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In recent years, brown adipose tissue (BAT) has gained significance as a metabolic

organ dissipating energy through heat production. Promotion of a thermogenic

program in fat holds great promise as potential therapeutic tool to counteract weight

gain and related sequelae. Current research efforts are aimed at identifying novel

pathways regulating brown fat function and the transformation of white adipocytes

into BAT-like cells, a process called “browning.” Besides numerous genetic factors

some circulating molecules can act as mediators of adipose tissue thermogenesis.

Vitamin A metabolites, the retinoids, are potent regulators of gene transcription

through nuclear receptor signaling and are thus involved in a plethora of metabolic

processes. Accumulating evidence links retinoid action to brown fat function and

browning of WAT mainly via orchestrating a transcriptional BAT program in adipocytes

including expression of key thermogenic genes such as uncoupling protein 1. Here

we summarize the current understanding how retinoids play a role in adipose tissue

thermogenesis through transcriptional control of thermogenic gene cassettes and

potential non-genomic mechanisms.
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BROWN ADIPOSE TISSUE AND BROWNING OF WHITE FAT

Brown adipose tissue (BAT) is an adipose organ specialized in producing heat to maintain
body temperature. Brown adipocytes, in contrast to white adipocytes, are rich in mitochondria
and are characterized by a large number of small multilocular lipid droplets as compared to
unilocular lipid droplets in white adipocytes (1). The mitochondria of brown adipocytes express
uncoupling protein 1 (UCP1) in the inner mitochondrial membrane which, when activated,
uncouples the proton motive forced generated by mitochondrial oxidative metabolism from
ATP synthesis and thereby dissipates chemical energy as heat (1). Promotion of brown fat
thermogenesis counteracts obesity and related complications in numerous animal models and
has therefore evolved as a promising novel therapeutic concept in the fight against the human
obesity epidemic (2). Classical BAT depots, as most comprehensively described in rodents, embody
mainly interscapular, axillar, cervical, femoral, and perirenal depots (1). However, brown-like or
so-called beige adipocytes can also be found in white adipose tissue (WAT) depots, predominantly
in subcutaneous fat and to a lesser extent in visceral fat (3). Stimulation of BAT thermogenesis
classically occurs through hypothalamic noradrenergic signaling via the β3-adrenergic pathway
in response to cold (1). This results in activation of protein kinase A (PKA) which promotes
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intracellular lipolysis and acts through the p38 MAPK as well
as the CREB pathway which increases the expression of genes
essential for the maintenance of thermogenic function such as
UCP1, DIO2, and PGC1α (4). The emergence of beige adipocytes
in WAT, coined “browning,” can occur in response to various
stimuli including a number of genetic factors, hormones and
chronic cold exposure. Beige cells can possess characteristics of
both, classic white and brown adipocytes. When activated, beige
fat cells express significant amounts of UCP1 and contribute
toward thermogenesis and energy expenditure (4). It remains a
matter of debate whether these newly formed beige adipocytes
stem from mature white adipocytes undergoing conversion to
UCP1-expressing cells following thermogenic stimuli or if a
pool of distinct precursor cells gives rise to beige adipocytes.
Elegant lineage tracing studies inmice provided evidence for both
theories (5, 6).

Whereas, the salutary metabolic effects of brown fat have
been unequivocally demonstrated in rodents, the impact of
BAT physiology on human energy metabolism and its relevance
for metabolic disease is less well-understood. Currently, the
gold standard for the detection and quantification of active
BAT in humans is 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) (7).
The most potent physiologic stimulus for BAT activation is
cold exposure that results in significant uptake of 18F-FDG
in thermogenically active BAT depots and correlates in many
studies with increased energy expenditure (8–11). The inverse
relationships between active BAT and the degree of obesity
and age also supports a potential protective role of BAT in
metabolic disorders in humans (8, 12–14). Cold-induced BAT
activity is mainly found in deep cervical, supraclavicular, para-
aortal, and some renal fat depots in human adults (15). However,
BAT in humans is not an organ as easily delineated from
WAT as bona fide murine BAT since it comprises a mixture of
brown and white adipocytes (16). The emergence of unilocular
adipocytes in brown fat depots, called BAT whitening, has been
demonstrated in animal models of aging and obesity (17, 18) and
can be experimentally induced by high ambient temperature and
defective β-adrenergic signaling, resulting in brown adipocyte
death and inflammation (19). In contrast, clinical studies have
found that repeated cold exposure over the course of 2 to 6 weeks,
successfully increased the amount of active BAT as evidenced by
18F-FDG-PET/CT imaging in lean and overweight individuals
as well as patients with diabetes, respectively (9, 20–23). The
observed changes in BAT mass were accompanied by reductions
in body fatness and improvements in insulin sensitivity (9, 21,
23). These findings not only suggest that thermogenically active
BAT can be recruited in humans but emphasize the potential for
therapies targeted at BAT with the aim to re-establish relevant
amounts in BAT-depleted states such as obesity or older age and
thus reverse associated metabolic aberrations.

VITAMIN A AND RETINOID METABOLISM

Besides their functions in cell differentiation, embryonic
development, reproduction, retinal function and immunity,

vitaminA and its metabolites, the retinoids, have been recognized
as important regulators of energy metabolism (24). Vitamin A
must be obtained from the diet by intake of either preformed
retinol or provitamin A (carotenoids) which can be converted
to retinol by beta-carotene monooxygenase. After absorption,
the majority (∼90%) is stored in the liver, while a smaller part
(∼10%) is stored in adipocytes (25, 26). In the liver, vitamin A
is primarily stored in the form of retinyl esters in cytoplasmic
lipid droplets of hepatic stellate cells (80–90%) and hepatocytes
(10–20%) (25). Mobilization occurs via hydrolysis and binding
to retinol binding protein (RBP) which transports retinol to the
target tissues (25). In adipocytes, RBP-bound retinol is taken up
by the multi-transmembrane cell surface receptor STRA6 (27).
Intracellularly, retinol is then either re-esterified or converted to
retinoic acid via two oxidative reactions: In the first step, retinol
is reversibly oxidized to retinaldehyde (Rald) by alcohol– and
retinol dehydrogenases (ADHs, RDHs) followed by irreversible
oxidation to retinoic acid. The enzyme class of retinaldehyde
dehydrogenases (RALDHs) has been identified to catalyze this
rate-limiting step of retinoid metabolism. Intracellular retinoic
acid availability and nuclear transport is facilitated by cellular
retinoic acid-binding proteins and fatty acid binding protein 4
(28–30). Retinoic acid signals predominantly through the nuclear
receptors retinoic acid receptors (RAR), retinoid X receptors
(RXR) and peroxisome proliferator-activated receptors (PPAR)
(24, 31) and is thus a potent regulator or gene transcription
(Figure 1). While 9-cis retinoic acid has been found to be a
potent ligand for RXR, its physiological relevance is under debate
(32, 33). Quantification of 9-cis retinoic acid failed in most
tissues of mice, rats and humans (34, 35). Despite a questionable
physiological role, endogenous 9-cis retinoic acids or synthetic
analogs might still be promising candidates for the activation of
a thermogenic program in adipocytes through RXR, as discussed
in the following section.

RETINOIDS AND TRANSCRIPTIONAL
CONTROL OF THE THERMOGENIC
PROGRAM

Accumulating evidence suggests that retinoids are involved
in a number of metabolic processes including glucose and
lipid metabolism, adipocyte differentiation and thermogenic
programming of fat cells. Retinoid actions on metabolic
pathways mainly depend on the regulation of gene expression
through the nuclear receptor RAR and RXR which can also form
RAR/RXR heterodimers. In addition, RXR works in concert
with PPARγ, another key nuclear receptor controlling energy
pathways and particularly adipocyte function (Figure 1). In
3T3-L1 cells, a murine model for white adipocytes, the effects of
retinoic acid can vary dependent upon the stage of adipogenesis
and expression of the transcription factors RAR, RXR, and
PPARγ. Early in adipogenesis, retinoic acid inhibits whereas after
48 h of differentiation it promotes fat cell formation (36). The
silencing mediator of retinoid and thyroid hormone receptors
(SMRT) serves as a corepressor for nuclear receptors and
regulates adipocyte differentiation, adipose tissue accumulation
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FIGURE 1 | Schematic showing how retinoids regulate thermogenic gene expression in adipocytes. Retinoids are mainly stored as retinyl esters stored in hepatic

stellate cells or hepatocytes and can be transported as retinol bound to retinol-binding protein (RBP) to peripheral tissues including adipose tissue. After uptake via the

multi-transmembrane cell surface receptor STRA6, retinol is oxidized by alcohol- and retinol dehydrogenases (ADH/ RDH) to retinaldehyde which in the next step gets

converted to retinoic acid (RA) by aldehyde dehydrogenases (ALDH). In the cytosol, retinoic acid is bound to cellular retinoic acid binding proteins (CRABP).

Retinaldehyde and all-trans RA can activate the nuclear retinoic acid receptor (RAR) while 9-cis RA activates both RAR and retinoid X receptor (RXR). RXR also forms

heterodimers with peroxisome proliferator-activated receptor gamma (PPARγ). RAR and RXR bind as homo- or heterodimers to genomic retinoic acid response

elements (RARE) which can be found in the promoter region of the UCP1 gene and thereby regulate thermogenic gene expression. In addition, cold stress is the

canonical activator of the thermogenic program in adipocytes via stimulation of the central nervous system (CNS). Efferent sympathetic neurons activate

membrane-bound β3-adrenergic receptors (ADRB3) which leads to activation of the protein kinase A (PKA)-p38 mitogen-activated protein kinase (p38MAPK) pathway

resulting in the transcription of UCP-1 and other thermogenic genes.

and insulin sensitivity. SMRT knockout mice have higher body
weight on high-fat diet but increased insulin-mediated glucose
disposal possibly due to a combination mechanisms involving
an increased number of smaller subcutaneous adipocytes
as well as decreased leptin expression, resulting in greater
caloric intake (37). Some evidence suggests that retinoids can
also act through non-genomic mechanisms such as protein
retinoylation, a posttranslational modification shown to mediate
cell differentiation, cell growth and possibly steroidogenesis
(38). In recent years retinoids have been repeatedly linked to
the transcriptional control of a brown fat program. Already in
1995, it was first reported that all-trans retinoic acid induced
Ucp1 expression in murine brown adipocytes independent

of differentiation status. Retinoic acid-response elements were
found in the upstream region of the rat Ucp1 gene and RARαwas
identified as a mediator of the UCP1 responsiveness to retinoic
acid (39–41) (Figure 1). However, studies showing that the RXR
ligand 9-cis-retinioc acid also promoted Ucp1 expression in
brown adipocytes to a similar extent as noradrenaline suggested
that RXR may also be involved in inducing a BAT transcriptional
program. Indeed, co-transfection of murine expression vectors
for the different RAR and RXR subtypes indicated that RARα,
RARβ, and RXRα are the major retinoid-receptor subtypes
mediating the transcriptional response of Ucp1 to retinoids
(42). PPARδ is another nuclear receptor regulated by all-trans
retinoic acid with the potential to regulate BAT activity (43).
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In murine adipocyte cell lines, the effect of all-trans retinoic
acid on thermogenic gene expression has however been
shown to be independent of PPARδ (44). Retinoic acid may
also alter the thermogenic capacity of brown adipocytes
by non-genomic effects via induction of p38/MAPK
phosphorylation (45). In vivo, the administration of both
all-trans retinoic acid and 9-cis-retinioc acid markedly increased
Ucp1 expression in brown fat depots in mice. 9-cis-retinoic acid
even prevented BAT whitening through cold de-acclimation
(46). In accordance, dietary supplementation of vitamin
A in the form of retinyl acetate for 8-weeks significantly
augmented Ucp1 expression in BAT of rats while decreasing
the WAT marker leptin. Whole body adiposity was modestly
reduced whereas feeding mice a retinol-deficient diet had
the opposite effects (47, 48). Besides promoting thermogenic
activity in bona fide brown adipocyte, retinoids also induce
the emergence of brown-like thermogenic adipocytes in white
adipose tissue depots: A four day subcutaneous treatment
with all-trans retinoic acid in mice kept at thermoneutrality
(30◦C) which precludes sympathetic outflow to BAT and
WAT due to cold stress resulted in higher expression levels of
thermogenic genes as well as the appearance of multilocular
adipocytes in the inguinal WAT depot (49). More recently,
retinoic acid treatment in mice was shown to induce WAT
browning by increasing adipose vascularity and promoting beige
adipogenesis of platelet-derived growth factor receptor α positive
adipose progenitors (50).

Besides retinoic acid, the precursor Rald has been identified
as a signaling molecule in fat. Rald is essential in molecular
vision processes, however a biological function outside
the eye had long remained unknown. Work by Jorge
Plutzky’s group found that Rald is present in rodent WAT.
In vitro stimulation with Rald inhibited white adipogenic
differentiation in 3T3-L1 cells but markedly enhanced
thermogenic gene expression in differentiated mesenchymal
stem cells and primary human white adipocytes (51, 52).
Rald treatment in murine adipocytes resulted in recruitment
of the transcriptional co-activator Pgc1 to RAR present at
the Ucp1 promoter. These transcriptional effects of Rald
on thermogenesis were RAR-dependent. Mice deficient in
Adh1a1, the enzyme converting Rald to retinoic acid, had
elevated Rald levels in fat and were protected from diet-induced
obesity due to increased energy dissipation. Mechanistically,
Aldh1a1 deficiency promoted a thermogenic program in
subcutaneous and even more so in visceral fat which rendered
Aldh1a1−/− mice cold resistant. This thermogenic phenotype
was reversible when Aldh1a1 deficient mice were treated
with an RAR antagonist. WAT-selective knockdown of
Aldh1a1 by antisense oligonucleotides conferred a similar
thermogenic program as in Aldh1a1−/− mice, prevented
diet-induced weight gain and improved glucose metabolism
in mice suggesting that targeting Aldh1a1 in fat could be
a potential therapeutic approach counteracting metabolic
disease. Notably, Aldh1a1 is abundantly expressed in human
visceral adipose tissue and increases with obesity (51, 52).
In contrast, ablation of retinol dehydrogenase 1 (Rdh1)
seems to have opposite effects. Rdh1 deficiency suppressed

adiposity by promoting brown adipose adaptation to fasting
and re-feeding. It has been shown that BAT activity is suppressed
during fasting to preserve energy but it also contributes to diet
induced-thermogenesis after food intake (10, 53, 54). Rdh1-null
mice had lower body temperatures and a lower expression
of Ucp1 in BAT. Mechanistically, Rdh1-deficiency resulted
in decreased all-trans retinoic acid levels in BAT levels after
refeeding which impaired lipolysis that is crucial for proper BAT
function (55).

Whereas, all these data suggest that retinoids control
thermogenic gene expression and BAT function, the
retinoid pathways may also be regulated by cold exposure
and adrenergic stimulation. The retinol transport protein
RBP is induced by norepinephrine, cAMP and activators
of PPARγ and PPARα in brown adipocytes. This effect
requires the action of PPARγ-coactivator-1α and is absent
in PPARα deficient adipocytes, suggesting that PPAR
signaling is required of adrenergic induction of RBP in
brown adipocytes (56).

All these reports show promise that retinoid pathways could
serve as therapeutic targets to enhance energy expenditure
and counteract obesity. Even though most reports stem from
animal experiments, some in vitro studies in primary human
adipocytes suggest that retinoids may also modulate thermogenic
pathways in human fat (52). However, clinical studies on the
association between retinoids and brown fat activity are lacking.
Hence, validation of the previous preclinical findings in humans
is warranted.

CONCLUSION

Retinoids are vitamin A derivatives that are tightly regulated
by a network of converting enzymes. Retinoic acid has been
established as potent transcriptional regulator of thermogenic
gene expression in adipose tissue, both, in vitro and in vivo.
However, recent evidence suggest that retinoic acid is not
the only biologically active vitamin A metabolite regulating
thermogenic processes in adipocytes. Also the precursors, retinol
and retinaldehyde may have independent biological functions
in adipose thermogenesis. Targeting the retinoid pathway e.g.,
by interfering with retinoid converting enzymes that alter
retinoid concentrations in selective tissues may offer novel
therapeutic avenues to harness the energy dissipating qualities
of BAT and beige fat for counteracting obesity and associated
metabolic complications.
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