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Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic

disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited

number of variants in several genes have been associated with the pathogenesis of

the disease. In this original research and review manuscript the retrospective analysis

of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A

genes is described, along with novel variants identified in patients with CHH by the

present study.

Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome

sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants

were initially examined by in silico computational algorithms and structural analysis of

their predicted pathogenicity at the protein level was confirmed.

Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1

gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and

FGFR1 genes and one rare AD probably pathogenic variant inCHD7 gene were identified.
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A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity

in a female patient, whilst two other male patients were also, respectively, found to

carry novel or previously reported rare pathogenic variants in more than one genes;

FGFR1/POLR3A and SRA1/RNF216.

Conclusion: This report embraces the description of novel and previously reported

rare pathogenic variants in a series of genes known to be implicated in the biological

development of CHH. Notably, patients with CHH can harbor pathogenic rare variants

in more than one gene which raises the hypothesis of locus-locus interactions providing

evidence for digenic inheritance. The identification of such aberrations by NGS can be

very informative for the management and future planning of these patients.

Keywords: GnRH, hypogonadotropic hypogonadism, genes, digenic inheritance, next generation sequencing

INTRODUCTION

Congenital hypogonadotropic hypogonadism (CHH) is a rare
disorder that is mainly caused by gonadotropin releasing
hormone (GnRH) deficiency and characterized by delayed sexual
development and infertility in both males and females (1–6).
The pulsatile secretion of the decapeptide GnRH from the
hypothalamus into the hypophyseal-portal vessels exerts control
in the synthesis and release of luteinizing hormone (LH) and
follicle stimulating hormone (FSH) in the anterior pituitary gland
(7, 8). In CHH, the GnRH secretion and/or action is impaired and
as a consequence patients with the disorder exhibit low levels of
gonadotropins, low sex steroids, absent, incomplete or delayed
puberty and subsequently hypogonadotropic hypogonadism
(HH) (1, 9, 10). The prevalence of CHH is estimated to be
1:8,000 male and 1:40,000 female live births with slightly fewer
than 50% of cases suffering from hyposmia or anosmia (10–12).
CHH is divided into two subtypes, which include of congenital
normosmic isolated hypogonadotropic hypogonadism (HH) and
anosmic HH or Kallmann syndrome (KS) (13, 14). Current
research regarding the pathophysiology of CHH provides
evidence that genetic abnormalities play a key role in the
development of the disease and is estimated that a genetic cause
is apparent in almost 50% of CHH cases (1, 6). Up-to-date there
have been reported more than 60 putative loci for CHH, 17 of
which have been linked with KS (1, 6, 13–16).

Over the last few years with the use of the high throughput
next generation sequencing (NGS) the number of genes shown
to be responsible for causing CHH/KS has radically increased (15,
17). Therefore, the purpose of the present study was to determine
the genetic involvement in a series of clinically diagnosed with
CHH/KS Cypriot patients.

MATERIALS AND METHODS

Patients
A total of seven (six males and one female) unrelated Cypriot
patients with CHH/KS were included in the present study and
underwent whole exome sequencing by NGS. Clinical criteria
included the absence or incomplete development of secondary
sexual characteristics after the age of 16 years in females and

18 years in males. The biochemical criteria included low levels
of basal and GnRH stimulated gonadotrophins (LH, FSH) as
well as low levels of sex steroids (testosterone in males and
estradiol in females). MRI scans were performed for all patients,
with the exception of patients 2 and 6. Five male patients and
one female exhibited isolated hypogonadotropic hypogonadism.
Only one patient, a 72-year-old male, had KS with anosmia.
Written, informed consent was obtained from all seven adult
individuals that participate in the study for the publication of any
potentially identifiable images or data included in this article. The
study was approved by the Cyprus National Bioethics Committee
and all methods were performed in accordance with the relevant
guidelines and regulations.

Genetic Analysis
Genomic DNA was isolated from peripheral blood using the
Gentra Puregene Kit (Qiagen, Valencia, CA, USA) according
to the manufacturer’s instructions. The DNA concentration
and purity was measured using the Nanodrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA). Prior to library preparation for whole exome sequencing
(WES) genomic DNA was quantified using the Qubit dsDNA
BR Assay Kit (Invitrogen, Life Technologies, Eugene, OR, USA)
on a Qubit R© 2.0 Fluorometer (Invitrogen, Life Technologies,
Eugene, OR, USA). WES was performed by using the TruSeq
Exome Kit (Illumina Inc., San Diego, CA, USA) with paired-
end 150 bp reads. NGS was performed using the NextSeq
500/550 High Output Kit v2.5 (150 Cycles) on an NextSeq500
system (Illumina Inc., San Diego, CA, USA). The FastQC
quality control tool (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to evaluate the quality of the WES
procedure. The mean target coverage for the exome was 70.88X.
Specifically, 10X coverage was achieved for 99.22% of the
nucleotides, 20X coverage for 87.68% of the nucleotides and 30X
coverage for 79.35% of the nucleotides, indicating that the WES
reaction was of sufficiently high quality for subsequent analysis.

Variant Analysis
The fastqc data obtained by WES were processed using an
in-house bioinformatics pipeline. Briefly, all variants were
inputted into the VarApp Browser and filtered. VarApp is
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a graphical user interface, which supports GEMINI (18).
Variants in selected genes with biological involvement in the
GnRH neuronal system and CHH (Supplementary Table 1)
were further analyzed using the Qualimap v2.2.1 tool (19) to
calculate the target coverage. Mean target coverage was >20X
for 93.2% of the selected genes and >30X for 89% of the
selected genes (Supplementary Table 1). Variants in these genes
were additionally filtered using the VarApp Browser for minor
allele frequencies of <1% in public databases such as 1000
genomes, ExAC browser and Exome Sequencing Project (ESP).
Moreover, variants were filtered and selected according to their
impact such as frameshift, splice acceptor, splice donor, start
lost, stop gained, stop lost, inframe deletion, inframe insertion,
missense, protein altering and splice region. In addition, variants
were filtered by the VarApp Browser for their pathogenicity
by two in silico tools, SIFT and Polyphen2. Population-specific
data from an in-house WES library composed of 51 randomly
selected samples of Cypriot origin were used to evaluate the
potential disease-causing variants. All variants identified were
confirmed by Sanger sequencing. When genetic material of
relatives was obtainable, familial segregation was performed
(Table 2, Supplementary Figure 5). For the cases where two
potentially pathogenic variants were identified in an individual,
we employed the ORVAL platform for predicting pathogenicity
due to digenicity (20). Finally, the variants were categorized for
their pathogenicity using the standards and guidelines of the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (21).

In silico Analysis of the Single Nucleotide
Variants
In silico prediction on protein function of the pathogenicity effect
of the different amino acid substitutions identified by NGS and
confirmedwith Sanger analysis was performed by the PredictSNP
tool using the default settings (22). The PredictSNP tool evaluates
the pathogenicity of a variant by using seven different protein
functionality prediction tools: MAPP, PhD-SNP, PolyPhen-1,
PolyPhen-2, SIFT, SNAP, and PANTHER.

Molecular Modeling and Homology
Modeling of the Mutated Genes
By using MOE (Chemical Computing Group, MOE, v2014.0901,
www.chemcomp.com) homology modeling was attempted in all
seven genes that carried the missense variants identified in the
present study. The selection of template crystal structures for
homology modeling was based on the primary sequence identity
and the crystal resolution. The MOE homology model method
is separated into four main steps. First, a primary fragment
geometry specification. Second the insertion and deletions task.
The third step is the loop selection and the side-chain packing
and the last step is the final model selection and refinement. The
template selection was as follows: for PROP1 the 3A01 PDB file
was used, for SRA1 the 4NBO PDB file was used, for RNF216 the
5l1V PDB file was used, for FGFR1 the 1CVS PDB file was used
and for POLR3A the 5FJ8 PDB file was used. All models were
handled, verified and visualized using the Drugster suite (23).

Model Optimization
Energy minimization for all four models was done in MOE
initially using the Amber99 (24) force-field implemented into
the same package, up to a root mean square deviation (RMSd)
gradient of 0.0001 to remove the geometrical strain. The models
were subsequently solvated with simple point charge (SPC) water
using the truncated octahedron box extending to 7 Å from the
model, and molecular dynamics was performed at 300K, 1 atm
with 2 fs step size for a total of 10 ns, using the NVT ensemble
in a canonical environment (NVT stands for Number of atoms,
Volume and Temperature that remain constant throughout the
calculation). The results of the molecular dynamics simulation
were collected into a database by MOE for further analysis.

RESULTS

Genetic Findings
All seven patients were sequenced by WES. The clinical,
biochemical and genetic characteristics are summarized in
Table 1. A total of nine variants were identified in genes that
are known to be linked with the development of CHH/KS
(Table 2). Seven of these variants were novel and two were
previously reported. The novel X-linked p.Gln82∗ in the ANOS1
(KAL1) gene was found in patient 1, a 28-year-old CHH male
with pubertal absence, cryptorchidism and micropenis (Table 1,
Figure 1). The novel WDR11 p.Leu244Pro variant is probably
pathogenic and is inherited in an autosomal dominant fashion
(AD). This variant was identified in patient 2, a 72-year-old
male with KS and associated clinical characteristics of anosmia,
cryptorchidism and micropenis. Patient 2 first sought medical
advice at the age of 40 years and since then remains a patient
of our clinic. Molecular diagnosis was only possible 32 years
later (Table 1, Figure 2). The previously reported AR, probably
pathogenic p.Ile179Thr variant in the SRA1 gene was identified
in heterozygosity in patient 3, a 19-year-old male with partial
hypogonadism and upper limb defects (Table 1, Figure 3). In
addition, the novel p.Asp792Asn in the RNF216 gene was also
identified in heterozygosity in the same patient (Figures 3, 8,
Supplementary Figure 1). Evaluation by the ORVAL platform
for digenicity predicted this novel variant to have a neutral
effect (Supplementary Figure 6). However, familial segregation
data and in silico structural models indicated a digenic mode of
inheritance (Figures 3, 8, Supplementary Figure 5). Variants in
the SRA1 and RNF216 genes have been associated with effects
on the CHH phenotype. Thus, the presence in patient 3 of
pathogenic, heterozygous variants in SRA1 and RNF216 genes
could potentially be another example of digenic inheritance for
the development of CHH (28).

Patient 4, an 18-year-old male with CHH and the associated
clinical characteristics of cryptorchidism and micropenis, was
found to carry the novel AD p.Arg2400Trp variant in the CHD7
gene (Table 1, Figure 4). Patient 5, a 31-year-old male with
CHH and associated clinical characteristics of cryptorchidism
and micropenis, was found to carry the novel AD p.Pro186Ala in
the FGFR1 gene (Table 1, Figure 5). The previously reported AD
p.Arg822Cys also in the FGFR1 gene was found in patient 6, a 20-
year-old male with CHH and associated clinical characteristics
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TABLE 1 | Clinical and biochemical characteristics of the patients with CHH.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

Current age 28-years 72-years 19-years 18-years 31-years 20-years 30-years

Sex Male Male Male Male Male Male Female

Main Phenotype CHH KS CHH CHH CHH CHH CHH

Associated clinical

characteristics

Cryptorchidism;

micropenis

Cryptorchidism; micropenis;

gynaecomastia; Anosmia

- Cryptorchidism; micropenis Cryptorchidism; micropenis Cryptorchidism; micropenis;

gynaecomastia

N/A

Partial or absent puberty Absent Absent Partial (Tanner stage 3) Absent Absent Absent Absent

Overlapping syndromes NO NO Upper limb defects NO Hypodontia and

hypogonadotropic

hypogonadism

NO NO

GnRH Reversal NO NO YES NO NO NO NO

CHH Sex Reversal NO NO NO NO NO NO NO

Gene(s) ANOS1 WDR11 SRA1#/RNF216U CHD7 FGFR1$/POLR3A€ FGFR1 SRA1

Genotype p.Gln82* p.Leu244Pro/WT p.Ile179Thr#/WT;

p.Asp792AsnU/WT

p.Arg2400Trp/WT p.Pro186Ala$/WT;

p.Arg561Gly€/WT

p.Arg822Cys/WT p.Ile179Thr/p.Ile179Thr

Mode of Inheritance X-linked AD AR#/ARU (Digenic) AD AD$ (due to the pathogenic

variant in FGFR1)

AD AR

LH <2 IU/L 0.10 n.d. 0.13 0.09 0.11 0.1 n.d.

FSH <2 IU/L 0.10 n.d. n.d. 0.5 0.13 0.5 0.1

Testosterone nmol/L <1 0.08 n.d. 0.4 0.2 1.1 1.3 -

Testicular Volume (ml) 3.0 3.0 5.0 3.0 2.0 4.0 N/A

Ovarian Volume (cm3 ) N/A N/A N/A N/A N/A N/A 1.0

Primary amenorrhea N/A N/A N/A N/A N/A N/A Yes

MRI Normal N/A Normal Normal Normal N/A Normal

AD, Autosomal Dominant; AR, Autosomal Recessive; n.d., not detectable; N/A, Not Applicable; #The p.Ile179Thr variation of the SRA1 gene and its associated inheritance; UThe p.Asp792Asn variation of the RNF216 gene and its

associated inheritance; $The p.Pro186Ala variation of the FGFR1 gene and its associated inheritance; €The p.Arg561Gly variation of the POLR3A gene.
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TABLE 2 | Variants identified in the seven non-related patients.

Patient

ID

Sex Phenotype Gene Refseq Variant

identified

(cDNA)

Variant

identified

(protein)

Genotype Inheritance MAF

(%)—

gnomAD

v2.1.1

Population

Specific

frequency

(51 WES

random

samples)

Familial

Segregation

Variant

classification

Previously

described

Additional genetic

variants

1 M CHH ANOS1 NM_000216.4:c.244C>T c.244G>A p.Gln82* p.Gln82* X-linked Absent Absent YES Pathogenic - -

2 M KS WDR11 NM_018117.12:c.731T>C c.731T>C p.Leu244Pro p.Leu244Pro/WT AD Absent Absent NA Probably

Pathogenic

- -

3 M CHH SRA1 NM_001035235.3:c.536T>C c.536T>C p.Ile179Thr p.Ile179Thr/WT AR 0.00081 Absent YES Probably

Pathogenic

(25, 26) MC4R:

p.Val103Ile/WT

RNF216 NM_207111.3:c.2374G>A c.2374G>A p.Asp792Asn p.Asp792Asn/WT AR Absent Absent Probably

Pathogenic

-

4 M CHH CHD7 NM_017780.4:c.7198C>T c.7198C>T p.Arg2400Trp p.Arg2400Trp/WT AD 0.0000154 Absent NA Probably

Pathogenic

- PROP1:

p.Arg112Gln/WT

(MAF: 0.000255%)

MC4R: p.Val103Ile/WT

5 M CHH FGFR1 NM_023110.3:c.556C>G c.556C>G p.Pro186Ala p.Pro186Ala/WT AD Absent Absent NA Probably

Pathogenic

- –

POLR3A NM_007055.4:c.1681C>G c.1681C>G p.Arg561Gly p.Arg561Gly/WT AR Absent Absent Probably

Pathogenic

-

6 M CHH FGFR1 NM_023110.3:c.2464C>T c.2464C>T p.Arg822Cys p.Arg822Cys/WT AD 0.00026 Absent NA Probably

Pathogenic

(27) -

7 F CHH SRA1 NM_001035235.3:c.536T>C c.536T>C p.Ile179Thr p.Ile179Thr/

p.Ile179Thr

AR 0.00081 Absent NA Probably

Pathogenic

(25, 26) -

KS, Kallman syndrome; CHH, Congenital Hypogonadotropic Hypogonadism; WT, Wild Type; AD, Autosomal Dominant; AR, Autosomal Recessive; MAF, Minor Allele Frequency; gnomAD, Genome Aggregation Database (https://

gnomad.broadinstitute.org/); WES, Whole Exome Sequencing; NA, Not Available.
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FIGURE 1 | Identification of a novel p.Gln82* ANOS1 mutation. (A) Sequence electropherogram of the novel p.Gln82* ANOS1 mutation. (B) Multiple sequence

alignment of the amino acid at position 82 of the ANOS1 protein from various species. The conserved glutamine amino acid at position 82 is indicated by red color.

(C) Schematic representation of the ANOS1 gene and protein of a male patient identified with the novel p.Gln82* non-sense pathogenic variant. WAP, whey acidic

protein; FNIII, fibronectin type III.

of cryptorchidism, micropenis and gynaecomastia (Table 1,
Figure 5, Supplementary Figure 2). The known p.Ile179Thr
variant in the SRA1 gene was also identified in the homozygous
state in patient five, a 30-year-old female with CHH and primary
amenorrhea (Figure 3, Supplementary Figure 1). Furthermore,
patient five also carried the novel p.Arg561Gly variant in
the POLR3A gene (Figure 6, Supplementary Figure 3). The
ORVAL platform was used to evaluate the pathogenicity of the
variants regarding digenic inheritance, with respect to which
they were shown to be positive (Supplementary Figure 6). Such
variants when inherited in the AR form are usually associated
with Pol III-related hypomyelinating leukodystrophies and not
with CHH. Patients with Pol III-related leukodystrophies may
have various clinical characteristics including ataxia, delayed
dentition, hypomyelination, hypodontia, and hypogonadotropic
hypogonadism. Patient 5, in addition to CHH, also developed
a mild hypomyelinating leukodystrophy phenotype, which is
likely associated with the heterozygous condition found in the
POLR3A gene.

It should also be noted that 3 of our patients were found to
have other variants as well. The known p.Val103Ile variation of
the MC4R gene, which has been linked to obesity, was found
in heterozygocity in two of the male patients (the 18 and the
19-year-old males, Patients two and four). Both the patients
were obese, with BMI above +2SDS and both developed insulin
resistance. In addition the novel variant p.Arg112gGln in the
PROP1 gene was found in the heterozygous state also in patient 4,
an 18-year-old male (Figure 7, Supplementary Figure 4). Such
variants have been reported to be associated with combined

pituitary hormone deficiency. Our patient also had central
hypothyroidism and he is currently on treatment with thyroxin.

The novel non-sense pathogenic variant p.Gln82∗ in the
ANOS1 gene, which was identified in a 28-year-old male,
encodes a premature termination codon. It is expected
to yield a truncated ANOS1 protein, missing the whey
acidic protein (WAP)-like protease inhibitor domain and the
four fibronectin type III (FN[III]) domains (Figure 1). The
missense variants, identified by WES and confirmed by Sanger
sequencing, were predicted to be deleterious by at least two
prediction tools using the PredictSNP consensus classifier (22)
(Table 3). The PredictSNP consensus classifier evaluates the
pathogenicity of a variant by using seven different prediction
tools: MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, SNAP,
and PANTHER. Furthermore, the identified variants were absent
from the population-specific data in an in-house database
composed of 51 random samples of Cypriot origin. Familial
segregation was available for two patients, patient 1 and
patient 3 (Supplementary Figure 5, Table 2). For patient one
the identified pathogenic variant followed the X-liked mode of
inheritance and for patient 3, variants followed the digenic mode
of inheritance (Supplementary Figure 5).

Conserved Protein Sequences Among
Species
Protein alignment analyses of all identified pathogenic and
probably pathogenic variants including the p.Gln82∗ of the
ANOS1 gene, the p.Leu244Pro of the WDR11 gene, the
p.Asp792Asn of the RNF216 gene, the p.Arg2400Trp of the
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FIGURE 2 | Identification of a novel p.Leu244Pro WDR11 variant. (A) Sequence electropherogram of the novel WDR11 p.Leu244Pro variant. (B) Multiple sequence

alignment of the amino acid at position 244 of the WDR11 protein from various species. The conserved leucine amino acid at position 244 is indicated by red color.

(C) Schematic representation of the WDR11 gene and protein of a male patient identified with the novel p.Leu244Pro variant.

CHD7 gene, the p.Pro186Ala and p.Arg822Cys of the FGFR1
gene, the p.Ile179Thr of the SRA1 gene, the p.Arg561Gly of
the POLR3A gene and the p.Arg112gGln of the PROP1 gene
showed high amino acid conservation among different species
(Figures 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8C). Therefore, the newly
and previously discovered variant sites of the above genes
were probably located in a vital region of the coding genes
that might affect the corresponding proteins mechanistically
and/or structurally.

Effect of the Mutated PROP1, SRA1,

FGFR1, POLR3A, and RNF216 at the
Related Protein Structure
The selection of template crystal structures for homology
modeling was based on the primary sequence identity and crystal
resolution models were obtained for the PROP1, SRA1, FGFR1,
POLR3A, and RNF216. Unfortunately, no crystal resolution
models were obtained for the CHD7 and WDR11 proteins.

The models for the SRA1, FGFR1, POLR3A, PROP1, and
RNF216 were designed using means of homology modeling
(Figures 3C, 5C, 6C, 7C, 8D). Each one of the recorded
variants were induced in silico and each model was energetically
optimized via Energy minimizations and Molecular Dynamics
[Figures 3D (i-ii), 5D (i-ii), 6D (i-ii), 7D (i-ii)]. The wild type and
variant models were subsequently superposed and the variant
residues were inevitably superposed too [Figures 3D (iii), 5D
(iii), 6D (iii), 7D (iii)]. The electrostatic surface was calculated
for each wild type and variant set for the SRA1, POLR3A,
and PROP1 models (Figures 3E, 6E, 7E) and finally the 2D
interaction diagram was drawn for each pair to visualize all
bonding and conformation changes induced upon by the variants
(Figures 3F, 5E, 6F, 7F). Since the FGFR1 variant involved the
replacement of a proline residue the conformational change in
the 3D conformation of the beta sheet formation is showed in
Figure 5F.

More specifically, the p.Arg112Gln variant in the PROP1
results in a significant physicochemical change in the 112
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FIGURE 3 | Identification of the p.Ile179Thr SRA1 variant. (A) Schematic representation of the SRA1 gene. The known SRA1 p.Ile179Thr variant identified in a male

patient in the heterozygote state and in a female patient in the homozygous state is indicated. (B) Multiple sequence alignment of the amino acid at position 179 of the

SRA1 protein from various species. The conserved isoleucine amino acid at position 179 is indicated by red color. (C) The homology model for SRA1. (D) Design of

the wild type (i) and mutant model (ii) of SRA1. (iii) Wild type and mutant models superposed. (E) Electrostatic surface calculated and drawn for the wild type and

mutant models. (F) 2D interaction diagram for wild type and mutant models.

position. The bulkier and positively charged arginine residue
is now replaced by a smaller polar and uncharged glutamine
residue. Inevitably the interaction to the DNA molecule that
was also included in the model is now lost, as well as a strong
stabilizing H-bond to a nearby negatively charged aspartic acid
residue. It is evident from the 2D interaction map that the
mutant PROP1 has lost its potential to interact with DNA and
that would unavoidably alter its molecular and cellular function
(Figure 7). Moving on, the p.Ile179Thr variant of the SRA1
also changes significantly the physicochemical profile of the
amino acid at 179 position. Isoleucine is a non-polar aliphatic
residue, whereas threonine is a polar residue. This electrostatic

change results in the establishment of two new bonds with two
nearby leucine residues. This fixates the local three helical bundle
conformation more strongly, thus making the 3D structural
arrangement adjacent to the 179 position more compact and
conformationally rigid compared to the wild type (Figure 3).
Likewise, the p.Pro186Ala variant in the FGFR1 has a significant
conformational impact. The proline residue is a very special
amino acid that bears a cyclic side chain. This gives this residue
a unique property of inducing a kink in the 3D conformational
arrangement of the protein. Removing it, and replacing it with
an alanine residue resulted in a 2.5 Angstrom shift outwards
of the beta sheet it is located in and that consequently led
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FIGURE 4 | Identification of the p.Arg2400Trp CHD7 variant. (A) Sequence electropherogram of a male patient identified with the novel CHD7 p.Arg2400Trp variant.

(B) Multiple sequence alignment of the amino acid at position 2,400 of the CHD7 protein from various species. The conserved arginine amino acid at position 2,400 is

indicated by red color. (C) Schematic representation of the CHD7 gene and protein of a male patient identified with the novel p.Arg2400Trp variant.

to a 4.5 Angstrom shift of the neighboring antiparallel beta
sheet formation too. Such significant changes in structural
arrangements are bound to change the mechanics and function
of the FGFR1 protein (Figure 5). Lastly, the p.Arg561Gly in the
POLR3A is a fine example of a variant change from a very bulky
and positively charged residue to a small amino acid. From the 2D
interaction diagram for this residue we can deduce that only the
arginine amino acid is long enough to reach the nearby positively
charged aspartic acid residue and to establish with the latter
strong H-bonds. The glycine residue is not just small but it also
misses the essential amino-groups that are required to establish
H-bonding to the glutamic acid (Figure 6). The p.Asp792Asn
variant according to the homology model of RNF216 is exposed
to the solvent. It is located on a hairpin like loop, linking a
beta-sheet and an a-helix in an antiparallel fashion (Figure 8D).
Therefore, there is high probability that this could be an
interacting part of the RNF216 protein, judging from the rotamer
of this residue, which is pointing outwards. In this direction, we
modeled the electrostatic potential of the 792 residue position
(Figure 8E), of the adjacent residues within a 7 Angstrom radius
(Figure 8G) and of the whole RNF216 protein (Figure 8F). It was
found that the variation of aspartic acid to asparagine changes

significantly the electrostatic potential and nature of the 792
position due to the extra NH2 moiety on the asparagine amino
acid. That, coupled with the fact that all amino acids around
the 792 position are negatively charged (red color–Figure 8G,
left) is very significant as with the introduction of the asparagine
residue a positively charged group is now introduced. Taking the
abovementioned facts into consideration, we propose that the
p.Asp792Asn variant is very significant as the positively charged
moiety that is introduced could disrupt the conserved negatively
charged region of RNF216, thus leading to a considerable change
in the physicochemical and electrostatic profile of that domain
that would inevitably affect its binding/interaction potential and
would probably change its functional properties (e.g., loss of
recognition and even interaction).

DISCUSSION

The present study investigated by high-throughput whole exome
sequencing the genetic impact in patients with CHH. The seven
patients of Cypriot origin with CHH/KS were identified with
variants in genes linked with this phenotype: ANOS1, SRA1,
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FIGURE 5 | Identification of the p.Pro186Ala and p.Arg822Cys FGFR1 variants. (A) Schematic representation of the FGFR1 gene and protein. The p.Pro186Ala and

p.Arg822Cys FGFR1 variants are indicated with arrows. (B) Multiple sequence alignment of the amino acids at position 186 (i) and 822 (ii) of the FGFR1 protein from

various species. The conserved amino acids at positions 186 and 822 are indicated by red color. (C) The homology model of the FGFR1. (D) Design of the wildtype (i)

and p.Pro186Ala mutant model (ii); the wildtype and p.Pro186Ala mutant models superposed (iii). (E) 2D interaction diagram for wildtype and p.Pro186Ala mutant

models. (F) Conformational change induced upon variant. Wildtype is showing in green ribbon, while p.Pro186Ala mutant is showing in yellow ribbon.
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FIGURE 6 | Identification of the p.Arg561Gly POLR3A variant. (A) Schematic representation of the POLR3A gene and protein. The p.Arg561Gly POLR3A variant is

indicated with arrows. (B) Multiple sequence alignment of the amino acid at position 561 of the POLR3A protein from various species. The conserved arginine amino

acid at position 561 is indicated by red color. (C) The homology model for POLR3A. (D) Design of the wild type (i) and mutant model (ii) of POLR3A. (iii) Wild type and

mutant models superposed. (E) Electrostatic surface calculated and drawn for the wild type and mutant models. (F) 2D interaction diagram for wild type and mutant

models.

CHD7, WDR11, FGFR1, RNF216, and POLR3A. A total of seven
novel and two rare previously reported variants were identified in
the patients of the current study and were found as novel or very
rare in the ExAC population database (29). All these variants were

also predicted to be pathogenic by at least two computational
programs (22, 30–36). Our results once more confirmed the
genetic complexity of CHH and the roles that exemplify a
series of pleiotropic genes during development (13, 37, 38).
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FIGURE 7 | Identification of the p.Arg112Gln PROP1 variant. (A) Schematic representation of the PROP1 gene and protein. The p.Arg112Gln PROP1 variant is

indicated with arrows. (B) Multiple sequence alignment of the amino acid at position 112 of the PROP1 protein from various species. The conserved arginine amino

acid at position 112 is indicated by red color. (C) The homology model for PROP1. (D) Design of the wild type (i) and mutant model (ii) of PROP1. (iii) Wild type and

mutant models superposed. (E) Electrostatic surface calculated and drawn for the wild type and mutant models. (F) 2D interaction diagram for wild type and mutant

models.

Frontiers in Endocrinology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 626

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Neocleous et al. Genetics of GnRH Deficiency

TABLE 3 | Prediction analysis of the variants identified.

Gene Variant PredictSNP (%) MAPP (%) PhD-SNP (%) PolyPhen-1 (%) PolyPhen-2 (%) SIFT(%) SNAP (%) PANTHER (%)

WDR11 p.Leu244Pro 61 77 68 67 56 79 50 69

SRA1 p.Ile179Thr 61 81 59 67 63 79 50 -

CHD7 p.Arg2400Trp 64 - 78 74 81 45 62 -

FGFR1 p.Pro186Ala 61 72 86 67 59 79 72 -

p.Arg822Cys 72 - 66 74 81 79 72 -

POLR3A p.Arg561Gly 87 48 82 74 50 79 62 72

PROP1 p.Arg112Gln 87 41 88 74 81 79 72 -

Percentage of confidence is shown by various prediction methods under the PredictSNP tool. Neutral and deleterious prediction effects are shown in green and red, respectively.

More specifically, we identified the novel X-linked hemizygous
truncated p.Gln82∗ pathogenic variant in the ANOS1 gene in
a 28-year-old male with CHH (Table 1). Patients with sporadic
KS/CHH due to ANOS1 gene defects have been correlated with
the phenotype of right renal agenesis/dysgenesis, thus provide
evidence for the X-linked mode of inheritance and offering the
opportunity for genetic counseling (12, 39–44). Approximately
10–20% of males with KS carry ANOS1 variants or intragenic
microdeletions (38). The majority of the X-linked KS variants
cause alteration of splicing, frameshift or stop codons leading
to synthesis of truncated anosmin (45). Nonsense variants and
full deletions in the ANOS1 gene are the most pathogenic and
lead to a truncated and absent anosmin protein, respectively
(37). Two of our normosmic male adult patients have been
identified with the novel AD p.Pro186Ala and the previously
reported p.Arg822Cys (46) variants in the FGFR1 gene. Both
of these patients were also characterized by delayed puberty
during adolescence and later CHH. In a similar fashion with
ANOS1, the expression of the FGFR1 gene is also generated in
the apparent olfactory bulbs and loss-of-function variants cause
a form of KS with autosomal dominant inheritance (4–24, 28–
50). FGFR1 is a cell surface membrane receptor that possesses
tyrosine kinase activity and mediates fibroblast growth factor
signaling (51). Patients with variants in the FGFR1 gene present
also various congenital anomalies that are not associated with
the reproductive system and are often associated with kidney
and tooth differentiation, ear and palate morphogenesis and the
development of cortico-spinal axonal tracts (52). Notably, patient
five, the 31-year-old male patient with CHH identified with
the novel FGFR1 p.Pro186Ala also shared in heterozygosity the
novel POLR3A p.Arg561Gly missense variant. This finding adds
to the already known spectrum of phenotypes resulting from
POLR3A and POLR3B variants. POLR3A and POLR3B can be
also associated to neurological or dental anomalies and isolated
hypogonadotropic hypogonadism (53).

Patient 4 in addition to the novel AD CHD7 p.Arg2400Trp
variant also carried the known MC4R p.Val103Ile variant
implicated in BMI and the novel p.Arg112gGln in the PROP1
gene. Various studies have described PROP1 gene variants as
responsible for causing combined pituitary hormone deficiency
(54–56). Heterozygous autosomal dominant loss-of-function
variants in the CHD7 gene are the major causal factor of
CHARGE syndrome (57, 58), in addition to the fact that
CHD7 variants have been also been reported in patients with

isolated CHH (59–61). Several reports have also linked PROP1
variants with gonadotroph function that progressively declines
and clinically patients with such variants maymanifest a shortage
of pubertal development, i.e., failure to enter or complete puberty
(62, 63). There are several reports of spontaneous puberty with
a posterior decline of gonadotrophic function that have been
linked to p.Arg112Ter, p.Arg120Cys, p.Phe88Ser, and c.150delA
PROP1 variants (64–67). Since the PROP1 gene is involved in
the anterior pituitary, cell lineage specification variants could
behave as an additive factor in the development of CHH
when co-inherited with variants from genes involved in normal
gonadotroph function. Such could be the case with the 18-year-
old CHH patient of the present study identified with the novel
CHD7 p.Arg2400Trp and the novel p.Arg112gGln variant in the
PROP1 gene.

In the present study, a 72-year-old anosmic KS patient
originally sought medical advice at the age of 40 in our clinic.
Since then, he remains a patient of our clinic and at the age
of 72-years he was identified with the novel AD p.Leu244Pro
in the WDR11 gene. WDR11 has been implicated in CHH and
KS, human developmental genetic disorders defined by delayed
puberty and infertility (68, 69). Several reports in CHH patients
with and without anosmia identified in heterozygosity variants
in the WDR11 gene (68). WDR11 is expressed in several adult
organs including the brain and the gonads. Comprehensive
analysis of the mouse brain displayed WDR11 expression in the
GnRH neuronal migratory location including nasal cavity and
cribriform plate area in E12.5 mouse embryo as well as the
median eminence in the adult brain, showing co-localization
with GnRH. Furthermore, WDR11 is expressed all over the
developing and adult olfactory bulb (OB) and its WD domains
are important for β-propeller formation and protein-protein
interaction (70). In addition, WDR11 interacts with EMX1, a
homeodomain transcription factor involved in the development
of olfactory neurons, andmissense variants diminish or eliminate
this interaction (68). Therefore, it is highly likely that the
impaired pubertal development in these patients results from a
deficiency of productive WDR11 protein interaction.

Interestingly, two out of the seven CHHpatients in our cohort,
a 30-year-old female (Patient 7) and a 19-year-old (Patient
3) male were both identified with variants in the SRA1 gene.
More specifically, the 30-year-old female carried in homozygosity
the previously reported p.Ile179Thr variant in the SRA1 gene
(25). The 19-year-old male also carried this same SRA1 variant
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FIGURE 8 | Identification of the p.Asp792Asn RNF216 variant. (A) Schematic representation of the RNF216 gene and protein of a male patient identified with the

novel p.Asp792Asn variant. (B) Sequence electropherogram of a male patient identified with the novel RNF216 p.Asp792Asn variant. (C) Multiple sequence alignment

of the amino acid at position 792 of the RNF216 protein from various species. The conserved aspartic acid amino acid at position 792 is indicated by red color.

(D) The p.Asp792Asn RNF216 variant is indicated with spacefill atoms. (E) The electrostatic potential surface calculated and drawn for the wild type and mutant

residues at the 792 position of RNF216. (F) The electrostatic potential surface calculated and drawn for the whole protein. In squares the regions presented in (G). (G)

The electrostatic potential surface calculated and drawn for the adjacent to the 792 position residues.
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in heterozygosity together with the novel p.Asp792Asn variant
in the RNF216 gene. As reported by Kotan et al. (25), the
variant p.Ile179Thr was reported only once in one independent
Turkish family with IHH/delayed puberty and its severity
was supported by functional studies. Using a mutant SRA1
construct, reduced co-activation of ligand-dependent activity of
the estrogen receptor alpha was demonstrated (25).

The variant p.Ile179Thr was not found in 51 Cypriots used as
controls for the purposes of the present study and was reported
with an allele frequency of 0.00081 inGnomADv2.1.1. Therefore,
most likely, a hot spot exists for this specific variant in the
greater EasternMediterranean region, suggesting a founder effect
phenomenon, which has been also seen for other rare endocrine
conditions in this area (71).

The SRA1 is a steroid receptor RNA activator that has been
shown to positively regulate the activity of the androgen receptor
and the estrogen receptor (72, 73). In recent years only a
few studies linked the SRA1 gene as responsible for causing
CHH when patients inherit pathogenic variants in the AR form
(25, 26).

The concepts of incomplete penetrance and variable
expressivity have been notified in such cases as the 19-year-old
patient where digenic variants are observed. Digenic variants
account for variable phenotypes in idiopathic hypogonadotropic
hypogonadism and other disorders and several recent and
older reports identified such conditions (17, 40, 74, 75). The
existence of digenic and oligogenic inheritance in CHH is quite
common, with about 20% of CHH cases reported to share at least
two causative variants that could result in a disease phenotype
(1, 15). The most appropriate way to examine the possibility of
low penetrance and variable expressivity of CHH genes is by
concurrently carrying out targeted genetic analyses, or preferably
by performing WES on the probands and available relatives so as
to establish digenic or oligogenic transmission.

REVIEW OF THE LITERATURE

Congenital hypogonadotropic hypogonadism (CHH) is a rare
disorder of sexual maturation characterized by GnRH deficiency
with low sex steroid levels associated with low levels of LH and
FSH. CHH may be caused by variants in numerous genes and
recent studies shed light on the complexity of CHH genetics (6,
15, 76). Over the recent few years, genetic evaluation of patients
with inherited diseases, including CHH, has increasingly utilized
massive parallel sequencing by next-generation sequencing
(NGS), that allows the concurrent investigation of thousands of
genes (1, 15, 77). At this scale of analysis, NGS is inexpensive
and rapid compared to the traditional Sanger sequencing
and is increasingly being used in medical practice. NGS has
certainly facilitated CHH genetic diagnoses and aided healthcare
professionals to provide reliable and informed genetic counseling
for patients with CHH. The crucial challenge regarding NGS
concerns the identification of true oligogenism in circumstances
involving several rare variants which do not have a clear
phenotypic effect and are identified by coincidence. Such a
challenge also concerns the identification of genes underlying

CHH pathogenesis and which are likewise reported to act in an
oligogenic context (78). Since the discovery of ANOS1 (79), more
than sixty genes have been reported to underlie CHH and were
previously considered to be inherited in the AD form (6). Herein,
we review six of these genes: ANOS1, FGFR1, CHD7, WDR11,
RNF216, and POLR3A, since novel variants in these genes have
been identified in our cohort of patients under investigation.

ANOS1 (KAL1) Gene Variants Causing
X-Linked Recessive KS/CHH
ANOS1 was the first gene linked to Kallmann syndrome (KS)
and since the early nineties when the first reports demonstrated
variants with an X-linked mode of inheritance (80–83), many
others followed throughout the years (6, 84–88). KS occurs more
frequently in males than in females, with an estimated prevalence
of 1 in 30,000 males and 1 in 120,000 females (12). Patients
with KS associated with ANOS1 pathogenic variants usually
exhibit anosmia accompanied with CHH (12, 14, 85, 86). Fewer
patients with pathogenic variants in ANOS1 are either anosmic
or hyposmic and have been reported to exhibit other signs,
such as mirror movements and renal agenesis, but they do not
always co-segregate with the variant recognized in a given family
(85, 89–91). According to the Human Gene Mutation Database
(http://www.hgmd.cf.ac.uk/ac/index.php) more than 150ANOS1
pathogenic variants have been reported as the causative factor
in KS patients. Most of these pathogenic variants mainly consist
of nucleotide deletions or insertions and to a lesser extend of
variants that involve amino acid missense substitutions (88,
92, 93). The ANOS1 gene encodes anosmin, a protein which
plays a significant role in the embryogenesis of brain, kidneys,
respiratory and digestive systems (92, 94). Anosmin, as an
extracellular matrix protein binds to the cell membrane and
stimulates the development of the olfactory system and behaves
as an axonal guidance for the GnRH neurons, the olfactory cells
and the Purkinje cerebellum neurons (95). Monogenic loss-of-
function pathogenic variants inANOS1 gene have been estimated
to account for 4–10% of KS/CHH cases and has been principally
studied in many reported cohorts (12, 41–44, 88, 96–99).

Regarding the reproductive phenotype, male KS patients with
ANOS1 variants display a complete penetrance of CHH and their
pre- and postnatal gonadotropin deficit is severe with a high
frequency of micropenis, cryptorchidism and complete absence
of gonadal development (15, 16).

FGFR1 Gene Variants Causing KS/CHH
The presence of variants in the FGFR1 gene is another important
cause of KS and was the first gene to be identified as an AD
form of the disease (49, 100). More than 140 loss-of-function
mutations in the FGFR1 gene have been reported with missense,
non-sense and frameshift defects being the most frequent (101).
Less frequent autosomal gene deletions have also been reported
in patients with CHH and KS (102, 103). FGFR1 is considered
to be a pleiotropic gene that can display different roles during
development and variants found in it can cause CHH with or
without anosmia (49, 100). Genotype-phenotype correlations in
patients with AD variants in the FGFR1 gene demonstrated some
clinical features linked with KS, such as loss of nasal cartilage,
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hearing deficit and anomalies of the limbs (6, 93, 101). The
function of FGFR1 in the normal development of the olfactory
bulb proposes the link of anosmia with GnRH deficiency in
the FGFR1-mutated patients (104). Phenotype analysis proposes
that FGFR1 elaborates in the normal migration of GnRH fetal
neurons, but this is not entirely clear-cut as a considerable
proportion of FGFR1-mutated patients have normosmic GnRH
deficiency (15). Regarding the reproductive phenotype of male
patients with FGFR1 variants, the penetrance of CHH and GnRH
deficiency is variable and ranges from profound to partial puberty
and even to reversal (1, 99, 105, 106).

Several groups have reported patients harboring FGFR1
variants linked to non-reproductive signs. Patients with
FGFR1 mutations have been reported to suffer from health
conditions such as 8p11 myeloproliferative syndrome (107, 108),
encephalocraniocutaneous lipomatosis (109, 110), Hartsfield
syndrome, a rare condition characterized by holoprosencephaly,
which is an abnormality of brain development (111, 112),
osteoglophonic dysplasia, a condition characterized by
abnormal bone growth that leads to craniofacial abnormalities
and dwarfism (113, 114) and Pfeiffer syndrome, which is
characterized by craniosynostosis (115, 116). Somatic pathogenic
variants involving the FGFR1 gene have also been reported in
several types of cancers, including the lung, breast, esophagous,
oral cavity and brain tumors (101, 117–119). Taking into
consideration the genotypic and phenotypic heterogeneity that is
observed in patients with FGFR1 variants and the fact that their
prevalence is not clearly established makes genetic counseling
rather complicated.

CHD7 Gene Variants Causing CHARGE
Syndrome and CHH/KS
CHD7 is the gene that codes for the chromodomain helicase
DNA binding protein 7 and variants found in the AD form
were first reported as the genetic cause in a series of patients
with CHARGE (coloboma, heart defect, atresia choanae, growth
retardation, genital abnormality, and ear abnormality) syndrome
(57, 120). CHARGE syndrome occurs in approximately 1 in
8,500 to 10,000 new-borns and up-to-date more than 600 CHD7
variants in the AD form have been associated with the disorder
(57, 121–124). Several other studies of families carrying CHD7
mutations in the AD form also demonstrated a broad phenotypic
variability and linked more than 50 of them with KS and
congenital hypogonadotropic hypogonadism (59, 60, 69, 125). It
has been estimated that inherited and de novo CHD7 mutations
account for 5–10 percent of all cases of KS and an accountable
number of these patients exhibit mild form features of CHARGE
syndrome, such as abnormally shaped ears, hearing loss, hare
lip/cleft palate and cardiac abnormalities (60, 61, 69, 121, 126).

WDR11 Gene Variants Causing CHH/KS
WDR11 is a member of theWD-repeat containing protein family
and comprises of twelve conserved domains of approximately 40
amino acids (68). TheWDR11 gene is located in the chromosome
10q25-26 region and is expressed in various human organs
including the brain, ear, lung, heart, kidney and the gonads
(70). WDR11 is a scaffolding protein that is involved in multiple
of cellular proceedings, including cell cycle progression, signal

transduction, apoptosis and gene regulation (70). Kim et al. first
reported that whenmutatedWDR11 is linkedwith idiopathicHH
andKS (68). Since the initial report by Kim et al. (68), a few others
followed and linked the WDR11 gene with different pathogenic
variants in male patients without anosmia and CHH (127, 128).
Recently, theWDR11 gene has also been shown to be involved in
the Hedgehog (Hh) signaling pathway which is important for the
normal ciliogenesis and when mutated can be the causal factor of
KS and HH (68, 70). Another recent report by Sutani et al. (129)
linked WDR11 as another causative gene for coloboma, cardiac
anomaly and growth retardation in the 10q26 deletion syndrome.

RNF216 Gene Variants Linked to Gordon
Holmes Syndrome
The RNF216 protein is a cytoplasmic protein which interacts with
the serine/threonine protein kinase i.e., the receptor-interacting
protein (RIP). Particular zinc finger domains of the RNF216
protein are necessary for its interaction with RIP and for the
inhibition of TNF- and IL1-induced NF-kappa B activation
pathways (130, 131). Additionally, the RNF216 protein plays
a role in the ubiquitin-proteasome system for the break-down
and degradation of unwanted proteins. Specifically, this protein
functions as an E3 ubiquitin ligase (132). Variants in the RNF216
gene have been linked with hypogonadotropic hypogonadism,
ataxia and dementia (28). More explicitly digenic homozygous
variants in RNF216 and OTUD4, which encode a ubiquitin E3
ligase and a deubiquitinase, respectively, were identified in three
affected siblings in a consanguineous family (28). Several other
recent studies also reported variants in the RNF216 gene as a
result of consanguinity to cause GordonHolmes syndrome, a rare
disorder characterized by diminished production of hormones
leading to hypogonadotropic hypogonadism and difficulty in
the coordination of movements i.e., cerebellar ataxia (133–136).
These recent findings regarding the RNF216 gene associate the
disorderly ubiquitination to neurodegeneration and reproductive
dysfunction in combination with functional studies to reveal
specific genetic interactions that cause disease.

POLR3A Gene Variants Associated With
Hypomyelinating Leukodystrophy and HH
The POLR3A gene provides instructions for the production of
the largest subunit of RNA polymerase III which is the enzyme
involved in the RNA synthesis (137). The gene is located in
chromosome 10q22.3 and variants inherited in the AR form
have been initially reported in French-Canadian families with
hypomyelinating leukodystrophy (138). Interestingly, these
families were mapped to the same locus as leukodystrophy
with oligodontia and demonstrated clinical and radiological
overlap with patients with hypomyelination, hypodontia and
hypogonadotropic hypogonadism syndrome (138). Several
other recent studies that followed also reported variants in the
POLR3A gene as being responsible for causing hypomyelination,
hypodontia and hypogonadotropic hypogonadism, thus
establishing a series of POLR3A gene variants to be associated
with polymerase III-related leukodystrophy (139–144). It
is estimated that 30–40% of patients with leukodystrophies
remain without a molecular diagnosis (138, 141). The existence
of mild and overlapping hypomyelinating leukodystrophy
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phenotypes could be attributed to heterozygous variants found
in the POLR3A gene as a result of an abnormal enzymatic
function of the RNA Pol III catalytic subunit. The role of
heterozygosity in POLR3A in the overall pathogenesis of CHH
is not well-established, and the possibility of a synergistic
effect between these variants and variants identified in other
genes cannot be excluded. Additionally, POLR3A gene could
also be speculated to be a phenocopy gene due to the observed
variability of phenotypes, therefore, patients and family members
identified with mutations in this gene should be re-evaluated for
understated and previously unrecognized clinical signs.

CONCLUSION

GnRH deficiency has been recognized both clinically and
genetically as a heterogeneous disease with a range of
different reproductive phenotypes including of congenital
GnRH deficiency with anosmia (KS) and congenital GnRH
deficiency with normal olfaction (normosmic CHH). The present
study/review discusses the involvement of known and novel
variants in patients with CHH/KS and adds up to the ontogeny
of GnRH deficiency.

Moreover, this study provides new genetic findings and
reinforces the significance of the use of NGS technology
for the accurate molecular diagnosis and treatment of this
rare condition.
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