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Background: Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder

that is influenced by both genetic and environmental factors. However, the etiology of

PCOS remains unclear.

Methods: We conducted a two-sample Mendelian randomization (MR) analysis to

assess the causal effects of genetically determined metabolites (GDMs) on the risk

of PCOS. We used summary level data of a genome-wide association study (GWAS)

on 486 metabolites (n = 7,824) as exposure and a PCOS GWAS consisting of

4,138 cases and 20,129 controls as the outcome. Both datasets were obtained from

publicly published databases. For each metabolite, a genetic instrumental variable was

generated to assess the relationship between themetabolite and PCOS. For MR analysis,

we primarily used the standard inverse variance weighted (IVW) method, while three

additional methods—the MR-Egger, weighted median, and MR-PRESSO (pleiotropy

residual sum and outlier) methods—were performed as sensitivity analyses.

Results: Using genetic variants as predictors, we observed a robust relationship

between epiandrosterone sulfate (EPIA-S) and PCOS (PIVW = 0.0186, PMR−Egger

= 0.0111; PWeighted−median = 0.0154, and PMR−PRESSO = 0.0290). Similarly,

3-dehydrocarnitine, 4-hydroxyhippurate, hexadecanedioate, and β-hydroxyisovalerate

may also have causal effects on PCOS development.

Conclusions: We identified metabolites that might have causal effects on PCOS

development. Our study emphasizes the role of genetic factors underlying the causal

relationships between metabolites and PCOS and provides novel insights through

the integration of metabolomics and genomics to better understand the mechanisms

involved in human disease pathogenesis.
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is the leading cause of
female infertility worldwide, affecting 6–20% of the female
population of reproductive age (1, 2). Hyperandrogenism (HA),
ovulatory dysfunction (OD), and polycystic ovarian morphology
(PCOM) are common clinical manifestations of PCOS (3).
Furthermore, women with PCOS usually exhibit a wide range of
endocrine-metabolic disturbances, including insulin resistance,
hyperinsulinemia, obesity, and adipose tissue dysfunction, which
eventually result in type 2 diabetes mellitus and cardiovascular
disease (4–6). Although the latest advances have suggested that
PCOS is a complex disease influenced by both genetic and
environmental factors, its etiology and the underlying biological
processes still need to be researched.

Modern omics-based technologies, including genomics,
transcriptomics, proteomics, and metabolomics, have greatly
advanced our understanding of the pathophysiological process
of human complex diseases and successfully identified a series
of biomarkers that could lead to earlier diagnosis of diseases or
therapeutic targets for disorders (7). Therefore, these approaches
provide a systematic readout of the inherent genetic architecture,
the dynamics of physiological and biochemical indicators, and
the environmental exposure for individuals (8). Metabolomics
characterize downstream gene regulation and protein activity
and are considered to be more representative of clinical
phenotypes. During the past decade, advances in metabolomics
have led to considerable achievements in detecting chemical
components that contribute to the occurrence of PCOS. Zhao
et al. assessed the metabolic profiles of 217 cases and 48 controls
and identified a series of carbohydrate, lipid, and amino acid
metabolism in PCOS (9). Chang et al. performed a combinative
analysis of non-targeted and targeted metabolomics on obese
women and found specific amino acid elevations in PCOS (10).
Zhang et al. recruited 286 subjects and investigated the disturbed
metabolic profiles for specific pathogenic characteristics of
PCOS patients, such as HA and insulin resistance (11). However,
these studies typically had small sample sizes and provided
limited information about pathophysiological mechanisms. A
comprehensive analysis of genomics and metabolomics could
provide novel insights into understanding the underlying
mechanism of genetic and metabolic interactions in the
pathogenesis of PCOS. Recently, a database of genotype-
dependent metabolic phenotypes [called genetically determined
metabolites (GDMs)] has been developed using a genome-wide
association study (GWAS) with non-targeted metabolomics. The
established GDMs provide functional intermediates to facilitate
understanding of the potential relevance of human serum
metabolites and related genetic variants in the pathogenesis of
complex diseases (12–15).

Mendelian randomization (MR) is a novel genetic
epidemiological approach that uses genetic variants as
instrumental variables to assess the causality of an agent on
clinical outcomes of interest (16). The basic principle of the
MR study design uses instrumental variables rather than only
exposure to infer causality of exposures on clinical outcomes.
This primarily requires the assumption that the generated

instrumental variable (usually genetic variants) is reliably
associated with the exposure and acts on the outcome directly
through exposure of interest. Unlike traditional metabolomic
approaches, MR can provide unbiased detection of causal effects,
considering the fact that genetic variants are less susceptible
to environmental factors (17, 18). In the past decade, MR has
been widely applied to infer causal relationships using publicly
available GWAS summary statistics (19–21). Taking advantage
of GDMs and GWAS findings for PCOS, we conducted this two-
sample (exposure and outcome measured in different samples)
MR study to (i) assess the causal effects of 486 serum metabolites
on the risk of developing PCOS and (ii) investigate the genetic
variants that determine the variation of the metabolites, which
also contribute to the development of PCOS.

MATERIALS AND METHODS

Genome-Wide Association Study of Serum
Metabolites
We obtained data for genetic factors that influence human
blood metabolites from the study of Shin et al. (15). They
conducted genome-wide association scans using the metabolome
as a phenotype. The study comprised 7,824 adult individuals
from two European population studies. Metabolic profiling was
performed on fasting serum using ultrahigh-performance liquid-
phase chromatography and gas chromatography coupled with
tandem mass spectrometry (13, 22). A standardized process of
identification and relative quantification, data reduction, and
quality assurance was performed using Metabolon, Inc. (https://
www.metabolon.com/). A total of 486 metabolites, assigned
to eight broad metabolic groups (amino acids, carbohydrates,
cofactors and vitamins, energy, lipids, nucleotides, peptides,
and xenobiotic metabolism), were included in the final GWAS
analysis. Among these, 196 (37%) were classified as “unknown,”
which meant that their chemical identity had not been clearly
determined thus far. We included these “unknown” metabolites
in our study as they still attracted attention from other
researchers and might provide further useful information in the
future (22). After genotyping, imputation, and quality control
(QC), ∼2.1 million single-nucleotide polymorphisms (SNPs)
were identified in the final GWAS meta-analysis. The complete
GWAS summary statistics are publicly available through the
Metabolomics GWAS server at http://metabolomics.helmholtz-
muenchen.de/gwas/.

Genetic Instrumental Variables for 486
Metabolites
In order to satisfy the primary conditions for preforming MR, we
implemented strict procedures to select the genetic instruments
of these 486 metabolites. First, we screened out the genetic
variants that were strongly (P < 1 × 10−5) associated with
specific metabolites to ensure that the generated instrument
could explain a larger variance in the corresponding metabolite.
Next, we selected independent SNPs (r2 < 0.1 within ± 500 kb)
to generate the instrumental variable using a clumping procedure
with the European 1,000G as reference panel. We further tested
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whether these genetic instruments could explain the variation of
the corresponding metabolites to avoid instruments with a weak
first stage. The proportion of variability (R2) and F statistic was
calculated to assess the strength of these instrumental variables
(23). F statistic > 10 was considered for selection of strong
instrumental variables (24).

Genome-Wide Association Study of
Polycystic Ovary Syndrome
Genetic associations with PCOS were obtained from a recent
large GWAS meta-analysis, with 4,138 cases and 20,129 controls
collated from six European cohorts (25). The included samples
were either diagnosed according to the National Institutes of
Health (NIH) (require HA and OD) or Rotterdam criteria
(requires at least two traits of HA, OD, and PCOM) (26). All
data involved in the GWAS analysis had been approved by the
authors’ Institutional Review Board (IRB). Written informed
consent was also obtained from all participants. Summary-level
results were obtained from these studies, and QC procedures
were performed according to the EasyQC pipeline (27). The
genome-wide association analysis was performed using a fixed-
effect, inverse variance weighted (IVW) meta-analysis using
METAL (28).

Statistical Analysis
To calculate causal estimates, we used the standard IVWmethod
for the two-sample MR analysis of the summarized datasets
of the serum metabolites and PCOS (16). The IVW approach
was employed with the fundamental assumption that all genetic
variants referred to valid instruments, and it thus provided
efficient and consistent casual estimates. Specifically, the IVW
estimate could be equivalently interpreted as a liner regression
with SNP–exposure associations as the independent variable and
SNP–outcome associations as the dependent variable, setting
the intercept term to zero. The P-value was calculated from a
standard normal cumulative distribution function of the ratio
of the combined causal effects and its standard error. The
results were considered statistically significant at the threshold
of P < 0.05.

The IVW approach referred to the primary MR analysis
and successfully aided in inferring the causality of an exposure
for outcome. However, there were still several concerns. One
important concern was the existence of horizontal pleiotropy.
Horizontal pleiotropy occurs when any variants were invalid
instruments and acted on the outcome through other ways (not
through the concerned exposure). To control for horizontal
pleiotropy, we next applied additionalMRmethods for sensitivity
analyses: the weighted median method, which allowed a subset
of genetic variants (<50%) to be invalid instrumental variables
(29); MR-Egger, which worked even when up to 50% of the
variants came from invalid instrumental variables (30); and MR-
PRESSO (pleiotropy residual sum and outlier), which could
provide a pleiotropy residual sum and outlier test by identifying
and discarding horizontal pleiotropic outliers (31). Further, we
detected the presence of horizontal pleiotropy through the MR-
PRESSOGlobal test. All MR analyses were carried out using the R

package “MendelianRandomisation” as well as the MR-PRESSO
software (https://github.com/rondolab/MR-PRESSO).

RESULTS

Genetic Instruments for 486 Metabolites
Following standard procedures, we obtained the instrumental
variables containing 3–675 independent SNPs for the 486
metabolites. The variables explained 0.8–83.5% (median 4.7%) of
the variance for their corresponding metabolites. The minimum
F statistic for representing the strength of the predictive
instrumental variable was 20.33. All instrumental variables for
the 486metabolites were sufficiently informative forMR analysis.

Causal Effects of 486 Metabolites on
Polycystic Ovary Syndrome
With the use of genetic variants as proxies, the IVW
identified 24 metabolites with causal effects on PCOS,
among which 13 (54.2%) were known metabolites while
the remaining 11 belonged to the “unknown” subgroup
(Figure 1, Supplemental Table 1). We focused on the 13 known
metabolites, which included nine lipids, a xenobiotic, a peptide,
an amino acid, and a nucleotide. 3-Dehydrocarnitine was the
most significant chemical compoundwith predicted causal effects
on PCOS (P = 0.0007). The risk of developing PCOS increased
5-fold for a 1-s.d. increase in the level of 3-dehydrocarnitine (OR
= 6.72; 95% CI 2.22–20.32). Two other carnitines with causal
associations with PCOS were hexanoylcarnitine (OR= 2.65; 95%
CI 1.35–5.19; P = 0.0045) and 2-tetradecenoyl carnitine (OR =

0.52; 95% CI 0.30–0.90; P = 0.0193). Notably, 2-tetradecenoyl
carnitine had an inverse association with PCOS, unlike 3-
dehydrocarnitine and hexanoylcarnitine. 4-Hydroxyhippurate, a
xenobiotic, was associated with an increased risk of developing
PCOS. β-Hydroxyisovalerate, classified as an amino acid, also
appeared to be a pathogenic risk factor for PCOS (OR = 2.84;
95% CI 1.20–6.76; P = 0.0179).

Sensitivity Analysis
Table 1 shows the sensitivity analysis results for assessing the
robustness of our IVW estimates. Epiandrosterone sulfate
(EPIA-S) was the only metabolite with robust associations
across all additional MR methods (PIVW = 0.0186; PMR−Egger

= 0.0111; PWeighted−median = 0.0154; and PMR−PRESSO =

0.0290), and there was no evidence of horizontal pleiotropy
(PGlobal = 0.5190). Using 15 genetic predictors as instrumental
variables (variance explained = 8.0%; F statistic = 45.53),
we observed a 50% higher risk of developing PCOS for
each 1-s.d. increase in the level of EPIA-S (Figure 2A).
There were also several metabolites that passed some of
the additional sensitivity tests, such as 3-dehydrocarnitine
(PMR−Egger = 0.0727; PWeighted−median = 0.0017; and
PMR−PRESSO = 0.0023, Figure 3A), 4-hydroxyhippurate
(PMR−Egger = 0.2294; PWeighted−median = 0.0318; and
PMR−PRESSO = 0.0351, Figure 3B), hexadecanedioate (PMR−Egger

= 0.0320; PWeighted−median = 0.1272; and PMR−PRESSO =

0.0238, Figure 3C), and β-hydroxyisovalerate (PMR−Egger =

0.2096; PWeighted−median = 0.0300; and PMR−PRESSO = 0.0051,
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FIGURE 1 | Mendelian randomization (MR) association of serum metabolites on the risk of polycystic ovary syndrome (PCOS). Causal estimates are obtained using

metabolite-related single-nucleotide polymorphisms (SNPs) as instrumental variables using the inverse variance weighted (IVW) method. Odds ratio (OR) and 95%

confidence intervals (95% CIs) are provided for PCOS per 1-s.d. higher level of specific metabolite.

Figure 3D). These metabolites may have plausible effects on
PCOS because the MR-Egger and weighted median method are
based on assumptions that might be incorrect. The relationship
between hexadecanedioate and PCOS should be carefully
investigated as the MR-Egger method yielded an inverse
association compared to the other MR methods.

Genetic Variants for Determining the
Relationship Between Metabolites and
Polycystic Ovary Syndrome
We further reported the potential genetic variants that might
have decisive roles in determining the causal relationships
between the metabolites and PCOS. Among the 15 SNPs in
the instrumental variable of EPIA-S, rs13222543 showed the
most significant association signal and the largest association
coefficient with EPIA-S (β =−0.347; SE= 0.024; P = 3.31E−47,
Table 2). Interestingly, it also showed a strong effect on PCOS
(β = −0.220; SE = 0.100; P = 0.033, Figure 2B). Table 2

shows all the leading SNPs for determining the relationships
for metabolites with PCOS. Further, we listed all the genetic
variants for determining levels of EPAS-S, 3-dehydrocarnitine,

4-hydroxyhippurate, hexadecanedioate, β-hydroxyisovalerate,
and the other metabolites in Supplemental Tables 2–7. These
generated SNPs could provide important information for
revealing potential pathophysiological mechanism or therapeutic
targets for PCOS.

DISCUSSION

We performed a two-sample MR analysis to provide an
unbiased detection of potential causal effects of GDMs on
PCOS. Using genetic variants as proxies, we observed that
genetically determined higher level of EPIA-S is associated with
increased risk of developing PCOS. Our study also detected
other metabolites that showed significant signals in most MR
methods, including 3-dehydrocarnitine, 4-hydroxyhippurate,
hexadecanedioate, and β-hydroxyisovalerate. Our findings
screened out the potential genetic variants that contribute to the
underlying causality of metabolites on PCOS. To the best of our
knowledge, this is the first study integrating metabolomics with
genomics to reveal the pathophysiological mechanisms of PCOS.
Our study provides novel insights into the understanding of the
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TABLE 1 | Sensitivity analysis of causal associations between metabolites and PCOS.

Metabolites MR-Egger Weighted median MR-PRESSO MR-PRESSO globle test

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value RSS P-value

Amino acid

Beta-hydroxyisovalerate 4.12 (0.45, 37.68) 0.2096 3.93 (1.14, 13.55) 0.0300 2.84 (1.46, 5.53) 0.0051 15.37 0.9477

Lipid

3-Dehydrocarnitine 17.33 (0.77, 390.47) 0.0727 10.69 (2.44, 46.82) 0.0017 6.72 (2.22, 20.32) 0.0023 34.58 0.2115

Dihomo-linolenate (20:3n3 or n6) 19.51 (0.85, 449.74) 0.0635 3.16 (0.73, 13.57) 0.1223 3.22 (1.25, 8.32) 0.0236 24.31 0.5654

1-Arachidonoylglycerophosphoethanolamine 2.12 (0.05, 94.91) 0.6976 2.02 (0.54, 7.63) 0.2974 2.97 (1.20, 7.36) 0.0259 30.38 0.4551

2-Linoleoylglycerophosphocholine 31.89 (0.97, 1045.31) 0.0518 1.93 (0.50, 7.40) 0.3391 2.71 (1.18, 6.20) 0.0283 17.47 0.7762

Hexanoylcarnitine 3.50 (0.76, 16.1) 0.1076 2.35 (0.92, 6.00) 0.0735 2.65 (1.35, 5.19) 0.0094 24.80 0.4460

Hexadecanedioate 2.81 (1.09, 7.21) 0.0320 1.68 (0.86, 3.28) 0.1272 1.79 (1.11, 2.88) 0.0238 28.95 0.3879

Epiandrosterone sulfate 2.10 (1.18, 3.73) 0.0111 1.84 (1.12, 3.01) 0.0154 1.54 (1.09, 2.19) 0.0290 15.17 0.5190

2-Tetradecenoyl carnitine 0.46 (0.16, 1.33) 0.1498 0.53 (0.25, 1.11) 0.0935 0.52 (0.34, 0.82) 0.0107 13.09 0.8723

7-Alpha-hydroxy-3-oxo-4-cholestenoate

(7-Hoca)

0.03 (0.01, 3.10) 0.1358 0.21 (0.03, 1.56) 0.1284 0.16 (0.05, 0.58) 0.0133 13.38 0.7102

Nucleotide

N2,N2-Dimethylguanosine 0.20 (0.04, 1.11) 0.0653 0.40 (0.11, 1.50) 0.1751 0.39 (0.18, 0.84) 0.0185 61.28 0.6210

Peptide

Glycylvaline 1.66 (0.11, 26.06) 0.7167 1.98 (0.86, 4.54) 0.1080 2.11 (1.20, 3.70) 0.0407 6.86 0.5691

Xenobiotics

4-Hydroxyhippurate 0.07 (0.01, 5.20) 0.2294 3.76 (1.12, 12.59) 0.0318 2.95 (1.24, 7.05) 0.0351 12.29 0.4479

Significant results for MR estimates (P < 0.05) are shown in bold. PCOS, polycystic ovary syndrome; MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier.

FIGURE 2 | Mendelian randomization (MR) plots for relationship of epiandrosterone sulfate (EPIA-S) with polycystic ovary syndrome (PCOS). (A) Scatter plot of

potential effects of single-nucleotide polymorphisms (SNPs) on EPIA-S vs. PCOS, with the slope of each line corresponding to the estimated MR effect per method.

SNPs showing negative signals with EPIA-S are plotted after orientation to the exposure-increasing allele. SNPs with higher effects on both metabolites and PCOS are

marked on the plots. (B) Forest plot of individual and combined effects of EPIA-S related SNPs on PCOS. Data are expressed as raw β values with 95% confidence

interval (CI).

role of interactions between genetic and metabolic factors in the
pathogenesis of human diseases.

Based on 15 genetic scores with different degrees of
specificity to EPIA-S, we demonstrated that high levels of
EPIA-S are genetically associated with a higher risk of
developing PCOS. Despite a lack of information on its effects,
EPIA-S has recently been proposed as a marker for oral or

intramuscular testosterone administration (32, 33). This was
also proposed for the administration of other steroid hormones,
such as dehydroepiandrosterone (DHEA), 4-androstenedione,
and dihydrotestosterone (34). PCOS has long been recognized
as a disorder of excessive androgen biosynthesis, use, or
metabolism. DHEA sulfate (DHEA-S), DHEA, androstenedione,
and testosterone are routinely assessed to identify HA in women
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FIGURE 3 | Scatter plots of genetic associations with four suggestive metabolites vs. the associations with polycystic ovary syndrome (PCOS). (A) 3-Dehydrocarnitine;

(B) hexadecanedioate; (C) 4-hydroxyhippurate; (D) β-hydroxyisovalerate. Each of the single-nucleotide polymorphisms (SNPs) associated with metabolites are

represented by a black dot with the error bar depicting the standard error of its association with metabolite (horizontal) and PCOS (vertical). The slopes of each line

represent the causal association for each method. SNPs showing negative signals with metabolites are plotted after orientation to the exposure-increasing allele.

with PCOS (35). However, these biochemical indices usually
cannot provide a reliable reflection of HA. EPIA-S might be
an alternative biomarker in the diagnosis of PCOS, considering
its excellent performance in testosterone management. However,
the relationship between EPIA-S and PCOS has not been verified
by clinical data, and further research is required to understand
the potential role of EPIA-S in the diagnosis or treatment
of PCOS.

The present study also identified additional metabolites
that showed possible association with PCOS, including 3-
dehydrocarnitine, 4-hydroxyhippurate, hexadecanedioate, and
β-hydroxyisovalerate. 3-Dehydrocarnitine is a member of the
carnitine family that is an intermediate in carnitine degradation.
Carnitines have long been associated with weight loss, glucose
tolerance, insulin function, and fatty acid metabolism (36).
A recent study also suggested that 3-dehydrocarnitine is an

early biomarker for predicting type 2 diabetes, with applications
even prior to the development of insulin resistance (37). Thus,
3-dehydrocarnitine might play a role in abnormal glucose
metabolism, which is a common clinical manifestation in
PCOS patients. 4-Hydroxyhippuric acid is a microbial end-
product derived from polyphenol metabolism by the microflora
in the intestine (38). A natural polyphenol, resveratrol, is
reported to play a role in inhibiting, androgen production
and has been suggested to be a potential therapeutic agent
for PCOS (39–41). This might suggest that the polyphenols
have a potential value as therapeutic compounds for PCOS.
Hexadecanedioate is a candidate biomarker for monitoring
organic anion-transporting polypeptide (OATP) function in
preclinical species or humans (42). OATP is a group of
transporters that are required in DHEA circulation. A previous
study also found increased levels of OATP-family transporters
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TABLE 2 | Leading SNPs of the identified metabolites and their associations with PCOS.

Metabolites Leading SNP Gene For metabolite For PCOS

β SE P-value β SE P-value

Amino acid

Beta-hydroxyisovalerate rs7720978 – 0.030 0.007 7.51E−06 0.061 0.038 0.110

Lipid

3-Dehydrocarnitine rs6691848 ZMYM6 0.029 0.006 2.12E−06 0.160 0.079 0.042

Dihomo-linolenate (20:3n3 or n6) rs4978407 PALM2 0.023 0.005 5.90E−06 0.180 0.062 0.004

1-Arachidonoylglycerophosphoethanolamine rs39741 CACNA2D1 −0.020 0.004 4.51E−06 −0.110 0.056 0.047

2-Linoleoylglycerophosphocholine rs17160851 PDE1C 0.034 0.007 2.051E−06 0.120 0.083 0.160

Hexanoylcarnitine rs17304141 SLC44A5 −0.128 0.012 2.46E−26 −0.1100 0.120 0.360

Hexadecanedioate rs7926241 LOC105376595 0.087 0.019 3.56E−06 0.2700 0.120 0.024

Epiandrosterone sulfate rs13222543 ZCWPW1 −0.347 0.024 3.31E−47 −0.220 0.100 0.033

2-Tetradecenoyl carnitine rs6899136 DOCK2 0.035 0.008 7.35E−06 −0.1200 0.053 0.026

7-Alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) rs6755317 VWA3B 0.036 0.008 2.03E−06 −0.2100 0.110 0.042

Nucleotide

N2,N2-Dimethylguanosine rs16986182 DLGAP4 −0.128 0.027 1.81E−06 0.250 0.160 0.120

Peptide

Glycylvaline rs17093208 OTX2-AS1 −0.067 0.014 3.11E−06 −0.0780 0.048 0.100

Xenobiotics

4-Hydroxyhippurate rs4587865 LOC105370513 0.043 0.009 1.27E−06 0.0590 0.063 0.350

SNP, single-nucleotide polymorphism; polycystic ovary syndrome.

in patients with PCOS-endometria, which suggests that OATP
plays a functional role in the pathogenesis of PCOS (43). β-
Hydroxyisovalerate is a conjugate base of 3-hydroxyisovaleric
acid. 3-Hydroxyisovaleric acid was demonstrated to be related
to impaired cellular respiration and mitochondrial function
(44). Carnitines were also suggested to be involved in the
metabolism of 3-hydroxyisovaleric acid (45). In general, the
identified metabolites contributed to our understanding of
the pathogenesis of PCOS and might also serve as possible
therapeutic targets.

We focused on genetic variants that contribute to
variation in the target metabolites. The SNP rs13222543,
which is located at the intron region of ZCWPW1, was
the most significant variant for EPIA-S. ZCWPW1 is a
candidate gene for Alzheimer’s disease; however, no link
had previously been established between ZCWPW1 and
EPIA-S (46, 47). Interestingly, enrichment in the male testis
for RNA expression of ZCWPW1 has been reported by the
Human Protein Atlas database (https://www.proteinatlas.
org/), although the expression levels are also high in the
thyroid gland, fallopian tube, and ovary (48). This suggests that
ZCWPW1 may play a role in steroid hormone metabolism.
The SNP rs6691848 is related to 3-dehydrocarnitine and
is located on ZMYM6, which is actively expressed in the
pituitary gland, and regulates steroid metabolism. Although
further evidence is lacking, these connections provide new
clues to understand the underlying molecular mechanisms
of PCOS.

The present study has several limitations. First, the MR
identified causal metabolites associated with the risk of

developing PCOS using genetic variants as instrumental
variables. Further experimental studies should be conducted
to verify these findings. Second, multiple testing was not
adjusted, but robustness of the results had been supported
by using multiple MR algorithms. Third, the accuracy of
MR depends on how well the genetic instruments explain
the exposure. The current GWAS analysis on metabolites is
based on European populations with a limited sample size.
Effort should therefore be made to collect more samples
across a broader swath of the population to provide a more
accurate assessment of the influence of genetic factors on
metabolites. Finally, the findings of our study might be only
limited to the European population, not necessarily generalizable
to others.

CONCLUSIONS

The present study adopted an MR approach to identify PCOS-
related metabolites. The MR approach used genetic variants
as instrumental variables to provide unconfounded estimates
of the causal relationships between serum metabolites and
PCOS. EPIA-S was identified as a causal metabolite that was
robustly associated with PCOS development. Some other
metabolites, such as 3-dehydrocarnitine, 4-hydroxyhippurate,
hexadecanedioate, and β-hydroxyisovalerate, may also have
causal effects on the development of PCOS. We emphasized
the role of genetic factors underlying the causal relationships
between metabolites and PCOS. We provided novel insights
by integrating metabolomics with genomics to better
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understand the mechanisms underlying the pathogenesis of
human disease.
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