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The origin of the coronavirus disease 2019 (COVID-19) pandemic is zoonotic. The

circadian day–night is the rhythmic clue to organisms for their synchronized body

functions. The “development for mankind” escalated the use of artificial light at night

(ALAN). In this article, we tried to focus on the possible influence of this anthropogenic

factor in human coronavirus (HCoV) outbreak. The relationship between the occurrences

of coronavirus and the ascending curve of the night-light has also been delivered. The

ALAN influences the physiology and behavior of bat, a known nocturnal natural reservoir

of many Coronaviridae. The “threatened” and “endangered” status of the majority of

bat species is mainly because of the destruction of their proper habit and habitat

predominantly through artificial illumination. The stress exerted by ALAN leads to the

impaired body functions, especially endocrine, immune, genomic integration, and overall

rhythm features of different physiological variables and behaviors in nocturnal animals.

Night-light disturbs “virus–host” synchronization andmay lead tomutation in the genomic

part of the virus and excessive virus shedding. We also proposed some future strategies

to mitigate the repercussions of ALAN and for the protection of the living system in the

earth as well.

Keywords: COVID-19, HCoVs, ALAN, bat, melatonin, sustainability

HIGHLIGHTS

- Increase of anthropogenic Artificial Light at Night (ALAN) in due course of the “development
for mankind” may be related to Coronavirus outbreak (HCoVs).

- Bats, nocturnal natural reservoir of many Coronaviridae, are heavily affected by ALAN due to
the destruction of their proper habit and habitat.

- Most of the bat species are either “threatened” or “endangered” in IUCN list.
- Night-light might disturb “virus-host” synchronization by exerting selection pressure that may

lead to the mutation in the genome of the virus and excessive viral shedding.
- Proposed strategies to mitigate the repercussions of ALAN and for the protection of our planet

earth as well.
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INTRODUCTION

One of the most prevalent but least understood anthropogenic
changes that impact living beings is the light pollution in the
form of artificial light at night (ALAN). ALAN appears to be
a massive threat to the growing human–environment conflicts,
as it intervenes with all the three primary requirements (food,
habitat, and health) for the sustainability of life in various animal
species including humans (1–6). ALAN is one of the significant
components of human-induced selection pressure, which has
dramatically changed the trajectory, the rate of extinction, and
speciation in this Anthropocene (7). In the case of nocturnal
animals, such as bats and rodents, the threat imposed by the
chief pollutants in the air, water, or soil seem to be less effective
than ALAN due to its ubiquitous nature, level of influence, and
diversity in biological response (1, 2). A number of studies in the
last decade, by documenting the impact of ALAN on different
ecological components and human health, indicated the severity
and consequences of “light pollution” [Figure 1; (1)].

The detrimental physiological and behavioral effects resulting
from the exposure to light at night are known (2, 8–10), but the
influences of light pollution on the emergence and development
of the infectious disease are yet to be elucidated. The appearance

Graphical Abstract | Impact of artificial light at night on the physiology and behavior of the nocturnal animal, the bat.

of new infectious diseases is increasing since the last decade and
has posed a significant threat to public health worldwide. The
origin of (60–80%) these emerging infectious diseases (EIDs)
are reported to be from the wildlife (11). Among the EIDs,
influenza, henipavirus, and coronavirus-related respiratory and
neurological disorders have caused a severe threat to human
health. Influenza viruses belong to the Orthomyxoviridae family,
containing negative-single-stranded, segmented RNA genome
(11). A majority of the seasonal influenza is associated with two
types of influenza viruses, influenza A and influenza B (12).
Influenza A in humans has originated from birds and swine
(13). It is interesting to note that globally people get infected
with influenza in the winter season due to the decrease in the
ambient temperature and photoperiod (14). The introduction
of influenza viruses in humans resulted in global pandemics
(“Spanish flu” in 1918 and “swine flu” in 2009) followed by
their continued circulation in human populations as seasonal flu.
However, influenza B viruses have no known animal reservoir or
flow within humans.

Coronaviruses (CoVs) represent a class of diverse genetic
viruses found in a varied range of host species, including
birds and mammals (15). CoVs are highly pathogenic single-
strand RNA virus with a diameter of about 80–120 nm (16).

Frontiers in Endocrinology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 622

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Khan et al. ALAN and HCoVs Outbreak

FIGURE 1 | Representation of the trend in research outputs associated with light pollution and climate change since the year 2000. Adapted with permission from (1).

TABLE 1 | Animal origins of HCoVs, Classification, natural reservoirs, outbreak species, year and country of outbreak.

Human

coronavirus

Classification

of virus

Animal

reservoirs

(high prevalence)

Outbreak species Country

of origin/Year

References

HCoV-OC43 Alpha-CoV Mice, chickens, turkeys,

swine, dogs, cats, rabbits,

horses

Rodents Russia/1890 (19–23)

HCoV-229E Beta-CoV, lineage A Mice, rats, chickens,

turkeys, swine, dogs, cats,

rabbits, horses

Bats United Kingdom/1967 (19–21, 24)

SARS-CoV Beta-CoV, lineage B Masked palm civets, bats,

rats, raccoon dogs, cats,

swine

Bats China/2002 (21, 25, 26)

HCoV-NL63 Alpha-CoV Bats, mice, rats, swine Bats Netherlands/2004 (21, 27)

HCoV-HKU1 Beta-CoV, lineage A Bats, mice, rats, swine Rodents China/2005 (26, 28)

MERS-CoV Beta-CoV, lineage C Cattle, chicken, bat, mice,

alpacas, swine, dogs

Bats Saudi Arabia/2012 (29–31)

SARS-CoV-2 Beta-CoV, lineage B Bats, pangolins Bats China/2019 (32, 33)

They infect humans and other animal species, causing intestinal
and respiratory infections. The number of confirmed cases of
severe acute respiratory syndrome coronavirus-2/coronavirus
disease 2019 (SARS-CoV-2/COVID-19) is much higher than
that of severe acute respiratory syndrome coronavirus (SARS-
CoV) in humans, due to more rapid transmission capability
(17). Globally, the number of cases of COVID-19 are ascending
steeply, overwhelming the governments, hospitals, and medical
care, with 15,296,926 confirmed cases and 628,903 deaths and
increasing as of 24 July 2020. CoVs can be divided into four types:
α-coronavirus (α-COV), β-coronavirus (β-COV), γ-coronavirus
(γ-COV), and δ-coronavirus (δ-COV) (18). Six CoVs were
previously known to cause diseases in humans [SARS-CoV
in 2002 and Middle East Respiratory Syndrome coronavirus
(MERS-CoV) in 2012]. SARS-CoV-2 is the seventh member of

the coronavirus [Table 1; (34)]. Recently, six novel CoVs have
been reported from the bats in Myanmar (35). These six CoVs
belong to the same family—the SARS-CoV-2—but distantly
related (35). In silico sequence analysis gave the evidence of the
emergence of SARS-CoV-2 from bats (36, 37). According to a
few recent studies, weather plays a definitive role in spreading the
infection of COVID-19 (38, 39), maintaining the characteristics
of its ancestors, influenza. Despite understanding the mechanism
of viral evolution and surveillance, new viruses continue to
emerge and cause epidemics and pandemics around the world.
The emergence of a novel viral strain is a result of genetic
selection. The virus undergoes subtle genetic changes through
mutation andmajor genetic changes through recombination. The
main difficulties associated with the emergence of a novel viral
strain are the scale of illness to human and other living organisms,
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although the processes that underlie the evolutionary dynamics
of viruses and the timing and nature of the emergence of new
virus strain remain unpredictable.

Impacts of ALAN on animals range from constrained
foraging, altered reproduction, and impaired communication
(40–43) to a total swing in the trophic interactions (44–
46). A recent study has reported that light pollution at night
aids in the infectivity of the West Nile virus (WNV) in
the house sparrow (Passer domesticus) (47). Moreover, light
pollution at night also altered the immune defenses of animals,
including human by inhibiting the secretion of melatonin,
a hormone which is known to enhance viral resistance and
regulate immune response (48, 49). It has been established
that the rate of secretion of melatonin is reduced following
the exposure of light at night (50–53). The involvement of
melatonin in immunomodulation is also reported in many
studies on animals (54, 55). Exposure of Siberian hamster
even to dim light leads to suppressing their immune response
(56). It is evident that the acute respiratory disorder after
coronavirus infection to human is mainly caused by an overstated
immune response (cytokine storm) through inflammation and
oxidation (57, 58). Melatonin, a well-known antioxidant and
anti-inflammatory agent is protective to critical care patients and
is known to act through reducing the permeability of vessels
and anxiety and improving sleeping quality (58). Moreover, the
existence of identical biosynthesizing machinery for melatonin in
several organs in animals (59–66), a subcellular component like
mitochondria (67), vouches for the importance of melatonin in
cellular physiology.

Bats are known to harbor a wide variety of viruses ranging
from coronavirus to ebolavirus to henipavirus (68), without
showing any clinical symptoms of the diseases concerned. Their
long life span might be the outcome of an intricate balance
between the host immune system and virus infection (68). In
this communication, we reviewed the relationship between the
growing use of ALAN and the ALAN linked threats to bats, as
they are the primary reservoirs of CoVs. The focus is also given
to the influence of ALAN on the activities of the bats and the
virus–host interaction. We tried to frame some future strategies
for the prevention of this type of unpredictable zoonotic virus
outbreak alongwith some possible treatments for ALAN-induced
reservoirs and infected humans.

IMPACT OF ARTIFICIAL LIGHT AT NIGHT
ON THE LIVING SYSTEM—EMERGENCE
OF THE IDEA IN THE GLOBAL SCENARIO

Artificial Light at Night and Melatonin—The
Physiological Messenger of Environmental
Darkness
The circadian and seasonal variations in the animal physiology
are directly or indirectly regulated by melatonin, which is further
dependent on environmental photo-thermal conditions (61, 69).
Light suppresses the synthesis and release of melatonin from the
pineal gland and acts as the primary zeitgeber for synchronizing
internal rhythms to the temporal change of the external light

and dark cycle. Under natural light–dark conditions, melatonin
biosynthesis in the pineal gland of most animals including
human, bats, rodents, and fish reaches its peak at midnight
(70–75). Depending on the species, the biological rhythm and
melatonin secretion are controlled by various organs such
as the hypothalamic suprachiasmatic nucleus (SCN) and the
retina (in mammals) and the brain, pineal, and retina (in fish
and amphibians); nonetheless, most animals follow conserved
norepinephrine and adrenergic receptor pathways (73, 76–79).
The duration of melatonin biosynthesis and secretion is the
pivotal parameter for the day-length signaling, which is essential
for the organization of the seasonal rhythms (80). Studies
following the administration of physiological concentrations
of melatonin at the proper time in pinealectomized hamsters
and sheep demonstrated the dose- and time-dependent roles of
melatonin in the transmission of day-length signaling in animals
(80). Further, the annual breeding cycle has also been found
desynchronized in pinealectomized sheep (81). In ruminants,
melatonin consumption (through food) in summer (before
the onset of darkness) can mimic the early onset of seasonal
reproductive function, which includes winter coat growth
and the suppression of secretion of prolactin, characteristics
of reproductive behavior of winter photoperiod (82). Studies
demonstrate the importance of daily and seasonal melatonin
rhythmicity profile in different animals. However, owing to
ALAN, disruption in the diurnal and seasonal variations in the
physiology and behavior has been reported in several animal
species including humans, bats, and fish (53, 83–85). Light
pollution is a global problem, a fact supported by the resolution
of the American Medical Association (AMA), declaring that
light at night is a source of environmental pollution as it
disrupts daily rhythms and suppresses nocturnal melatonin
biosynthesis (83, 86). The amount of light required to suppress
the melatonin biosynthesis and secretion is dependent on both
species and photoperiod (80). For instance, some laboratory-
raised animals require less light than the same species raised
in the wild (80). In humans, it is identified that the light
spectra of between 440 and 482 nm are responsible for the
peak melatonin suppression and pupillary constriction (87, 88).
Furthermore, it is evident that polychromatic light enriched
with short wavelength results in the suppression of melatonin
(80, 89, 90). Various cross-sectional studies have pointed out
that ordinary domestic light can elicit 50% of the maximum
response by phase resetting the diurnal rhythm of melatonin,
cortisol, and body temperature (91, 92). Animals exposed to
prolonged day-light during summer are found to be partially
resistant to the melatonin suppression during night-light (93).
Additionally, Morita et al. found that differences in the phases
of the diurnal melatonin rhythm depend on the level and
pattern of exposure to light (94). The “hypothalamic light
perception” may induce the suppression in the melatonin
biosynthesis through ALAN even in blind patients (95). The
hypothalamic light perception was studied in animals in which
the retinohypothalamic projection was intact; but the primary
and accessory optic tracts were surgically removed (80, 95).
Cumulatively, these results demonstrate the inhibitory effect
of ALAN on the diurnal and seasonal rhythmicity of animals.
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Moreover, it is also pertinent that melatonin suppression by
ALAN is dependent upon the level of exposure to bright light
during the daytime and season (96). A comprehensive study
on the seasonal or diurnal melatonin rhythm and ALAN on
the bats is lacking. Nevertheless, there are several studies that
demonstrate that the concentration of melatonin in bats at night
ranges from 60 to 500 pg/ml while human nocturnal melatonin
level ranges from 11 to 83 pg/ml (74, 97, 98). It is evident
that the melatonin level in bats is higher than in humans;
therefore, it should have an extremely significant contribution in
maintaining bat physiology. It is also found that Rhinolophus bats
are nocturnal and remain hidden in dark places and thereby less
exposed to day-light. This behavior makes themmore susceptible
to melatonin suppression by ALAN than other animals that
are exposed to light in the daytime (97). This suppression of
melatonin secretion may be extremely high, which negatively
influences the physiology of bats and possibly also on the virus
residing in them.

Emergence and Evolution of Artificial Light
at Night—A Chronological Country-Wise
Scenario
In Russia, around 1890, when HCoV-OC43 crossed the species
barrier to infect humans, a pandemic of respiratory infection was
observed (23). The second episode of HCoVs namedHCoV-229E
originated in the 1960s in the United Kingdom (24). Genetically,
HCoV-229E is closely related to bat alpha-CoVs; and between
alpha-CoVs and HCoV-229E, there exists an alpaca-CoV (32).
The direct transmission of previously known CoVs from bats to
humans has also been reported (99). Ironically, Russia and the
United Kingdom were pioneers in gas street lighting. In 1835,
the company for gas lighting was established in St. Petersburg.
By 1860s, most of the central streets and buildings of the capital
were well-illuminated with gas street lighting. More gas works
were functional in the 1870s, and by 1882, Moscow was shining
with 10,000 gas lamps. In 1888, almost 210 gas works were
operating in Russia, including 30 for lighting cities, 157 for
factories, and 23 for railway stations (100, 101). Meanwhile,
the United Kingdom became the first country in the world to
be lighted by an electric bulb after the development of 16-W
lightbulb by Swan/Edison in 1880 [Table 2; (123)]. The next
significant advancement in artificial lighting was the invention
of the sodium-vapor lamp by Compton and light-emitting diode
(LED) by Oleg, in 1920 and 1927, respectively [Table 2; (124,
125)]. The night lighting quickly advanced with halogen and
high-pressure sodium-vapor (HPS) lamp (126, 127), both of
which were capable of emitting uninterrupted high-intensity
light and became a powerful tool for street lighting. Till that time,
the artificial lighting was minimal; most countries did not have
electricity. Similarly, the HCoV outbreaks were limited. With
massive development in electricity production (hydrothermal
and nuclear), artificial light reached the untouched regions.
Swiftly, artificial lighting tools became ubiquitous; after the USA
and Europe, the Asian continent started to use them for lighting
at night. The invention of LED, organic LED (OLED), and liquid

crystal display (LCD) screens has further contributed to the
artificial lighting.

In the last two decades, five incidences of the HCoV outbreaks
have emerged, which is 250% more than the previous 110 years.
Similarly, the use of artificial light has increased manifold in
the past two decades than in the last century (1). With the
beginning of the twenty-first century, another pandemic SARS-
CoV surfaced in Guangdong Province of southern China. The
artificial lighting was very pronounced in Guangdong Province
as compared with the other parts of China (Figure 2). Soon
after SARS-CoV, another outbreak was observed in 2004 in
the Netherlands, named HCoV-NL63. The ALAN was high in
the Netherlands starting on the late 20th century (Figure 3).
Another incidence of HCoVs, the HCoV-HKU1, took place in
the next year of HCoV-NL63 in Hong Kong, which is also
a massively lit region of China. Subsequently, the world has
seen the outbreak of MERS-CoV and SARS-CoV-2 in Saudi
Arabia and China, respectively (Table 1). These two were rapidly
developing countries, with quick urbanization and economic
development; it was inevitable to control light pollution.

It may be noted that diurnal animals such as chickens, turkeys,
swine, dogs, cats, rabbits, horses, and cattle are also the reservoirs
of the coronavirus (25, 129). However, interestingly, all the seven

TABLE 2 | Timeline of the development of Anthropogenic Light sources on Earth.

Year Artificial lighting

technology

Inverter/Country References

1780 Argand lamp Aime Argand/Geneva (102)

1792 Gas lighting William Murdoch/England (103)

1800-1809 Arc Lamp Humphry Davy/England (104)

1856 Geissler Tube Heinrich

Geissler/Saxe-Meiningen

(105)

1867 Fluorescence lamp A. E. Becquerel/Paris (106)

1875 Incandescent light

bulb

Henry Woodward/Canada (107)

1880 Long lasting filament Thomas Edison/USA (108)

1894 Gas discharge lamp D. McFarlan Moore/USA (109)

1901 Mercury-vapor lamp Peter Cooper Hewitt/USA (110)

1904 Tungsten filament Alexander Just and Franjo

Hanaman/Hungry

(111)

1910 Neon lighting Georges Claude/France (112)

1913 Inert gas in bulb Irving Langmuir/USA (113)

1920 Sodium vapor lamp Arthur H. Compton/USA (114)

1927 Light-emitting diode Oleg Losev/Russia (115)

1953 Halogen light bulb Elmer Fridrich/USA (116)

1962 Red light-emitting

diode

Nick Holonyak Jr./USA (117)

1963 High-pressure

sodium vapor lamp

Kurt Schmidt/USA (118)

1987 Organic

light-emitting diode

(OLED)

Ching W. Tang and Steven

Van Slyke/USA

(119)

1995 Blue LED Shuji Nakamura/Japan (120)

2008 LED lighting system

with helical fiber

filament

G. R. Hulse/USA (121)

2019 LED filament chips T. Jiang/Japan (122)
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FIGURE 2 | Pixel brightness (calibrated digital number) mean value 1992–1996 (A), 2000–2004 (B), and 2008–2012 (C); Guangdong and Hong Kong were encircled

as the two centers of human coronavirus (HCoV) origin. The figure is used under the terms of the Creative Commons attribution license (128).

FIGURE 3 | Annual mean the defense meteorological program (DMSP) level in

( ) the Netherlands, ( ) China, and ( ) Saudi Arabia from

1992 to 2013. Data were obtained from https://www.lightpollutionmap.info.

zoonotic transfers occurred from the nocturnal animals, mostly
bats (Table 1). Out of the seven outbreaks, three major events
of HCoV outbreak happened in China. This 42% outbreak in
China is probably related to the fact that these animals are kept in
captivity in markets that are usually well-lit at night. The present
COVID-19 outbreak is reported to be fromWuhan, China, which
also witnessed a massive increase in the ALAN in the past decade
(Figure 4). Like ALAN, the population density of human in these
countries has also increased over time. It can be hypothesized that
increased human density and activities, especially, deforestation
may also be potential factors for HCoV outbreak, as they can
also exert selection pressure on the virus residing in the bats.
Considering the significant impact of ALAN on bats, it may be
assumed that the population growth supplements the negative
effect of ALAN on bats. The evidence from historical and
technological comparative assessment might be circumstantial
but is good enough to provide the basis of the belief that artificial
light plays a significant role in the outbreak of HCoVs.

The Bats as the Natural Reservoirs of
Human Coronaviruses
Bats are reservoirs (asymptomatic to the disease) of many
viruses, including CoVs that cause severe diseases in humans and
animals. The EIDs, mostly caused by the pathogen associated
with wildlife species, are a critical threat to human and
animal health (130–134). Since the past few decades, the fatal
epidemics like acquired immunodeficiency syndrome (AIDS),
SARS, filoviruses (e.g., Ebola and Marburg viruses), swine acute
diarrhea syndrome (SADS), porcine epidemic diarrhea (PED),
and influenza are viral diseases that originated from wildlife
species (130), mostly from bats (134, 135). Among many
bat-borne RNA viruses, two families of positive-sense single-
stranded RNA viruses, namely Astroviridae and Coronaviridae,
are important because of their high transmissibility (136). It is
also reported that 100 bat species are found to be the reservoir of
viruses causing the disease in animals in the Americas, Africa,
Europe, Australia, and Asia (137, 138). The person-to-person
transmissibility of CoVs and severe diseases associated with them
have enhanced the urgency to study them, as revealed by SARS-
CoV (139), MERS (140), and COVID-19 (141).

The Effects of Artificial Light at Night on
the Bats
Existing literature on the effects of ALAN on bats necessitates
the integration of information on their different behaviors
to emphasize the possibilities of the emergence of several
fatal viruses.

Behavioral Pattern
Anthropogenic encroachment of natural habitats of animals
through deforestation, habitat fragmentation, urbanization (over
occupying agricultural land), and bushmeat consumption
are considered as the primary drivers that are promoting
the interspecies transmission of pathogens from wildlife
reservoirs to humans (142–145). Global urbanization and human
development by anthropogenic interventions led to a dramatic
increase in both the extent and intensity of artificial lighting
throughout the twentieth and twenty-first centuries [Table 2;
(146, 147)]. The use of ALAN is increasing annually by 6%
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FIGURE 4 | Image showing the change in the level of artificial light at night (ALAN) in Wuhan from 2012 to 2019. Data were obtained from https://www.

lightpollutionmap.info.

worldwide (148) and causes nocturnal sky brightness by 20%
(9, 149, 150). Light pollution affects every inhabitant of the
ecosystem. The habitats of bats are affected either through
direct loss or disturbance from artificial light or human
activities. Further, connectivity to roosts from foraging areas is
fundamental for the survival of many bat populations and is also
affected with light at night and so-called development, meant
for the human activity only (151). It is evident that the light–
dark cycle maintains the daily pattern of activity and behavior
in bats (152). The sunset influences the timing of the nightly
emergence of bats from the roost; on the other hand, moonlight
(153) and the length of night affect the foraging activity and
overall behavior of bats (154, 155). The significant impact of
ALAN upon bat behaviors, including foraging and commuting,
emergence, roosting, breeding, hibernation, and abundance have
been recorded (156), but detailed information is not yet available
and thereby warrants further investigation.

Commuting Behavior of Bats
The ALAN splits the bats’ commuting routes or flyways between
roost and foraging areas, causes avoidance behavior, and thereby,
fragments the network of flyways. Many species avoid their
flyways, which are illuminated with HPS and LED (157–161).
As a result, bats are forced to use alternate routes to reach their
foraging grounds. This alteration increases energy expenditure
due to the enhancement in flight time and also the risk of
predation (158). If the alternate route is not available, bat colonies
are found to be isolated from their foraging areas and abandon
their roost (159). Some light-tolerant bat species pay attention
to the streetlights for feeding as the higher number of insects
(particularly moths) get attracted toward the lamplight (162).
This feeding and foraging behavior increases mortality risk due to
collision with the vehicles and predation risk for the juvenile (due
to their slow and less agile flight) (163), as also found in many
birds (41). Light-sensitive bat species lose their foraging fields due
to quick passage in the lit area (164). Further, composition and
abundance of prey (insect) for bats also change in the illuminated
regions (165).

Emergence, Roosting, and Breeding Behavior
The dusk period is the time for the onset of the emergence
of bats due to the availability of insects in the foraging areas

(166). Artificial light delays or hampers the time and duration
of the emergence of the bats and, thereby, reduces the quality
of foraging time and negatively affects the fitness of bats (167).
Repeatedly alternating exit/entrance due to ALAN forced bats
to abandon the roost and become entombed in the worst
cases (168).

External and internal lighting in and around the bat roost
causes reduced fitness and hinders juvenile growth rates. As a
result, it makes the animals immunodeficient and susceptible to
the different pathogens at a tender age and also increases the
threat of predation (167). The changes in the internal physiology
of the bats may also influence their ability to be the reservoir for
different viruses. By virtue, viruses may mutate to find a different
host for their sustainability.

Hibernation
The hibernation is a period when bats allow their body
temperature to decrease below the active homeothermic level
to conserve energy on a seasonal basis in response to the
changes in the environmental temperature and food supply (169).
The suitable microclimatic conditions allow efficient energy
budgeting in bats during this hibernation to survive in winter
(170). The stimulation from the artificial lighting during the
hibernation of bats results in the significant energy expenditure,
lowering fitness and thereby reducing the chance of survivability
in the winter and subsequent spring (171). Moreover, artificial
light may disrupt circadian rhythms during the hibernation in
bats (171); a similar phenomenon of rhythm desynchronization
is found even in non-hibernating animals (2, 9).

The anthropogenic disturbances by ALAN cause chronic
stress (elevated levels of plasma glucocorticoid hormones)
and disruption of homeostasis, which may be due to the
desynchronization of the circadian rhythm in bats (172,
173). Stress-induced immunosuppression may increase the
susceptibility of the bats to acquire and shed viruses (174). Even
hot climatic conditions or long periods of high temperature
stimulate rapid amplification and increase the transmission risk
of WNV to vertebrates from wild birds (175).

As an obvious outcome of the above-cited studies, the bats
have been logically designated as “threatened/endangered” by the
International Union for Conservation of Nature (IUCN) (http://
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www.batcon.org/why-bats/bats-are/bats-are-threatened). The
IUCN listed 24 bat species as critically endangered, 53 others
are endangered, and 104 bat species are considered vulnerable.
Almost one third of the 1,296 bat species that have been assessed
by the IUCN are either threatened or data deficient, indicating
the need for more attention for their conservation. This status
of the bats might explain the reasons for the viral shedding, the
mutation, and the adaptation of these microorganisms to new
hosts, and ALAN is one of the crucial factors for that.

Artificial Light at Night and Virus–Host Interaction
The appearance and subsequent circulation of influenza occur
along the latitudinal belts and coincide with the changes in the
photoperiod (176). This seasonal influenza is synchronized by
solar elevation, day length, and solar isolation (176). Influenza
mortality in elderly people is probably due to limited sun
exposure (176). These studies link the viral infection with the
photoperiod; however, there is a lack of information on the effect
of ALAN on host–virus interaction, viral evolution, or outbreak.

It is well-accepted that rapid mutation and genetic
recombination results in the emergence of novel HCoVs
(177, 178). Mutation in the spike (S) protein of the virus might
increase the affinity with human angiotensin-converting enzyme
2 (ACE2) receptor (129). Apart from the mechanism mentioned
above, the evolution of HCoVs might also be driven by the
host-associated selection pressure. However, less is known about
the selection pressure exerted by the host on their reservoir
community. The reservoir of the CoVs is large and mostly
include bat species, and it can be easily hypothesized that CoVs
are well-adapted with the anatomy and physiology of bats (179).
Furthermore, asymptomatic or minimal disease symptoms were
observed when bats were infected with CoVs (135), indicating
that bats and HCoVs are mutually adapted.

This interaction of bats and HCoVs may seem beyond the
reach for most of us, but they are not beyond our influence.
Humans have indirectly disturbed the physiology and behavior
of the bats (156) with inconsiderate industrialization and
urbanization. Increase in the amount of ALAN has a widespread
effect on wild animals, including fish, marine turtles, birds,
and nocturnal animals, including bats (8, 9, 40, 180, 181).
Impacts of ALAN on nocturnal animals range from constrained
foraging, altered reproduction, and impaired communication
to a complete shift in trophic interactions and alteration in
community structure (40, 45, 182). In plants, it has been
reported that appropriate lighting environment is essential for
the development of a comprehensive resistance system in various
plant–pathogen interactions, including viruses (183). Moreover,
artificial light has enhanced the development of the disease
in Nicotiana tabacum after inoculation with cucumber mosaic
virus (CMV) (184). Similarly, in animals, seminal research
pointed out that the influence of light pollution can extend
the infectious-to-vector window for WNV by 41% in the house
sparrow (Passer domesticus), an urban-dwelling avian reservoir
host of WNV. This indicates that light pollution can directly
aid in the virus transmission to humans (47). Light pollution
at night causes the sparrow to produce more corticosterone,
which alters the regulation of avian physiology via stress-response
pathway (47). Similarly, ALAN-induced stress can modulate

the pro-inflammatory response in bats, which can efficiently
reduce the pathology triggered by CoVs, implying a direct
connection between ALAN and bat–HCoV interaction (185).
The experimental data on the prolonged exposure of ALAN
on zebrafish also indicated a similar enhanced inflammatory
response by TNF-α and NF-κβ pathways (9). Moreover, light
pollution at night also altered the immune defenses by inhibiting
the secretion of melatonin, a chronobiotic hormone that
enhances viral resistance, regulates immune response, maintains
the level of reactive oxygen species (ROS), and acts as a mediator
between the environment and epigenome (83, 186, 187). The
high degree of ROS could suppress the replication of CoV
and could alter proofreading activity of exoribonuclease (179).
Cumulatively, ALAN can change the level of corticosterone,
melatonin, viral resistance, immune response, and epigenome
along with the high level of ROS. These factors are more than
adequate to disturb the natural balance between bats and CoVs
and exert a selection pressure on the virus to find a novel
host through the mutation in the genetic structure of virus.
Therefore, ALAN should be considered as a potential factor that
is causing the emergence of the present COVID-19 and previous
CoVs. The emergence of five novel CoVs in two ALAN-driven
decades should not be considered as a matter of chance or a
laboratory construct.

Efficacy of Melatonin in the Reduction of
Oxidative Stress and Immune Defense
The antioxidant property of melatonin is mediated by its
inherent free radical scavenger activity, up-regulating anti-
oxidative enzymes, and down-regulating pro-oxidative enzymes
(e.g., nitric oxide synthase) (188, 189). Along with antioxidant
property, melatonin has high bioavailability as it can penetrate
the blood–brain barrier and placenta (190, 191). Melatonin
reduces molecules or particles, which cause oxidative stress
along with an increase in anti-oxidative enzymes, such as
superoxide dismutase, glutathione peroxidase, and catalase
activity (191–194). Viral infection causes oxidative stress by
elevating levels of ROS and/or nitrogen species (RNS) (195).
Similarly, the high expression of oxidative stress-sensitive gene
Group IID secretory phospholipase A2 (PLA2G2D) reduces
anti-viral immunity of the organisms (97). Oxidative stress
reduces the number and activity of protective immune cells
by stimulating immunosuppressive mechanisms, thus producing
a pro-inflammatory response (196). Like the neuroendocrine
system, the immune system has its circadian rhythm. The
production of granulocyte, macrophage, and its phagocytic
activity correlates with the nocturnal peak of melatonin (197,
198). Any change in the circadian system can desynchronize the
immune system. Melatonin also regulates the immune system
and enhances the immune response by improving proliferation
and maturation of natural killer cells, T and B lymphocytes,
granulocytes, and monocytes in both bone marrow and other
tissues (199). Recently, melatonin is considered as a potential
adjuvant for improving clinical outcomes of COVID-19 patients
(97, 200, 201), though a detailed study regarding the efficacy
of this indoleamine in host–virus interaction in both bats and
humans is warranted (202, 203).
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THE FUTURE STRATEGIES TO MITIGATE
THE REPERCUSSIONS OF ARTIFICIAL
LIGHT AT NIGHT AND TO MINIMIZE VIRUS
OUTBREAK FROM THE BATS

Multiple cross-sectional studies have proved that there is no
substitute for natural darkness, and any change in the lighting
might have severe implications as observed in several animals
(9, 204, 205). On the basis of the research, we want to put forward
some strategies to minimize the effect of ALAN on virus outbreak
from the bats, like HCoVs.

Evasion
The easiest and effective means to reduce the impact of lighting
on bats is to define the bat zones and avoid illuminating them.
The use of part-night lighting (PNL: switch off the lights between
midnight and 05:30 a.m.) can be imposed in the illuminated bat
zones. The PNL will help in limiting the adverse effects of light
on bats and other nocturnal animals (206). If it is unavoidable to
use the lights in the bat zones, a physical barrier should be built
to reduce the area of illumination. In the newly developing sites,
with a little bit of research, light exclusion zones (dark regions)
can be created to allow movement of bats.

The banning of the bats as food item will reduce the captivity
stress and exposure of light on them in the market. This strategy
will also help to maintain the bat population.

Use of Artificial Intelligence
Artificial intelligence (AI) coupled with high-resolution infrared
cameras may be utilized to develop an artificial system that can
distinguish between the human and wild animals at night. Lin
et al. have developed a framework consisting of optical deep
learning methods, through neural networks using multiple layers
of diffractive surfaces programmed to execute subjective task that
resulted in the statistical learning of the network through the
computer (207). This method can be implemented to create a
camera system that can capture and analyze any fast-moving
object or an animal, such as the bats, and can classify them
based onmachine learning and deep neural network. The camera
system should be off at all the time unless it detects a human, or
the program will turn off the lights of the zone in which bats are
flying. This strategy can be modified as per the need of the area to
be monitored.

Variable Lighting Regimes/Planned
Positioning of Artificial Lights
As avoidance is not possible in all the scenarios and AI can
be expensive, alternatively, a careful study should be conducted
to develop variable lighting regimes (VLRs), which will be
compatible for both human being and the wildlife. It has been
suggested that tree cover can help inmitigating the adverse effects
of ALAN on the bats by shielding the light (208). A careful study
of tree cover and other shades before installing artificial lighting
might help to shield the bats from ALAN.Moreover, adding trees
in already lit areas will help in reducing the repercussions of
ALAN on the bats. Horizontal or upward emission contributes
substantially to light pollution by generating skyglow; this can

be significantly reduced by using directional lighting (209). As
poorly designed luminaires cause most of the light pollution
and skyglow, effective luminaire design, installation of shielding
fixtures, and correct column height can reduce the skyglow.
Hedgerows, the vegetation canopies, can also be used to decrease
light exposure, because many bat species use linear features as
traveling routes (210). Even though developing a tree fence is
very promising and might help the environment in multiple
ways, including the reduction of the effect of ALAN, the negative
impact of ALAN on the plants should also be considered.
Therefore, utmost care should be given in the selection of plant
species for developing the tree canopy.

Changing the Type and the Intensity of the
Artificial Light
Several studies have shown that bats are equally active in red
light and darkness (211). Therefore, careful selection of lighting
wavelength is paramount to reduce the stress of ALAN on
the bats and other nocturnal animals. The red light should
be used in places where it is unavoidable to limit the timing
of illumination. Similarly, some bats and insects species thrive
better in low-intensity lighting (212). So lower-intensity lights
can be utilized to mitigate the negative impact of ALAN on
bats. These two strategies will inevitably be a compromise among
human necessities. However, these minor changes do not appear
to be a bad deal if they can help in avoiding the outbreak of
pandemics and protect species from getting extinct.

The Use of Melatonin Spray as Reversal
Therapy for the Treatment of Artificial Light
at Night-Exposed Animals
Exposure of light on the bats can decrease their level of melatonin
(74). Melatonin has potent antioxidant activity and anti-
inflammatory activity, maintains biological rhythm, and protects
against lipid peroxidation (213, 214); thereby, the reduction in
the level of melatonin causes severe consequences on animal
physiology. Recently, researchers have developed melatonin-
loaded nano-capsule, spray-dried powders, and hydrogels to
improve their stability even in the aqueous solution (215, 216).
These nano-capsules can be sprayed on the animals that are
already exposed to ALAN. This melatonin spray will decrease the
inflammation in the bats and might also help in minimizing the
level of selection pressure on the HCoVs residing in the bats.

Exploratory Research
Previous studies demonstrated that CoV genomes display a high
degree of plasticity in terms of gene content and recombination
(32). Furthermore, relatively large CoV genome increases the
probabilities for adaptive mutations, making it easier for the viral
spike protein to exploit cell surface receptors of other species for
virus attachment and entry (32, 33, 217). Therefore, exploratory
research is warranted to understand the factors determining the
emergence and evolution of the novel pathogens like COVID-19.
Further, emphasis should also be given to the factors (including
anthropogenic stress like light pollution) that increase the rate of
selection pressure, transmission, and infection. It is of note that
the deadly HCoVs come mainly from their nocturnal reservoir
host. More research is required to find out the other host of CoVs
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in the wild and potential factors that are causing the evolution
and origin of HCoVs.

Transdisciplinary Approach
Multiple disciplines should collaborate to study the origin and
evolution of HCoVs and to develop rules and guidelines to
minimize such pandemic outbreaks. Scientists, policymakers,
and engineers need to work together to implement strategies
to reduce the impact of artificial light on bats. Finally, it
is imperative to expand awareness of light pollution and its
ecological impacts.

CONCLUSION

The present review is a meaningful attempt to correlate
the development of ALAN and emergence of HCoVs. The
influence of ALAN on bats including inappropriate foraging
and commuting, untimely emergence, roosting, breeding, and
impaired physiology have put them under the threatened status
in the IUCN list. ALAN-induced behavioral and physiological
stress might have exerted an immense amount of selection
pressure on the diverse form of CoVs residing in the bats. Except
for the study on WNV by Kernbach et al. (47), most evidence
of the impact of ALAN and virus infectivity is correlational;
therefore, more studies are required to confirm the role and
potential of ALAN in virus outbreaks from wildlife. Moreover,
the effect of ALAN on farmed and domesticated animals is
mostly unknown. The future research should be focused on
these animals to prevent any outbreak of anonymous zoonotic
transmission, influenced by ALAN. Given the fact that bats carry
a variety of viruses with the capability to infect human and
other organisms, it is essential to monitor wild animal species
for any novel zoonosis. A global surveillance network involving
veterinarians and animal biologists is urgently needed tomonitor,
and possibly to predict, potential sources for the emergence of
other highly pathogenic CoVs. Besides, as the entire human
population goes under lockdown, there is a surge in the use of
ALAN; the classes, meetings, and cinema are all online. Presently,
we are exposed to ALAN more than ever in the history of
mankind and also in the companionship of arrhythmic lifestyle.
Strict measures should be taken to minimize this exposure.
Otherwise, we will be facing a huge group of human beings with
lifestyle disorders.

Scientists are furnishing data since the last decades about
the detrimental effect of ALAN and are recommending various

strategies to reduce the effect (https://www.anses.fr/en/content/
leds-anses%E2%80%99s-recommendations-limiting-exposure-
blue-light). The earth is rhythmic in both circadian and
circannual patterns, the human physiology is synchronized with
the “natural light,” and any desynchronization in these processes
may lead to an unmatched pandemic, to which we are fighting.
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