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Background: Bone marrow fat (BMF) fraction quantification in vertebral bodies is used

as a novel imaging biomarker to assess and characterize chronic lower back pain.

However, manual segmentation of vertebral bodies is time consuming and laborious.

Purpose: (1) Develop a deep learning pipeline for segmentation of vertebral bodies

using quantitative water-fat MRI. (2) Compare BMF measurements between manual and

automatic segmentation methods to assess performance.

Materials and Methods: In this retrospective study, MR images using a 3D spoiled

gradient-recalled echo (SPGR) sequence with Iterative Decomposition of water and fat

with Echo Asymmetry and Least-squares estimation (IDEAL) reconstruction algorithm

were obtained in 57 subjects (28 women, 29 men, mean age, 47.2 ± 12.6 years).

An artificial network was trained for 100 epochs on a total of 165 lumbar vertebrae

manually segmented from 31 subjects. Performance was assessed by analyzing the

receiver operating characteristic curve, precision-recall, F1 scores, specificity, sensitivity,

and similarity metrics. Bland-Altman analysis was used to assess performance of BMF

fraction quantification using the predicted segmentations.

Results: The deep learning segmentation method achieved an AUC of 0.92 (CI 95%:

0.9186, 0.9195) on a testing dataset (n = 24 subjects) on classification of pixels as

vertebrae. A sensitivity of 0.99 and specificity of 0.80 were achieved for a testing

dataset, and a mean Dice similarity coefficient of 0.849 ± 0.091. Comparing manual and

automatic segmentations on fat fraction maps of lumbar vertebrae (n = 124 vertebral

bodies) using Bland-Altman analysis resulted in a bias of only −0.605% (CI 95% =

−0.847 to −0.363%) and agreement limits of −3.275% and +2.065%. Automatic

segmentation was also feasible in 16 ± 1 s.
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Conclusion: Our results have demonstrated the feasibility of automated segmentation

of vertebral bodies using deep learning models on water-fat MR (Dixon) images to define

vertebral regions of interest with high specificity. These regions of interest can then be

used to quantify BMF with comparable results as manual segmentation, providing a

framework for completely automated investigation of vertebral changes in CLBP.

Keywords: spine imaging, bone marrow fat, biomarkers, deep learning, segmentation, magnetic

resonance imaging

INTRODUCTION

Bone marrow fat (BMF) content in the vertebral bodies
was found to correlate with disease severity in patients with
osteoporosis and HIV, and was associated with chronic low
back pain (CLBP); it therefore may provide a potential imaging
biomarker for patients with various skeletal, metabolic, and
hematological diseases both to assess disease burden andmonitor
treatment (1–3). For example, increases in vertebral BMF
and BMF heterogeneity could play a role in the etiology of
intervertebral disc degeneration (3), which is often linked to
CLBP, and alterations in vertebral BMF may accompany painful,
innervated bone marrow lesions (BML) in the endplate (4–6).
Yet, despite the potential importance of vertebral BMF as an
imaging biomarker, clinical spine imaging relies mainly on
qualitative interpretations based on T1- and T2-weighted images.

Recent advances in quantitative MRI techniques enable
accurate BMFmeasurement. For example, accurate assessment of
BMF in the presence of trabecular bone can be achieved through
chemical shift encoding-based water-fat imaging (7, 8), or the
Dixon method, allowing for the ability to establish relationships
between changes in BMF occurring in diseases such as CLBP. In
water-fat imaging, multiple echoes in a gradient echo acquisition
are used to create a time-dependent phase shift between water
and fat MR signals (9). Strong correlations have been shown
between bone marrow fat fractions in lumbar vertebral bodies
obtained from modified Dixon sequences and those obtained
from single-voxel magnetic resonance spectroscopy (MRS),
which is considered a gold standard method for quantification
of bone marrow fat (10, 11). The iterative decomposition
of water and fat with echo asymmetry and least-squares
estimation (IDEAL) technique has also been developed through
further modifications of the Dixon technique to overcome
field inhomogeneities during water-fat separation with maximal
signal-to-noise ratio (SNR) and minimal scanning time (12).

Although quantitative methods for BMF measurement are
promising, BMF analysis from the resulting images requires
manual identification of vertebral bodies and segmentation of
regions of interest which, in MR images, is laborious and
time consuming. One potential solution is deep learning, which
has demonstrated robust automated segmentation performance
in various biomedical imaging problems (13–16). Given large
amounts of data, deep learning algorithms, mostly in the form
of convolutional neural networks (CNNs), can automatically
learn and thus predict representative features for a given
medical imaging problem. Advantages of a machine learning

model include the ability to review large amounts of data and
consistently and objectively arrive at the same result without
fatigue, as well as find nuance in images that may be difficult
to detect by humans. Previous studies have looked into the
feasibility of using deep learning, namely CNNs, to segment
vertebrae in a two-step process including initial detection of the
vertebrae (17–20). The U-Net deep learning architecture, which
involves a contracting downsampling path and an expansive
upsampling and concatenation path, has been proven to be
effective in biomedical image segmentation tasks even with
limited data availability (13). Some recent studies have used the
U-Net for segmenting vertebrae in spinal CT and on sagittal
and axial T2-weighted spine MRI (21–23), but so far U-Nets
haven’t been used for segmenting vertebrae in water-fat Dixon
MR images, which typically have lower resolution and higher
sensitivity to field inhomogeneities.

Given the potential value of quantitative BMF analysis in
evaluating and monitoring disease activity, this study aimed to
develop and evaluate a fully automated deep learning pipeline
fromwater-fat DixonMR images using U-Net to segment lumbar
vertebral bodies on BMF maps in patients with CLBP and
healthy controls. We hypothesized that the deep learning-based
automated vertebral body segmentation will allow for a faster
workflow and comparable accuracy in both region of interest
(ROI) segmentation and BMF quantification thereafter.

MATERIALS AND METHODS

Data Selection and Study Design
Full Institutional Review Board approval and written informed
consent was obtained from each subject in this prospective
study. The dataset used in this study consisted of 57 subjects
enrolled between January 2016 and July 2018, with a mean age
of 47.2 ± 12.6 years. Male and non-pregnant female patients
between 18 and 70 years of age were included. Twenty-eight of
the participants were female (49.1%). Forty subjects had been
experiencing low back pain more than three consecutive months,
with a back-pain score ≥30% on the Oswestry disability index
(ODI) or≥4 on the visual analog scale (VAS). Seventeen subjects
were healthy controls without low back pain (VAS ≤1). Subjects
were excluded if they had diabetes, smoking, cancer, and lumbar
vertebral abnormalities (spondylolisthesis, spondylolysis, lumbar
scoliosis, lumbar disc herniation). A subset of these subjects was
included in previous studies (3, 24). Detailed demographics are
described in Table 1.
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TABLE 1 | Demographic characteristics of the dataset the deep learning model

was trained on, and the two test sets used for evaluation.

Characteristic Set 1 (n = 31) Set 2 (n = 11) Set 2&3 (n = 26)

Age (years) 47.9 ± 12.4 50.7 ± 9.7 46.4 ± 12.9

Sex

Female 16 (51.6) 2 (18.2) 12 (46.2)

Male 15 (48.4) 9 (81.8) 14 (53.8)

Patient Status

Controls 8 (25.8) 1 (9.1) 9 (34.6)

Cases 23 (74.2) 10 (90.9) 17 (65.4)

Weight (kg) 73.7 ± 15.8 87.4 ± 16.5 77.2 ± 16.8

Height (cm) 173.4 ± 8.5 177.0 ± 10.5 174 ± 11.7

BMI (kg/m2 ) 24.4 ± 4.4 28.0 ± 5.5 25.7 ± 5.1

Clinical measures

ODI 24.6 ± 19.7 32.7 ± 17.6 20.8 ± 19.0

VAS 4.9 ± 3.4 6.1 ± 2.3 4.2 ± 3.2

–Mean data are ± standard deviation; data in parentheses are percentages. Set 1 was

the IDEAL image dataset used to train the U-Net. Set 2&3 consists of the 11 subjects in

Set 2 and 15 additional subjects scanned after July 2017. BMI, body mass index; ODI,

Oswestry Disability Index; VAS, Visual Analog Scale.

MRI Acquisition
Magnetic resonance images were obtained using a Discovery MR
750 3T scanner with an 8-channel phased-array spine coil (GE
Healthcare, Waukesha, WI). Clinical fast spin echo (FSE) sagittal
images with T1 and T2 weighting were acquired with field of view
(FoV)= 26 cm and slice thickness= 4mm. T2-weighted FSE had
an echo time (TE)= 60ms, repetition time (TR)= 4877ms, echo
train length (ETL) = 24, readout-bandwidth (rBW) = ±50 kHz,
and in-plane resolution of 0.6mm. T1-weighted FSE had TE =

30ms, TR = 511ms, ETL = 4, rBW = ±50 kHz, and in-plane
resolution of 0.5mm. The water-fat MRI protocol consisted of
a sagittal 3D spoiled gradient-recalled echo (SPGR) sequence
with six echoes (TE1 = 2.1ms, TE2 = 3.1ms, TE3 = 4.1ms,
TE4 = 5.1ms, TE5 = 6.1ms, and TE6 = 7.0ms) and iterative
decomposition of water and fat with echo asymmetry and least-
squares estimation (IDEAL) reconstruction algorithm (25) with
TR= 7ms, TE= 2.1ms, flip angle= 3◦, rBW=±83.3 kHz, FoV
= 22 cm, in-plane resolution = 1.375mm, and slice thickness =
4mm. Each subject had 20 slices in each IDEAL series (water,
fat, R∗

2 , and fat fraction map). The generated water-only, fat-
only, R∗

2 images as well as the fat fraction maps were transferred
from the scanner to a Linux workstation for the subsequent
analyses. All IDEAL image series contained 5-7mid-sagittal slices
with visible lumbar vertebrae, and sometimes parts of the T12
vertebral body and/or sacrum.

Manual Vertebral Body Segmentation and
Inter-Rater Reliability
Two sets of manual segmentations for all five lumbar vertebral
bodies were performed independently by two different trained
operators (J.R.C. and A.B.) with different guidelines, both
using in-house software developed with an interactive display
language routine (IDL, Harris Geospatial Solutions, Broomfield,

CO). Rater A (J.R.C.), under supervision by a musculoskeletal
imaging fellowship-trained radiologist (T.M.L.), performed
segmentations on seven mid-sagittal slices of water IDEAL
images for 42 subjects (CLBP = 33, Controls = 9) scanned
prior to August 2017. Rater B (A.B.), under supervision of a
spine imaging expert with 10 years of experience reading spine
MRIs (A.J.F.), performed segmentations on five mid-sagittal
slices of the derived fat fraction maps for 57 subjects (CLBP
= 40, Controls = 17), including all 42 subjects segmented by
Rater A, whilst using the T1 series acquired during the scanning
session as a guide. Contours were drawn up to but not including
the thick margins of cortical bone separating vertebral body
from surrounding tissues. Segmentations were performed on 2x
magnified images.

Cohen’s kappa (κ) was used to test for interrater agreement
between the two annotators on classifying whether a pixel from
an IDEAL imaged belonged to the vertebra or non-vertebra class.
The kappa is defined as

κ =
po − pe

1− pe
(1)

where po is the observed agreement ratio and pe is the expected
agreement ratio when both annotators independently assign
labels by chance (26). This chance agreement is obtained through
a per-annotator empirical prior over the class labels (27).

Deep Learning
Preprocessing, deep learning model implementation, and model
evaluation were performed in Python 3.7 (open-source; Python
Software Foundation, Wilmington, DE) in a 12-core/24-thread
AMD Ryzen Threadripper 1920X processor at 4.0 GHz
(Advanced Micro Devices, Santa Clara, CA), 32 GB DDR4-
SDRAM and a Titan Xp 11 GB graphical processing unit
(Nvidia, Santa Clara, CA) running Linux system (Ubuntu 16.04;
Canonical, London, England) with CUDA 10.0 (Nvidia).

A U-Net was trained using Keras with Tensorflow backend
on a random selection of 31 subjects (CLBP = 23, Controls =
8), 7 of which were set aside for validation during the training
process to prevent overfitting (13, 28). A Jaccard distance loss was
used with Adam optimization, learning rate = 1e-4, and batch
size = 4 with early stopping implemented (14, 29). Code can
be found online (https://github.com/zhoji/verteseg). The ground
truth segmentations for training the model was created manually
by Rater A as described in section Manual Vertebral Body
Segmentation and Inter-rater Reliability.

For each subject, twenty 256 × 256 slices (unchanged
from original resolution) were input into an unchanged U-Net
with default parameters, each image containing four “channels”
corresponding to the water, fat, fat fraction, and R2∗ values. No
cropping was performed, and data were not normalized and kept
at their original signal intensity values. The U-Net performance
was evaluated on two separate testing sets. The first testing set
(Set 2A) consisted of 11 subjects (CLBP= 10, Controls= 1) with
labels annotated by rater A. The other testing set (Set 2B&3B)
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consisted of 26 subjects (CLBP = 17, Controls = 9), including
the 11 subjects in the Set 2A, with labels annotated by rater B.

ROI Quantification
Our overall pipeline for segmentation and analysis is shown in
Figure 1A. Resulting predicted segmentations from the trained
U-Net were binarized with a threshold of 0.5 and used to
create segmentation masks in DICOM format. Initial regions
of interest (ROIs) derived from these segmentation masks were
automatically defined using a function from in-house software
developed with IDL 8.4 (IDL, Research Systems, Broomfield,
CO). ROIs in each slice that cover more than half the area of
their corresponding lumbar vertebral body (L1-5) were included
for BMF analysis. Bone marrow fat fractions were quantified
by taking the mean value of the fat fraction map in each ROI
on a slice-by-slice basis, then averaging for all slices for each
lumbar vertebral body (L1-L5), as described in Figure 1B. The
final mean BMFs for each lumbar vertebral body as defined
by the segmentations from the U-Net were compared with
manual segmentations by rater A and rater B through Bland-
Altman analysis.

A diagrammatic representation of the training and testing
datasets and associated labels is shown in Figure 2.

Statistical Analysis
Final model performance was evaluated on both test sets
on slices with vertebral segmentations present. Average
script run-time was assessed over 10 runs using hyperfine
(github.com/sharkdp/hyperfine). Model precision-recall,
confusion matrices, and receiver-operating characteristic
(ROC) curves, and Cohen κ values were calculated using scikit-
learn 0.22.1 (scikit-learn.org). The DeLong algorithm was used
to measure the uncertainty of an AUC, or area under the ROC
curve (30). The F1-score and precision-recall curve AUC were
also analyzed to better assess an imbalanced dataset (31). Dice
similarity coefficients (DSC) and Jaccard similarity coefficients
(also known as intersection over union, IoU) were also measured
for slices that contained manually segmented vertebrae, and
calculated as follows:

DSC =
2 |X ∩ Y|

|X| + |Y|
=

2TP

2TP + FP + FN
(2)

IoU =
|X ∩ Y|

|X ∪ Y|
=

TP

TP + FP + FN
(3)

where X and Y are the manual and predicted segmented masks,
TP is the true positive count, FP is the false positive count, and
FN is the false negative count.

Bland-Altman analysis was performed and visualized
in Microsoft Excel 2019. Bland-Altman plots were created
comparing the mean fat fractions in each vertebral body ROI as
defined by the manual segmentations done for Test Set A and
B, with those defined by the automatic segmentation (32). The
limits of agreement (LOA) were calculated using the mean and

the standard deviation (±1.96SD) of the differences between the
two measurements for each lumbar vertebral body.

Intra-subject repeatability analysis was performed on a
separate water-fat IDEALMRI dataset of healthy controls (n= 8)
acquired on a GE MR750w widebore MR 3T scanner with an
8-channel phased-array spine as a sagittal 3D SPGR sequence
with six echoes and IDEAL reconstruction algorithm (20) with
TR = 7 msec, FoV = 26 cm, and in-plane resolution = 1.3mm.
All other parameters were the same as those of the original
dataset described in section MRI acquisition. For each scanning
session, the subject exited the MRI, walked around for about
2min, and then re-entered the MRI bore for a second water-fat
IDEAL scan with the same parameters as before. Vertebral body
segmentations were then inferred using the trained U-Net on
the test and retest scans, and mean fat fraction for each lumbar
vertebral body was quantified. Repeatability of the automated
segmentation method on different scans of the same subject was
assessed using a linear mixed model with random intercept to
account for the repeated measured data. A repeated-measures
ANOVA with a least mean-squares method was used to compare
fat fraction percentage. A post-hoc Tukey-Kramer t-test was
used to evaluate the difference in the first and second fat
fraction percentages at each vertebral level taken from the scans
in order to correct for multiple comparisons. An Intraclass
Correlation Coefficient (ICC) assessed the reliability of the data
(33). Short-term precision error was calculated to look at possible
measurement error (34). A p-value < 0.05 was considered
statistically significant. All repeatability analyses were completed
in SAS (version 9.4) and Microsoft Excel 2019.

RESULTS

Inter-Rater Reliability in Manually
Segmented Images
Inter-rater reliability was assessed between the two annotators for
their agreement on presence of absence of vertebra. The linearly
weighted Cohen’s kappa between the segmentations done by rater
A and rater B was 0.798, consistent with a moderately strong level
of agreement.

Deep Learning Model Performance on
Segmentation
After training the deep learning model for 100 epochs on
620 slices total (encompassing 155 lumbar vertebrae from 31
subjects), the U-Net accurately classified vertebral bodies in
97.8% of pixels in Sets 2A and 2B&3B. A sensitivity of 0.77 and
specificity of 1.0 were achieved for Set 2A and a sensitivity of 0.80
and specificity of 0.99 were achieved for Set 2B&3B. An overview
of the results with accuracy, precision, recall, F1 score, and
sensitivity and specificity are shown in Supplementary Table 1.

With the use of the trained U-Net to classify vertebral bodies,
the overall area under the receiver operating characteristic curve
(AUC) was 0.99 (confidence interval [CI] 95%: 0.9861, 0.9864)
on the training dataset Set 1A, 0.91 (CI 95%: 0.9058, 0.9071)
on Set 2A, and 0.92 (CI 95%: 0.9186, 0.9195) on Set 2B&3B
for classification of pixels as vertebrae. The receiver-operating
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FIGURE 1 | Automatic vertebrae segmentation and fat quantification pipeline. (A) All IDEAL images (water, fat, fat fraction, and R*
2) are fed into a U-Net (13) as

multichannel inputs, resulting in the predicted segmentation map. Each ROI corresponding to lumbar vertebrae was analyzed on fat fraction maps to yield mean BMF

values. (B) DICOM masks were made from the predicted segmentation map. ROIs were identified through the MaskToMir function in in-house software made in IDL

(IDL, Research Systems, Broomfield, CO). These automatically identified ROIs were then overlaid on the fat fraction maps derived from the water-fat IDEAL image

series. For each lumbar vertebral body ROI, the mean fat fraction value was obtained for each slice, and the final mean BMF was averaged over all slices with lumbar

vertebral bodies present. The mean BMFs for each lumbar vertebral body as defined by the automatically segmented ROIs were compared with the manually

segmented ROIs through Bland-Altman analysis.
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FIGURE 2 | Description of datasets evaluated in this study. Both training sets consisted of the same 31 subjects. Set 1A was used to train the U-Net. Automatic

segmentations from Set 1A were compared with manual segmentations done by Rater A and also used during the U-Net training process. The U-Net with finalized

weights after training was then used to automatically segment images from the same image set 1 and compared with manual segmentations done by Rater B,

denoted as Set 1B. Set 2A consisted of 11 subjects, with 7 slices each with identified vertebra from Rater A’s manual segmentation, while Set 2B&3B consisted of

26 subjects, with 5 slices each with identified vertebra from Rater B’s manual segmentation. Additional demographic information can be found in Table 1.
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TABLE 2 | Metrics of agreement for manual and automatic segmentations in

different datasets.

Similarity

metric

Set 1A Set 1B Set 2A Set 2B&3B

DSC 0.956 ± 0.076 0.886 ± 0.040 0.838 ± 0.198 0.849 ± 0.091

IoU 0.928 ± 0.105 0.798 ± 0.059 0.757 ± 0.216 0.747 ± 0.118

– Mean data are± standard deviation. Datasets used are as described in Figure 2. Model

predictions for each slice were binarized by a threshold of >0.5. DSC, Dice Similarity

Coefficient; IoU, Intersection over Union (Jaccard).

characteristic curve is shown in Supplementary Figure 1A, while
the precision-recall curve is shown in Supplementary Figure 1B.
Precision-recall was analyzed due to better visual interpretability
when dealing with imbalanced datasets (31).

We also analyzed the Dice similarity coefficient and
intersection over union of the binarized predicted segmentations
compared with both sets of manual segmentations for both the
training set and the testing set. As expected, both DSC and IoU
were very high for the predictions on the training set when
compared with Rater A’s ground truth manual segmentations, on
which the neural network was trained (DSC: 0.959± 0.0756; IoU:
0.928 ± 0.105). On unseen data, the predicted segmentations for
Sets 2A (DSC: 0.838 ± 0.198; IoU: 0.757 ± 0.216) and 2B&3B
(DSC: 0.849 ± 0.091; IoU: 0.747 ± 0.118) still show moderately
high agreement. Interestingly, when comparing the predicted
segmentations for the training set with themanual segmentations
done by Rater B (an independent manual segmentation that was
not used as ground truth during model training), we see similar
performance as the two test sets, as if the data were unseen
(DSC: 0.886 ± 0.040; IoU: 0.798 ± 0.059), which suggests that
the performance of the trained model is relatively insensitive
to inter-rater differences in ground truth segmentations used to
train the model. A summary of these agreement metrics is shown
in Table 2.

An added benefit of applying an automated method is
increased time efficiency in the image analysis workflow
compared with manual segmentation. With the deep learning
model, running the script for segmentation of a series of spine
images (twenty slices total, including five mid-sagittal slices
with manual segmentations as reference) on a standard Linux
workstation with 4 4-core/8-thread Intel XeonW3550 processors
at 3.07 GHz (Intel Corporation, Santa Clara, CA) and 12GB
RAM, including loading input data and saving predictions,
took a mean time of 16 ± 1 s (n = 10 runs; range: 14.5 to
19.1 s). It took about 5min, on average, to manually segment
all five lumbar vertebral bodies in a single slice, resulting in an
acceleration of ∼92x when using the automated method for five
mid-sagittal slices.

Bone Marrow Fat Fraction Quantification
Performance
The performance of the automatic segmentation on creating
regions of interest for the purpose of calculating BMF was
assessed with Bland-Altman analysis for the two testing datasets
compared to their respective manual segmentations. Comparing

manual and automatic segmentations on fat fraction maps using
Bland-Altman analysis results in a positive bias (mean:+0.382%;
CI 95%=+0.068 to 0.696%) in Set 2A (n= 53 vertebral bodies),
as seen in Figure 3A. A total of 5.7% of the residuals fell outside
the 1.96 ± SD (−1.850 to +2.614%) limits of agreement. For
Set 2B&3B (n = 124 vertebral bodies), there was a negative bias
(mean: −0.605%; CI 95% = −0.847 to −0.363%) with a total of
2.4% of the residuals falling outside the 1.96 ± SD (−3.275%
to +2.065%) limits of agreement, as seen in Figure 3B. There
was contribution to the negative bias seen with Set 2&3B, as
when comparing the Bland-Altman plots between the mean BMF
values acquired on Set 1Bwith those acquired on Set 1A, as shown
in Supplementary Figure 2, there is a positive bias, suggesting
that rater B’s annotations tended to estimate higher mean BMF
values than rater A’s annotations. Despite only being trained on
rater A’s annotations, the U-Net segmentation provides a middle
ground between the two raters, resulting in what appears to be
overestimation in comparison with rater A’s annotations, and
underestimation in comparison with rater B’s.

Workflow Reliability
After training, the automated segmentation method is a
deterministic model that returns the same segmentations (and
thus BMF fractions from each lumbar vertebral body) given
the input is the same IDEAL image set from the same subject,
allowed for within-subject repeatability on the same scanned
images. Within-subject repeatability on different scans of the
same subject was also measured on a separate control dataset
for a total of n = 8 subjects, with an overall mean BMF
fraction of 33.1%. Between each lumbar vertebral body for two
repeated scans, there was a precision error of 1.6% and ICC of
1.00, showing good correlation and lack of significant difference
between the test-retest scans. Detailed analyses for each lumbar
vertebral body are shown in Supplementary Table 2.

DISCUSSION

We developed, trained, and validated a deep learning model on
a total of 57 IDEAL image data sets to automatically segment
lumbar vertebral bodies from water-fat MRI data. Our main
findings were (1) deep learning-based automatic segmentation
of vertebral bodies was feasible in 16 ± 1 s; (2) the deep
learning model segmented vertebral bodies with high accuracy
(97.8%), precision (98.3%), and sensitivity (99.3–99.4%) when
compared with manual segmentations; (3) the deep learning
model showed good performance compared with standard
manual analysis (mean DSC = 0.849 across 24 subjects); (4) the
automatically segmented ROIs provided reliable quantification
of bone marrow fat fraction (Bland Altman analysis: low bias
and limits of agreements lower than 10% difference of the mean
ground truth values); and (5) the automatic segmentation and
BMF quantification workflow is highly repeatable between scans
within the same subjects (precision error of 1.6% and ICC of
1.00). While only lumbar vertebrae were analyzed in our study,
if other vertebral bodies in the thoracic or sacral regions were
present in the field of view, these would also get segmented
by our deep learning framework, suggesting applications for
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FIGURE 3 | Bland-Altman plots of mean bone marrow fat fraction (BMF) percentages (%) as determined by manual segmentation compared to automatic

segmentation for each lumbar vertebral body (L1-L5). The biases between BMFs collected by the automated (NN) and manual segmentations for both test sets were

less than 10% of the mean value. (A) Comparison of mean BMF values for manual segmentations performed by annotator A and the predicted segmentation by the

deep learning model on Set 2A (n = 53 vertebrae). The bias was +0.382% with limits of agreement of −1.850% and +2.614%. (B) Comparison of mean BMF values

for manual segmentations performed by annotator B and the predicted segmentation by the deep learning model on Set 2B&3B (n = 124 vertebrae). The bias

was−0.605% with limits of agreement of −3.275% and +2.065%.

segmentation of other vertebral regions with bone marrow
fat. However, further work would be required for the trained
model to be generalizable for bone sites other than vertebrae,
such as hips or knees, as the current model is trained to be
highly sensitive to the anatomy of vertebral bodies from sagittal
spine scans.

Our deep learning model was slightly lacking in performance
compared to other automated vertebral segmentation methods
that were used for 3D modeling from spine CT or clinical MR
images. In particular, using a U-Net, Lu et al. (2018) achieved
a mean DSC of 0.93 ± 0.02 when inputting higher resolution
sagittal and axial T2-weighted MR images for segmenting and
labeling 6 intervertebral disc levels after training on 4,075 patients
(23). Their method however focused on a multi-class approach
for stenosis grading, using curve fitting and bounding boxes to
segment vertebral bodies rather than tight contours as ground
truth. Our ground truth masks more accurately represent the
true vertebral body shape in comparison, providing a more
detailed and complex segmentation problem. Nevertheless, when
applying our predicted segmentations for the purpose of BMF
fraction quantification on lower resolution IDEAL MRI data,
our Bland-Altman analysis showed performance on par with our
manual segmentations. Additionally, the relatively quick process
of automatic segmentation (16 ± 1 s) allows for a more efficient
workflow compared to that of manual segmentation.

Our study has some limitations. Manual segmentation of the
vertebrae can be very challenging depending on the pathologies
present in the image. Thus, even between the two “ground truths,”
there was still variability present between the two annotators
as shown by the only moderately high Cohen kappa of 0.798.
Nevertheless, by using multiple annotators in our study, with

a neural network trained on one rater’s annotations, there is
better representation for real world use cases, such as in multi-
center studies where other institutions would have had different
annotators operating under different guidelines. Therefore, in
this study, we have tested the relevance of a trained U-Net based
on images annotated by a single rater against those annotated by
an unseen rater.

Additionally, our method suffers from slightly lower
specificity (78.2–80.2%), indicating higher incidence of false-
positive labels when compared to manual segmentations. This
may be due to manual segmentation guidelines preferring to
underestimate the extent of the vertebral bodies in order to
prevent partial volume effects. This may affect the validity
of the automatically segmented vertebral bodies, although
the clinical consequences of the lower specificity remain
unclear since the resultant mean BMF values showed excellent
Bland-Altman agreement between automated and manual
analyses. In future applications, the automatic segmentation
could thus be used in a semi-automatic approach, where
the resulting automatic predictions can then be modified
manually, still resulting in an acceleration in the workflow
compared to completely manual segmentation. It is also worth
acknowledging that the MRI data were acquired at a single
site with the same magnet, and thus, the performance of the
automatic segmentation method may need to be measured on
images obtained with MRIs from different vendors. We aim
to improve the performance of the neural network by utilizing
data augmentation to account for the relatively small dataset,
fine-tuning the data with newly acquired data and manual
segmentations, and exploring alternative networks (e.g., 3D
neural network architectures).
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In conclusion, our study demonstrated the feasibility of an
automated pipeline to segment vertebral bodies from water-fat
IDEAL MR images and showed that its performance was similar
to that of manual segmentation. In the future, we also plan to
implement these segmentations in an automated pipeline for
measuring vertebral BMF as an imaging biomarker of vertebral
abnormalities, as the trained model may be useful in large studies
of low back pain patients.
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Supplementary Figure 1 | (A). Receiver operating characteristic (ROC) curves

for the classification of vertebrae in training dataset Set 1A (blue), and testing

datasets Set 2A (orange), and Set 2B&3B (green). Chance performance is shown

by the dotted red line. Area under the receiver operating characteristic curve

(AUC) was highest for the training set (0.99), as expected, but also reasonably

high for both test sets (0.91 and 0.92 for A and B, respectively). (B)

Precision-recall curve for the classification of vertebrae in training dataset Set 1A

(blue), and testing datasets Set 2A (orange), and Set 2B&3B (green). The F1-score

and area under the curve (AUC) was highest for the training set (0.98), as

expected. The AUCs for both test sets are fairly high (0.87 and 0.88 for A and B,

respectively), though lower than in the ROC curve, likely due to data imbalance.

Supplementary Figure 2 | Bland-Altman plot of mean bone marrow fat fraction

(BMF) percentages (%) as determined by rater B’s annotations on the training

dataset (Set 1B, n = 53 vertebrae) compared to rater A’s annotations on the same

subjects (Set 1A, n = 53 vertebrae) for each lumbar vertebral body (L1-L5). The

bias was +1.352% with limits of agreement of −1.184% and +3.887%.

Supplementary Table 1 | Overview of deep learning model performance results

on the two tests sets used for evaluation.

Supplementary Table 2 | Repeatability analyses applying a linear mixed model

with random intercept to account for the repeated measured data for each lumbar

vertebral body across all patients in the repeatability data set (n = 8).
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