induces ICAM-1
expression on retinal ECs to promote monocyte adhesion (37).
Increased ICAM-1 expression in the retinal ECs contributes to
microvascular leukostasis, the adhesion, and transmigration of
leukocytes to endothelium, in DR (38, 39). AGE induces specific
galectin-1 expression, which may be correlated with disease
activity in DR as galectin-1 can bind to VEGF receptors-1 and−2
in ECs, resulting in angiogenesis and vascular permeability,
respectively (40, 41).

AGE upregulates PKC activation, increases ROS production,
and promotes synthesis of growth factors, adhesion molecules,
and pro-inflammatory cytokines. Understanding the underlying
cellular and molecular pathogenesis mechanism of AGE-induced
endothelial dysfunction in DR will facilitate early detection of
DR and identify novel anti-AGE drugs, which can block the
biological activity of AGEs.

DISRUPTION OF PPARγ IN ENDOTHELIAL
DYSFUNCTION OF DR

PPARγ is a nutrient sensor that controls a variety of
homeostatic functions. Its disruption leads to disorders of fatty
acid/lipid metabolism, insulin resistance, and vascular pathology.
Endothelial PPARγ is essential for preventing endothelial
dysfunction with aging (42, 43). Impaired endothelial PPARγ

causes age-related vascular dysfunction. PPARγ activation
mediates antioxidant response and nitric oxide (NO) product
in ECs. It induces increased expression of nuclear factor of
kappa light polypeptide gene enhancer in B-cell inhibitor (IκB),
phosphatase and tensin homolog (PTEN), and Sirtuin 1 (SIRT1),
all of which interfere with the activation of NF-κB (44). PPARγ

promotes the expression of antioxidant enzymes, including
catalase, heme oxygenase-1 (HO-1), and superoxide dismutase
(SOD), which lead to a reduction of the ROS product (44). PPARγ

inhibits diabetes-induced retinal leukostasis and microvascular
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FIGURE 1 | A schematic model of interaction networks mediated by glycosylation end products (AGE) that contributes to blood retinal (BRB) leakage in diabetic

retinopathy.

leakage through its role on increasing expression of endothelial
nitric oxide synthase (eNOS) activity, reducing oxidative stress,
inhibiting apoptosis, inflammation, and angiogenesis (43).
PPARγ receptors have been shown to be downregulated in the
diabetic eye, and their disruption is involved in the pathogenesis
of DR (Figure 2) (45, 46).

Endothelial Nitric Oxide Synthase and
Nitric Oxide
Nitric oxide produced by eNOS is a major medium which
mediates relaxation and vasodilatation of the vessels. Production
and bioavailability of NO are reduced in the early stages of
DR (47), while PPARγ activation increases production and
bioavailability of NO. PPARγ ligands, such as 15-deoxy-1 (12,
14)-prostaglandin J2 (15d-PGJ2), rosiglitazone, and nitrooleate,
are able to increase eNOS activity and NO release through
increased interaction between heat shock protein 90 (HSP90)
and eNOS (48, 49). Rudnicki et al. assessed the effect of 3
thiazolidinediones (TZDs), GQ-32, GQ-169, and LYSO-7, on
NO, ROS, and adhesion molecules on ECs (50). Although all
of three activated PPARγ and enhanced the intracellular NO
level, only LYSO-7 significantly increased the NO release from
ECs. They all suppressed the adhesion molecule expressions
induced by TNF-α. Additionally, GQ-169 and LYSO-7 inhibited
ROS production in response to high glucose. PPARγ activation
decreases expressions of NADPH oxidase subunits and enhances
the expression of superoxide dismutase (SOD), which result
in enhanced NO bioavailability to reduce oxidative stress
in the membrane of human umbilical vein endothelial cells
(HUVECs) (51).

Aleglitazar, a dual-PPARα/γ agonist, has been shown to
increase eNOS, Akt, and telomerase activities in circulating
angiogenic cells (52). Rosiglitazone increases eNOS and Akt
activity and NO synthesized by endothelial progenitor cells
(EPCs), which are reduced by AGEs. Its beneficial effect can
be blocked by the eNOS inhibitor and phosphoinositide 3-
kinase/protein kinase B (PI3K/AKT) inhibitor, indicating that
rosiglitazone can improve AGE-induced EPC dysfunction by
AGEs through upregulating the AKT/eNOS signal pathways in
EPCs (53).

Oxidative Stress
Hyperglycemia induces oxidative stress in patients with diabetes.
Oxidative stress, which resulted from increased NADPH oxidase,
is a key factor involved in the development of DR (11, 12).
It activates inhibitory redox-regulated transcription factors to
attenuate PPARγ expression and activity in vascular ECs (54).
PPARγ exerts its antioxidative function through transcriptional
activation of a number of antioxidant genes (55–57). The major
ROS produced in response to hyperglycemia is superoxide
anion (O−

2 ) which combines with NO to produce peroxynitrite
(ONOO?). This leads to decrease in NO bioavailability, which
causes endothelial dysfunction (58).

PPARγ can transcriptionally regulate HO-1 expression in
vascular cells (56). Its activation induces the expression
of glutathione peroxidase 3 (GPx3), which detoxifies the
extracellular H2O2 level. The inhibition of GPx3 expression
prevents the antioxidant effects of the PPARγ ligand on
oxidative stress in insulin-resistant cells (59). Troglitazone and
pioglitazone increases Cu2+, Zn2+-superoxide dismutase (CuZn-
SOD) gene expression and protein levels (60). 15d-PGJ2 or
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FIGURE 2 | A schematic model of interaction networks mediated by proliferator-activated receptor-γ (PPARγ) disruption that contributes to blood retinal (BRB)

leakage in diabetic retinopathy.

ciglitazone reduces gene and protein expressions of the NADPH
oxidase subunits, such as nox-2 and nox-4, and stimulates protein
expression and activity of Cu/Zn-SOD in HUVECs (51).

Oxidative stress also impairs reendothelialization ability of
EPCs derived from patients with diabetes, while rosiglitazone
improves reendothelialization EPC therapy potential by reduces
NADPH oxidase activity (61). Pioglitazone can inhibit NADPH
oxidase p22 (phox) and Rac1. The latter is responsible for
producing ROS, which negatively regulates EPC migration,
proliferation, and differentiation. Recently, Liu et al. have
demonstrated that PPARγ activation can transcriptionally
upregulate the expression of long intergenic noncoding RNA
01230 (Linc01230), which reduces oxide low-density lipoprotein-
induced endothelial dysfunction and affects the phosphorylation
of AKT (62).

In addition to directly modulating oxidative stress response,
PPARγ can indirectly modulate through nuclear factor E2-
related factor 2 (Nrf2) activation (63). Nrf2 is a transcription
factor that regulates the expression of antioxidant proteins (64,
65). When transported inside the nucleus, Nrf2 works with
other activators to form a protein complex. The latter binds
to the antioxidant response elements (AREs) in the upstream
promoter regions of cytoprotective and detoxifying genes to
activate their transcription (64, 66). Studies have shown that
there is a reciprocal transcriptional regulation between Nrf2
and PPARγ pathways to enhance the expression of one another
(57, 63). PPARγ is upregulated in mice in which Nrf2 is increased
and is downregulated inNrf2−/− mice (57, 67). ChIP assays have

shown that with cofactor Brg1, Nrf2 is coimmunoprecipitated on
the ARE containing the upstream promotor region of PPAR-γ
(67). Nrf2 expression is reduced in mice with decreased PPARγ

(68). PPARγmay act directly or through the upstream pathway to
activate Nrf2 (57). A peroxisome proliferator response element,
through which PPARγ regulates Nrf2 expression, in the promoter
region of Nrf2 gene has been proposed (57). Future studies are
needed to prove a direct effect of PPARγ on Nrf2.

Although PPARγ activation promotes antioxidant response
and promotes the expression of antioxidant enzymes and NO
product in ECs, PPARγ receptors are downregulated in the
diabetic eye and their suppression is involved in the pathogenesis
of DR (45, 46). Thus, it is not easy to fully reverse endothelial
dysfunction using only PPARγ ligands inDR. Strategies aiming to
improve the sensitivity or upregulate PPARγ receptor expression
in ECs of DR are valuable therapeutic approaches.

INFLAMMATION AND ENDOTHELIAL
DYSFUNCTION OF DR

Inflammation plays important roles in structural and molecular
changes associated with DR (Figure 3) (69, 70). Systematically,
hyperglycemia causes AGE formation and increases ROS product
and plasma proinflammatory cytokines, including TNF-α and
interleukin-6 (IL-6) (11, 15, 16, 71). Locally, retinal hypoxia
leads to the release of many molecules in the vitreous, including
proinflammatory cytokines [TNF-α, interleukin-1β (IL-1β), IL-6,
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FIGURE 3 | A schematic model of interaction networks mediated by inflammation that contributes to blood retinal barrier (BRB) leakage in diabetic retinopathy.

interleukin-8 (IL-8), and interferon-γ (IFN-γ), etc.), chemokines
[monocyte chemoattractant protein-1 (MCP-1)], growth factor
(VEGF, FGF, and PDGF etc.), adhesion molecules [ICAM-1
and vascular cellular adhesion molecules-1 (VCAM-1)], and
receptors (CD40 and Toll-like receptors), from retinal vascular
cells, inflammatory cells, and/or glial cells (72, 73).

Cytokines
Proinflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8, and
IFN-γ, are the major players in inflammation in DR. Increased
concentrations of TNF-α, IL-1, IL-6, IL-8, and IFN-γ have
been found in the vitreous (74) or in aqueous humor (75) of
patients with DR. Their concentrations may be associated with
the severity of DR (75).

TNF-α

TNF-α can attract inflammatory cells, induce inflammatory
cytokine release, and cause necroptosis on targeting cells and
proliferation of immune cells (76). TNF-α can be synthesized
and released by activated microglia, ECs, macroglia, Müller cells,
and neurons (75). Increased levels of TNF-α have been found in
PDR. A study of meta-analysis indicated that the level of TNF-
α in DR patients was significantly different from that in healthy
controls (77). There is a strong correlation between plasma TNF-
α levels and the severity of (78). TNF-α concentration has been
suggested as a biomarker for the severity of DR as TNF-α in tears
increases and is highly correlated with DR severity (79). TNF-
α increases retinal EC permeability by reducing the expression
of tight-junction proteins through activation of protein kinase
C zeta and NF-κB (80). TNF-α is also a chemoattractant for
leukocytes to stimulate leukocyte adhesion (78).

TNF-α is critical mediator for later complications in DR. In a
TNF-α knockout mouse model, Huang et al. demonstrated that
TNF-α is not required for early BRB breakdown in DR (81).
However, the absence of TNF-α significantly suppressed BRB
breakdown in 6-month-old mice with diabetes. Consistently,
apoptosis of ECs, pericytes, and neurons was inhibited in TNF-
α knockout mouse models with or without diabetes. However,
recent studies showed that a higher level of TNF-α was observed
in patient eyes with NPDR than with PDR (75), (82). The
discrepancy may indicate the transit of NPDR into PDR.

IL-1 β

IL-1 β has been shown to be important in mediating
innate immunity and contributing directly to several retinal
degenerative diseases, including DR (83). IL-1β can be produced
by microglial cells, Müller cells, and astrocytes (9). A significantly
high level of IL-1β has been detected in the vitreous humor and
serum of patients with PDR (83, 84). The aqueous concentrations
of IL-1β from the eye anterior chamber increased with the
severity of DR (75). Intravitreal injection of IL-1β caused
apoptosis of capillary cells in retinal microvessels and acellular
capillaries (85), which are probably mediated by NF-κB and
caspase-3 activation (86). IL-1β is cytotoxic to choroidal blood
vessels in the choroid, which may lead to the death of the
retinal pigment epithelium and damage photoreceptor integrity
(87). Hyperglycemia induces Müller cells to produce high levels
IL-1β, which induces the expression of pro-death cytokine
IL-8 (88). Actually, IL-1β is a more potent inducer of IL-
8 expression than TNF-α, IL-6, VEGF, and IFN-γ in Müller
cells through the p38MAPK and extracellular signal-regulated
protein kinase 1 and 2 (ERK1/2) pathways (88). IL-1β is also
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a stronger IL-6 inducer than TNF-α, IL-8, VEGF, and IFN-γ
in Müller cells through upregulation of the p38MAPK/NF-κB
pathway (89). Hyperglycemia triggers retinal ECs to upregulate
the expression of IL-1β, which serves as an autocrine or paracrine
to stimulate IL-1β expression in ECs or macroglial cells to a
sustained overexpression of IL-1β (90). IL-1β leads to ROS release
and promotes NF-κB translocation to the nucleus to create a
continuous inflammatory response (91).

IL-6

IL-6 is a member of the pro-inflammatory cytokines involved
in expressing of a variety of proteins in regulating angiogenesis,
immune responses, and vascular permeability (92). IL-6 can be
produced by microglia and astrocytes (9). Significantly higher
intravitreal IL-6 levels are found in patients with NPDR and
PDR, (75, 82, 93, 94) and its intravitreal concentration correlates
with the severity of PDR (95) and retinal macular thickness (96).
Increased intravitreal concentration of IL-6 may be associated
with the progression of DR from the NPDR to active PDR
(95). The increased IL-6 levels may be independent of hypoxia-
inducible factor-1α (HIF-1α) or NF-κB activity in the vitreous
of PDR (97). However, animal study suggests that HIF-1α still
regulates IL-6 expression in diabetic retina as increased HIF-
1α, IL-6, and TNF-α are found in diabetic retina of diabetic
rats, which can be decreased by the HIF-1α inhibitor (98). IL-6
promotes leukocyte adhesion, microvascular leakage, and TNF-
α product in microglial cells in diabetes as these pathological
phenotypes were dramatically reduced in the IL-6 knockout mice
with diabetes (10).

IL-8

IL-8 is not only a potent angiogenic factor but also a
chemoattractant for neutrophils and T lymphocytes (69). It can
be produced by Müller glial cells, retinal ECs, and astrocytes.
Although IL-8 has been detected both in the vitreous (9, 74) or
aqueous humor (75, 99) of DR patients, it is higher in the eyes
withNPDR than in the eyes with PDR (82). Elevated vitreous IL-8
level seems to correlate with poorer visual acuity in patients with
diabetes, suggesting that IL-8 may cause visual acuity loss as DR
progression (100). IL-8 has a strong correlation in vitreous and
aqueous of patients with PDR (101). IL-8 is induced in Müller
cells in response to IL-1β or TNF-α (88), as well as VEGF in
microvascular ECs (102).

IFN-γ

IFN-γ is an immunoregulatory cytokine which belongs to the Th-
1 group lymphocytes. It signals innate immune system responses
by recruiting and activating macrophage and cytotoxic T cells
to produce a pro-inflammatory effect (103). Increased IFN-γ
was observed in the vitreous or aqueous humor of patients with
diabetes or with DR (104, 105). In contrast, increased aqueous
IFN-γ was only observed in patients with NPDR or PDR (75).
IFN-γ was increased in the retina of rats with diabetes (106).
IFN-γ induced migration of microglial cells in the subretinal
space to affect the ocular microenvironment in response to
inflammation (107). Over-expressing IFN-γ in the retina caused
intraocular cellular infiltration, photoreceptor death, corneal

clouding, cataract formation, and epithelial and microglial
proliferation (108). IFN-γ-increased HUVEC permeability is, at
least, partly related to its inhibition on NO production: IFN-
γ significantly attenuates basal NO concentration and reduces
NO increment in the presence of an NO donor in HUVECs
(109). IFN-γ-induced disorganization of endothelial junctional
integrity through a mechanism involving Rho-kinase mediated
cytoskeletal contractions (110). IFN-γ together with TNF-α
and IL-β downregulated the HSP27 expression, which led to
apoptosis of retinal capillary ECs (111).

Chemokine: MCP-1
Monocyte chemoattractant protein-1 attracts and activates
monocyte and macrophages (112, 113) and stimulates fibrosis
and angiogenesis (114). MCP-1 is produced by Müller cells,
microglia cells, astrocytes, retinal neurons, ECs, and retinal
pigment epithelial cells in patients with diabetes (115). The
migration of monocyte into the retina is mediated by MCP-1
coupling to its receptor CCR2 (116). Elevated MCP-1 has been
observed in ocular tissues from patients with NPDR or PDR,
(10, 82, 104, 117) and its level is higher in the vitreous than in
the serum (74). The vitreous MCP-1 level has been shown to be
associated with DR severity (100). Intravitreal increase in MCP-1
level may be associated with the progression of NPDR to active
PDR (95). Through increasing vascular cell permeability and
leukocytes’ recruitment, MCP-1 affects BRB in animal eyes of DR
(118). In response to IL-1β or TNF-α, retinal ECs or microglial
cells will express a high level of MCP-1 to attract macrophages
(119), which may adhere to the retinal capillary endothelium,
which leads to capillary occlusion and retinal ischemia (120).
TNF-α and IL-6 produced by glial cells and microglial cells
can stimulate ECs to release MCP-1, IL-6, and VEGF, all of
which increase vascular permeability in NPDR (121). MCP-1
exerts its cytotoxic effect through oxidative stress produced by
activated macrophage and microglia (122). Although MCP-1 is a
potent inducer of angiogenesis, its angiogenic effect is achieved
through induction of VEGF-A (123, 124). A significantly positive
correlation has been observed between the MCP-1 and VEGF in
PDR (125). Although lower levels of MCP-1 have been reported
in the aqueous humor from NPDR and PDR patients (126, 127),
the discrepancy may be due to different sample preservation and
measurement techniques used.

Growth Factor: VEGF
Increased vitreous concentrations of the growth factors, such as
VEGF, FGF (128), PDGF (129), placental growth factor (PlGF)
(130), angiopoietin (131), insulin-like growth factor (IGF-1)
(132), and hepatocyte growth factor (HGF), have been reported
in patients with PDR. Among these, VEGF has received particular
attention and will be summarized in this section.

Over the decades, VEGF has been recognized as a major
angiogenic growth factor, which is responsible for pathologic
retinal neovascularization in DR (133). VEGF is an angiogenic
factor that not only induces new blood vessel sprouting from
preexisting vessels but also increases vascular permeability. In
addition to ECs, other retina cells, such as retinal pigment
epithelial cells, pericytes, Müller cells, astrocytes, and glial cells,
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are also able to produce VEGF upon activation or stimulated by
long-term high glucose (9, 134–139).

Increased VEGF level has been observed in the vitreous
humor and in fibrovascular tissues from eyes with PDR (140–
142). Serum and vitreous VEGF levels have been found to
correlate with glycemic control in patients with diabetes (143). A
strong correlation between increased level of intravitreal VEGF
and the development of DR has been detected (144, 145).
Vitreous level of VEGF may be correlated with retinopathy
activity (142, 146, 147). More recently, serum VEGF level in
subjects with diabetes has been proposed to be a biomarker
of severity of DR as it is associated with the severity of DR
(148, 149).

VEGF is a key regulator of ocular angiogenesis and vascular
permeability. It is involved in the pathogenesis of a number
of complications of DR, such as DME and PDR (150). It
has been shown that intraocular injection of VEGF alone
produced many features of NPDR and PDR: areas of non-
perfusion capillaries, vessel dilation, and tortuosity arterioles
with endothelial hyperplasia and microaneurysm formation
(151). A positive correlation has been found between the level
of serum VEGF and the grade of the external limiting membrane
(ELM) disruption, indicating that an increased level of VEGF is
associated with DR severity and the grade of the external limiting
membrane disruption (149).

VEGF modulates DR-associated inflammatory responses at
the early stage of DR (13). It acts as a pro-inflammatory factor
to promote the expressions of other proinflammatory cytokines,
chemokines, and adhesion molecules, such as TNF-α, IL-1, IL-
6, IL-8, IFN-γ, MCP-1, and ICAM-1 (102, 152, 153). Vice
versa, activated glial cells, macrophages, and microglia cells will
produce TNF-α, IL-6, and MCP-1, which in turn can stimulate
VEGF release from retinal ECs (123). Increased activation of NF-
κB in NPDR and PDR subjects may be involved in increased
upregulation of VEGF (154). VEGF induces MCP-1, IL-8, TNF-
α, and ICAM-1 expression in retinal ECs by activating NF-
kB pathways (13, 102, 153). Müller glia-specific VEGF deletion
resulted in 48% percent reduction in the NF-κB activation
in diabetic mouse retina (13). This was associated with 50%
reduction of TNFα and ICAM-1 in retina and 75% reduction of
leukocyte adhesion in the retinal microvasculature.

VEGF enhances the leukocyte adhesion to vessel walls through
increasing ICAM-1 and VCAM-1 expressions on ECs (155).
In addition, VEGF may initiate early diabetic retinal leukocyte
adhesion in retinal arterioles through upregulated ICAM-1
expression (152, 156). Increased serum VEGF levels stimulate
ROS generation, which causes endothelial activation (157).

Adhesion Molecules
Studies show that adhesion molecules play important roles
in pathogenesis of vascular complications (158). Adhesion
molecules participate in cell growth, differentiation, formation of
cell junction, or cell polarity, as well as activation, circulation,
or accumulation of white leukocytes at the inflammatory
site (158). They participate in initiating the process of
monocyte and lymphocyte adhesion to ECs and mediate their
transmigration (158).

Numerous endothelial molecules, primarily located at
junctions, such as ICAM-1, VCAM-1, platelet/endothelial-
cell adhesion molecule-1 (PECAM-1), and endothelial
leukocyte adhesion molecule-1 (ELAM-1), are involved in
leukocyte transmigration (158–160). ICAM-1 and VCAM-1
are upregulated in the conjunctiva of patients with DR (161).
Blood serum soluble forms of VCAM-1, ICAM-1, and ELAM-1
are increased in patients with DR (162). ICAM-1 can act
cooperatively with RAGE to mediate leukocyte recruitment
during acute inflammation in vivo (36). The lymphocyte
function-associated antigen-1 can distribute to form a ring-like
structure to cocluster with endothelial ICAM-1 to mediate
the neutrophil transmigration (130). A positive correlation
is found between the level of serum ICAM-1 and the grade
of the retinal ELM disruption (149), suggesting, in addition
to VEGF, that serum ICAM-1 level is also associated with an
increased DR severity and the grade of the external limiting
membrane disruption (149). Thus, monitoring serum-soluble
VCAM-1 levels in patients with diabetes may be clinically
useful for assessing the severity and possibly the activity of
diabetic retinopathy (163). The soluble ICAM-1 is a biomarker
of endothelial injury and inflammation. ICAM-1, VCAM,
and ELAM-1 expressions in ECs can be stimulated by IL-1,
TNF-α, and VEGF through activation of the NF-κB pathway
(152, 164, 165).

PECAM-1 is important in maintaining vascular integrity
(166). Although endothelial PECAM-1 homophilic interactions
are required for the maintenance of EC barrier function
(166), PECAM-1 also promotes leukocyte transmigration
by undergoing homophilic interactions with PECAM-1 on
monocytes to facilitate transmigration (167). More recently,
soluble vascular adhesion protein-1/semicarbazide-sensitive
amine oxidase has been shown to generate H2O2 and toxic
aldehyde acrolein, which cause oxidative stress in eyes with
PDR (168).

Receptors
CD40 and Toll-like receptors play roles in inflammation in the
development of DR (169–172).

CD40

CD40, a member of the TNF receptor superfamily, is expressed
not only on monocytes, dendritic cells, and ECs but also on
Müller glia, microglial cells, and retinal pigment epithelial cells
(169, 170). CD40 expression level is low at basal condition, and
its upregulation results in downstream inflammatory response
in diseases (173). Plasma-soluble CD40 ligand level is found
to be positively associated with DR severity (173). Increased
expression of CD40 was found in retinal Müller cells, ECs,
and microglial cells of diabetic animals (174). CD40 upregulates
ICAM-1, MCP-1, and VEGF expressions in ECs and Müller
cells through TNF receptor-associated factors (175). CD40
knockout mice are protected from the development of DR:
reduced retinal leukostasis, inhibited capillary degeneration, and
diminished ICAM-1 upregulation (174). Diabetes upregulates
P2X7 in the retina through CD40 to make retinal ECs susceptible
to ATP/P2X7-mediated apoptosis (176).
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Toll-Like Receptors

TLRs play an important role in innate immune responses and
inflammation (177). TLRs promote proinflammatory cytokine
expression, which in turn activate TLRs in immune cells to induce
EC damage by the ROS product (171, 172). A high level of
mobility group protein-1, a ligand of toll-like receptor (TLR)-4,
has been found higher in active PDR than in inactive PDR (178).
The agonist of TLR-3 can induce the retinal pigment epithelium
to secrete MCP-1, IL-8, and ICAM-1 (179). High glucose
significantly upregulates TLR-2 and TLR-4 expression and
activates NF-kB and increases expression of IL-1β, IL-8, TNF-α,
MCP-1, ICAM-1, VCAM-1, and adhesion of monocyte in human
microvascular retinal ECs (180). TLR-4 or TLR-2 inhibitor and
antioxidant treatment reduces the expressions of TLR-2 and
TLR4 and associated downstream inflammatory markers. These
suggest that activation of TLR-2 and TLR-4 and downstream
signaling are involved in increased inflammation and ROS
in DR. Furthermore, retinal photoreceptors are susceptible to
mitochondrial oxidative stress and mitochondrial DNA damage
in TLR4-mediated innate immune response, leading to visual
impairment (181).

Although there is increasing evidence showing that
inflammation is a critical contributor to the development
of DR, some studies have also demonstrated that DR is not
exclusively due to inflammation (182, 183). Thus, the exact
underlying molecular mechanisms of inflammation in DR are
not yet fully understood. In addition, inflammation is a complex
cascade; thus, therapeutics targeting at one factor may be
insufficient. Drugs that inhibit multiple factors in inflammation
may help to control DR.

MIRNAS

Recent studies have shown that epigenetics also plays a key
role in the development and progression of DR (184–186).
Hyperglycemia affects the enzymatic machinery responsible
for epigenetic modifications (187). The enzymes responsible
for epigenetic modifications and non-coding RNA function
may be aberrantly expressed (Figure 4). They have been
shown to either promote or inhibit the development and
progression of DR (187). miRNAs and long non-coding
RNA, which are well-known for their regulatory functions,
are gaining more attention. Several studies identified panels
of miRNAs whose expressions are changed in the retinal
ECs of diabetic rats (184–186). NF-κB-responsive miRNA,
such as miR-21, miR-146, miR-155, and miR-132, and VEGF-
responsive miRNAs, such as miR-17-5p, miR-18a, miR-20a,
miR-21, miR-31, and miR-155, have been identified in the
retinal ECs (184). Wu et al. identified 11 increased miRNAs
and 6 decreased miRNAs in the retinas of diabetic rats
(185), while Xiong et al. identified 17 dysregulated miRNAs
in the retinas of diabetic rats (186). Li et al. identified five
differentially expressed miRNAs in serum between DR and non-
DR patients (188). These miRNAs were found to regulate 55
target genes which were involved in controlling the vascular
growth and morphogenesis.

Upregulated miRNAS in DR
Increased miRNAs, such as miR-21 and miR-195, have been
demonstrated to be associated with fibrosis and oxidative stress
in DR (189, 190). Increased miR-21 level in the vitreous has
been shown to be associated with retinal fibrosis in PDR
(189). High glucose and TGF-β induce miR-21 expression in
retinal pigment epithelial cells. Furthermore, gain and loss of
function studies have shown that miR-21 promotes proliferation
and migration of the human retinal pigment epithelium
(189). miR-21 affects PPARα expression through inhibition
of PPARα mRNA translation (191). Intravitreal injection
of the miR-21 inhibitor attenuates PPARα downregulation
and ameliorates retinal inflammation in db/db mice (191).
Knockout of miR-21 prevents the reduction of PPARα, which
is associated with alleviated inflammation and microvascular
damage in the retina of db/db mice. miR-221 enhances
retinal EC viability and angiogenesis through activation of
PI3K/Akt/VEGF and inhibits the expression of PTEN (192). miR-
21 downregulates the expression of Krev interaction trapped
protein 1 (KRIT1), Nrf2, and SOD2, all of which are involved
in ROS homeostasis, while themiR-21 inhibitor improves KRIT1
and SOD2 expressions, reduces ROS production, and ameliorates
mitochondrial membrane potential in HUVECs treated with
high glucose (193). More recently, plasma miR-21 has been
proposed to be an early marker for diagnosis and identification
of diabetic nephropathy in type 1 diabetes mellitus (T1DM),
as it starts to rise before microalbuminuria in patients with
T1DM and has a greater sensitivity (94.1%) and specificity
(100%) to identify DN than the urinary albumin/creatinine ratio
at level 45 mg/gm with sensitivity of 88.2% and specificity of
89% (194).

High glucose stimulatesmiR-21-5p expression, in parallel with
increased VEGF and VEGFR2 expressions and proliferation of
human retinal microvascular ECs (195). Inhibition of miR-21-5p
reduces proliferation, migration, and tube formation of human
retinal microvascular ECs (HRMECs) through PI3K/AKT and
ERK pathways (195).

Upregulated miR-195 and downregulated SIRT1 have been
observed in human retinal ECs exposed to high glucose and in
the retinas of diabetic rats (190). Inhibition of miR-195 recovers
SIRT1 expression and decreases retinal damage in DR (190).
In addition, oxidative stress induces overexpression of miR-195
which downregulates mitofusin two expression in human retinal
ECs and diabetic retinas, leading to increased permeability of
retinal BRB (196).

Downregulated miRNAs in DR
Decreased miRNAs, such as miR-126, miR-146a, and miR-
200b, have been shown to increase the angiogenic factor
product, promote the NF-κB pathway, and enhance VEGF-A
expression and oxidative stress in DR, respectively. miR-
126 is involved in the production of angiogenic factors to
mediate retinal neovascularization (197, 198). A significant
reduction of miR-126 in the serum is detected in patients
with diabetes and macrovascular complications (199) or
PDR (200). Downregulated miR-126 is observed in the
retinas of oxygen-induced retinopathy, while restoring its level
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FIGURE 4 | A schematic model of interaction networks mediated by miRNAs that contributes to blood retinal (BRB) leakage in diabetic retinopathy.

reduces high expression levels of VEGF, IGF, and HIF-1α,
which limits retinal neovascularization through p38MAPK and
ERK pathways (197). miR-126 is downregulated in hypoxia-
treated rhesus retinal ECs and in retinas of diabetic rats,
while restoring miR-126 expression inhibits the hypoxia-
induced neovascularization by inhibiting cell-cycle progression
and the expression of VEGF and matrix metallopeptidase
nine. Interestingly, hyperglycemic/hypoxia-treatedmesenchymal
stem cell-derived extracellular vesicles downregulate miR-
126 in pericytes, which express more VEGF and HIF-
1α (201).

miR-146a has a regulatory role in the NF-κB-mediated

inflammatory pathway. It binds to the 3
′

-UTR of I IL-1
receptor-associated kinase 1 to reduce the expression of NF-
κB-responsive ICAM-1 in both human retinal ECs and retinas
of diabetic rats (202). Intravitreal delivery of miR-146a inhibits
the hyperglycemia-induced upregulation of ICAM1 and reduces
microvascular leakage and retinal functional defects. Increased
miR-146a protects human retinal ECs from high glucose-induced
apoptosis through suppressing the STAT3/VEGF pathway (203).
Decreased miR-146a expression has been shown to be associated
with the overexpression of fibronectin in high glucose-treated
ECs and retinas of diabetic rats (204). Decreased miR-146b-
3p has been shown to be associated with increased adenosine
deaminase-2 (ADA-2) activity in the vitreous of patients with
diabetes, while elevated expression ofmiR-146b-3p suppresses the
ADA2 activity and TNF-α release in amadori-glycated albumin
(AGA)-treated human macrophages (205) and decreases human

retinal EC permeability and leukocyte adhesion by upregulating
ICAM-1 (205).

Decreased miR-200b and increased VEGF-A gene expression
were observed in the sera of patients with DR (206).
Decreased miR-200b is observed in high glucose-treated human
retinal ECs and is accompanied with increased expressions
of VEGF and transforming growth factor β (206). Increased
miR-200b expression inhibits the oxidation resistance one
expression, which enhances resistance to apoptosis and oxidative
stress (207).

A number of miRNAs have been investigated and are
considered as a therapeutic target of DR. However, as a single
miRNA can regulate several target genes that modulate different
signaling pathways, miRNA-based therapy should be more
refined and controlled for its targeting genes. The systematic
understanding miRNA action mechanism may help for the early
diagnosis and improved therapeutics for DR.

OTHER FACTORS CONTRIBUTING TO OR
ASSOCIATED WITH DR

In addition to the above discussed factors, recently studies
identified new factors which may contribute to DR.
Hyperglycemia induced circulating mitochondrial DNA
change in parallel with increased circulating interleukin-4 and
TNF-α in patients with DR, suggesting that mitochondrial DNA
change in early diabetes may be an indicator of inflammation
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and progression of DR (208). Loukovaara et al. have found that
the nucleotide-binding domain and leucine-rich repeat receptor
containing pyrin domain 3 (NLRP3) inflammasome activation is
associated with the vitreous pathogenesis of PDR (209).

Monosodium urate (MSU) has been found in human
retinas and vitreous (210). Its level is correlated with
inflammatory biomarkers and increased expression of xanthine
oxidase (210). The MSU level is also detected in the serum
and vitreous of diabetic rats and associated with NLRP3
inflammasome, suggesting a role of MSU in diabetes-induced
retinal inflammation.

Shalaby et al. showed that a disintegrin and metalloprotease
domain-17 (ADAM-17) might be involved in the development of
DR (211). ADAM-17 activity is upregulated in human diabetic
retinas and diabetic mouse. Loss of ADAM17 in ECs significantly
reduces oxidative stress and decreases leukocyte adhesion in
vivo and in vitro. Reduction in oxidative stress in retinal ECs is
mediated by downregulation of NADPH oxidase 4 expression,
while reduced leukostasis is achieved through downregulation
of ICAM-1.

Asymmetric dimethylarginine level has elevated in both
aqueous from diabetic rats and culture medium in rhesus
retinal ECs pretreated with hypoxia (212). ADMA promotes
proliferation, migration, adhesion, and tube formation of rhesus
retinal ECs through the ephrin-B2 pathway.

CHALLENGES

Although we know that diabetes causes DR, not all patients after
many years with diabetes develop DR, even in patients with poor
glycemia. In contrast, some patients under good glycemic control
still develop vision-threatening DR complications, indicating
that we are still unclear what is the master regulator that initiates

and controls the progress of diabetic retinopathy. VEGF has
been proposed; however, a substantial proportion (40–50%) of
patients with DME do not respond satisfactorily to anti-VEGF
treatment (2).

Almost all cells in the retina can serve as effectors or
donors of pro-inflammatory cytokines, VEGF, and ROS, through
which to affect each other. Thus, it is difficult to dissect which
cell type plays roles at which stage of DR. Knowing this is
important and, as it may decide the outcome of treatment
as various responses from different retinal cells, may abolish
therapeutic effect.

The complex interactions among multiple contributors
indicate that DR is a much more complicated disease situation.
Treatment targeting at a single factor will be insufficient to
reverse the progression of DR.

FUTURE DIRECTION

Diabetes is a metabolic disease which is associated with lifestyle,
environment, and genetics. Genetic factors may determine the
discrepancy of DR morbidity and severity seen in patients with
diabetes. A genome-wide association study associated, including
RNA-seq, withmetabolomicsmay be needed to identify signature
genetic information associated with phenotypes seen in DR
and metabolites. These techniques will not only enrich our
understanding of the molecular mechanism in the initiation and
progression of DR but also provide new molecular targets.
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