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C-X-C Motif Chemokine Ligand 10 (CXCL10) is a pro-inflammatory chemokine

specifically recognized by the ligand receptor CXCR3 which is mostly expressed in

T-lymphocytes. Although CXCL10 expression and secretion have been widely associated

to pancreatic islets both in non-obese diabetic (NOD) mice and in human type 1 diabetic

(T1D) donors, the specific expression pattern among pancreatic endocrine cell subtypes

has not been clarified yet. Therefore, the purpose of this study was to shed light on the

pancreatic islet expression of CXCL10 in NOD, in C57Bl/6J and in NOD-SCID mice as

well as in human T1D pancreata from new-onset T1D patients (DiViD study) compared

to non-diabetic multiorgan donors from the INNODIA European Network for Pancreatic

Organ Donors with Diabetes (EUnPOD). CXCL10 was expressed in pancreatic islets of

normoglycaemic and new-onset diabetic NOD mice but not in C57Bl/6J and NOD-SCID

mice. CXCL10 expression was increased in pancreatic islets of new-onset diabetic

NOD mice compared to normoglycaemic NOD mice. In NOD mice, CXCL10 colocalized

both with insulin and glucagon. Interestingly, CXCL10-glucagon colocalization rate was

significantly increased in diabetic vs. normoglycaemic NOD mouse islets, indicating

an increased expression of CXCL10 also in alpha-cells. CXCL10 was expressed in

pancreatic islets of T1D patients but not in non-diabetic donors. The analysis of the

expression pattern of CXCL10 in human T1D pancreata from DiViD study, revealed

an increased colocalization rate with glucagon compared to insulin. Of note, CXCL10

was also expressed in alpha-cells residing in insulin-deficient islets (IDI), suggesting that

CXCL10 expression in alpha cells is not driven by residual beta-cells and therefore may

represent an independent phenomenon. In conclusion, we show that in T1D CXCL10

is expressed by alpha-cells both in NOD mice and in T1D patients, thus pointing to an

additional novel role for alpha-cells in T1D pathogenesis and progression.
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FIGURE 4 | Distribution of islet subsets in T1D DiViD individuals based on CXCL10 expression and ICI/IDI classification. Histological evaluation of islet subsets

distribution in each of the six recent-onset DiViD individuals, based on the analysis of two non-consecutive pancreatic sections/case. Distribution of islets is reported

as percentage value of total islets identified per section.

TABLE 2 | Table reporting the percentage values and the absolute number (in

parentheses) of ICIs and IDIs positive or negative for CXCL10 in two

non-consecutive pancreatic sections derived from two different formalin-fixed

paraffin-embedded pancreatic tissue histological blocks of the same DiViD case.

Section # ICI

CXCL10pos

% (absolute)

ICI

CXCL10neg

% (absolute)

IDI

CXCL10pos

% (absolute)

IDI

CXCL10neg

% (absolute)

Case 1 Section #1 5.9 (3) 0 (0) 90.2 (46) 3.9 (2)

Section #2 6.0 (5) 0 (0) 81.7 (67) 12.2 (10)

Case 2 Section #1 26.2 (22) 3.5 (3) 42.9 (36) 27.4 (23)

Section #2 44.9 (53) 0.8 (1) 47.4 (56) 6.77 (8)

Case 3 Section #1 40.6 (41) 0.9 (1) 5 (5) 53.5 (54)

Section #2 76.6 (69) 5.5 (5) 12.0 (11) 5.5 (5)

Case 4 Section #1 33.3 (15) 2.2 (1) 2.2 (1) 62.2 (28)

Section #2 21.9 (23) 0 (0) 58.0 (61) 20 (21)

Case 5 Section #1 7.6 (16) 0 (0) 67.8 (143) 24.6 (52)

Section #2 12.7(13) 0 (0) 64.7 (66) 22.5 (23)

Case 6 Section #1 1.4 (1) 0 (0) 15.7 (11) 82.9 (58)

Section #2 81.6 (71) 0 (0) 10.3 (9) 8.0 (7)

See Supplementary File 1 for an extended version of this table.

IDIs presence (section#1: 1.5% ICIs vs. 98.5% IDIs; section#2:
81.6% ICIs vs. 18.4% IDIs) between the two sections is paralleled
by strong differences in CXCL10 islets positivity (Figure 4,
Table 2, and Supplementary File 1) being more frequent in
section#2 within ICIs (100% of ICIs CXCL10pos) compared to
IDIs in section#1 (15.7% of IDIs CXCL10pos).

Alpha-Cells Contribute to CXCL10
Expression in Pancreatic Islets of
New-Onset T1D Patients
The relevant presence of IDIs showing positivity for CXCL10
strongly suggests that also in human context, CXCL10 expression
is not exclusively expressed by beta-cells. Indeed, triple
immunofluorescence staining aimed at detecting insulin,
glucagon, and CXCL10 expression in pancreatic sections of
6 new-onset T1D subjects from DiViD study, demonstrated
that: (a) in ICIs, both beta- and alpha-cells stained positive for
CXCL10 (Figure 5a and Supplementary Figure 6); (b) in IDIs,
CXCL10 was expressed only in alpha-cells, since the (whole)
signal of the chemokine perfectly overlapped with glucagon
(Figures 3K–O and Supplementary Figure 7).

In order to quantify the contribution of beta- and alpha-cells
to the overall expression of CXCL10 in pancreatic islets of T1D
subjects, we analyzed the colocalization rate of CXCL10-insulin
and CXCL10-glucagon in ICIs detected in all DiViD cases. Such
analysis demonstrated that CXCL10-glucagon colocalization rate
was significantly higher compared to CXCL10-insulin [CXCL10-
GCG 36.5 ± 17.1% vs. CXCL10-INS 23.6 ± 18.9% (mean ± SD)
(Figures 5b,c)], thus demonstrating that alpha-cells significantly
contribute, together with beta-cells, to CXCL10 expression in
pancreatic islets of T1D subjects.

DISCUSSION

Several studies reported that CXCL10 expression is increased
in in-vitro cultured pancreatic islets upon inflammatory stresses
(34, 35), as well as in pancreatic islets of animal models of
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FIGURE 5 | Alpha-cells contribute to CXCL10 expression in islets of new-onset T1D patients. (a) Triple immunofluorescence analysis of insulin (INS, green, panel A),

glucagon (GCG, blue, panel B), and CXCL10 (red, panel C) of pancreatic islets in T1D DiViD cases. Panel E: digital zoom-in of overlapping (merge) channels, showing

colocalization of CXCL10 and insulin (yellow pixels) indicated by yellow arrow and of CXCL10 and glucagon (magenta pixels) indicated by red arrow. Scale bar =

50µm. Scale bar zoom-in = 20µm. (b) Colocalization analysis of CXCL10 and insulin (green dots) and CXCL10 and glucagon (blue dots) in pancreatic islets of T1D

DiViD cases. A total of n = 50 ICIs from 6 DiViD cases were analyzed for both CXCL10-insulin and CXCL10-glucagon colocalization rate. Values are reported as the

percentage of overlapping CXCL10-insulin or CXCL10-glucagon pixels over total insulin or glucagon positive pixels, according to Mander’s Coefficient calculation.

Exact p-value was calculated using Wilcoxon matched-pairs signed rank test. (c) Colocalization plots of CXCL10-insulin (left) and CXCL10-glucagon (right) of a

recent-onset diabetic DiViD individual ICI (Case-1). Positive pixels for CXCL10 (red), insulin (green), and glucagon (blue), alongside with colocalizing pixels

(CXCL10-insulin: yellow; CXCL10-glucagon: magenta), are reported in the plots. Significant colocalizing pixels are within the area delimited by white lines, representing

background and threshold levels relative to each channel. Each pixel is reported as a gray-scale RGB intensity value (0–255).

autoimmune diabetes (6, 7) and in donors with T1D (24–
26). However, data are lacking regarding CXCL10 intra-islet
expression pattern in T1D. Such context prompted us to further

investigate CXCL10 expression in pancreas sections of NODmice
and of T1D subjects from DiViD study, in order to better define
CXCL10 intra-islet distribution.
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In the present study, we confirmed that CXCL10 was
expressed in pancreatic islets but not in exocrine tissue in
T1D, while its expression was not observed in pancreas of
healthy donors. Our data are in line with previous reports
showing increased expression of CXCL10 in pancreatic islets in
T1D (23–25).

Interestingly, our data suggest that both beta- and alpha-cells
contribute to CXCL10 expression in T1D pancreatic islets, both
in diabetic NODmice and in DiViD T1D subjects.

In 12- to 21-week-old new-onset diabetic NODmice, CXCL10
was expressed in pancreatic islets, but not in exocrine tissue,
and significantly increased vs. age-matched normoglycaemic
NODmice.

Our results show a significant increase in the proportion
of alpha-cells expressing CXCL10 in new-onset diabetic vs.
normoglycaemic NOD mice, thus potentially suggesting that a
higher rate of alpha-cells are subjected to inflammatory stresses
and respond by activating CXCL10 transcription.

These findings are mirrored in pancreata of T1D DiViD
subjects compared to healthy multiorgan donors collected within
the EUnPOD network of INNODIA consortium. In line with
previous studies (24–26), we confirmed that CXCL10 was
specifically expressed in pancreatic islets of T1D subjects and
absent in non-diabetic controls. In ICIs, CXCL10 expression
was observed both in beta- and in alpha-cells. As expected,
in all DiViD cases analyzed, most of the ICIs (95%) showed
positivity for CXCL10, in line with previous observations which
attributed a more aggressive insulitis and inflammation to those
islets containing residual beta-cells (36). Of interest, in ICIs
we observed a higher proportion of CXCL10 positive alpha-
cells compared to beta-cells, suggesting a critical contribution
of alpha-cells to the pancreatic islet expression of CXCL10. To
this regard, it should be underlined that Mander’s colocalization
coefficient is independent of absolute signal as it measures
the fraction of one protein that colocalizes with a second
protein; therefore, it is unlikely that the differences observed
in the colocalization rates are dependent on beta- or alpha-cell
mass modifications.

Strikingly, the expression of CXCL10 was also clearly
observed in alpha-cells of IDIs where beta-cells were absent
and inflammation was lower or not present, as shown
previously (37–40) and in the present manuscript as well
(Supplementary Figures 4a,b). Based on manual counting of
IDI-CXCL10pos in each DiViD case, we observed that Case-1,
Case-2, and Case-5 revealed a higher fraction of IDI-CXCL10pos

among all IDIs detected; this result is consistent between the
two non-consecutive pancreatic sections analyzed. Conversely, a
substantial heterogeneity between the two sections was observed
in Case-3, Case-4, and Case-6, mainly due to the different rate
of ICI-CXCL10pos, clearly evident in Case-6. Despite the high
heterogeneity, overall, Case-3, Case-4, and Case-6 showed the
lowest proportion of IDI-CXCL10pos (Supplementary File 1). In
an effort aimed at looking for specific characteristics correlated
with CXCL10-based DiViD cases patterning, we found that Case-
6, showing the lowest rate of CXCL10pos islets (considering
both sections and independently of its cellular distribution)

(Supplementary File 1), also exhibited the lowest expression of
HLA-ABC genes among DiViD cases, as previously reported
by Richardson S and colleagues (38). Additionally, in Case-
3, classified by having high residual beta-cell content, severe
insulitis and high expression of HLAClass-I (37, 38), we observed
the highest proportion of ICI-CXCL10pos among all DiViD cases.

Collectively, these results suggest that, although residual beta-
cells drive severe pancreatic islet inflammation leading to a global
CXCL10 increase, the expression of this chemokine in alpha cells
could represent a phenomenon not strictly dependent on beta-
cell content. Of note, a very high level of heterogeneity was
observed among cases analyzed and among different paraffin
blocks of the same case, in line with the heterogeneous nature
of the disease, previously highlighted by several studies assaying
the same cases (28, 37, 38, 41).

In support of our data, CXCL10 hyperexpression in DiViD
cases was also previously observed at the mRNA level,
being its expression significantly increased in laser-captured
microdissected islets of T1D donors compared to non-diabetic
controls (42); of note, CXCL10 hyperexpression was reported to
be significantly associated to peri-islet insulitis microdissected
tissue rather than to pancreatic islets core. Such results are in line
with our data; indeed, it is likely that CXCL10 hyperexpression
observed in peri-islet/insulitic microdissected tissue from T1D
donors was mostly derived from alpha-cells clusters which are
more closely associated to the peri-islets basement membrane
(43). In addition, our results exclude an overlapping between
insulitic immune cells and CXCL10 expression as shown by
CD45-CXCL10 immunofluorescence staining in T1D DiViD
sections (Supplementary Figure 4a).

In support to our findings, CXCL10 expression in alpha-cells
was previously reported by Tanaka et al. in Japanese fulminant
diabetes cases (26) and, more recently, by Moin et al. (44) in
pancreatic islets of multiorgan donors with chronic pancreatitis,
thus confirming and extending the observation of CXCL10
expression in alpha-cells in autoimmune diabetes.

Of interest, our data corroborate the increasing importance
attributed to alpha-cells in the pathogenesis and progression
of T1D. Alterations of several genes alongside with functional
defects have been observed in alpha-cells obtained from T1D
donors. These include alterations of alpha-cells phenotypic-
maintenance genes and defects in glucagon secretion (45).
We can speculate that inflammation may contribute to the
activation of several signaling pathways, which alter alpha-
cells phenotype and activate innate inflammatory responses
leading to CXCL10 expression. As a matter of fact, CXCL10
is not the only pro-inflammatory molecule expressed by
alpha-cells; indeed, it has been reported that alpha-cells can
express also IL-1β (46) as well as IL-6 (47), thus potentially
contributing to the pro-inflammatory islet microenvironment
causing preferential homing of T-lymphocytes in pancreas
in T1D (48). In turn, increased immune cell migration and
then inflammation could enhance beta-cell antigenicity through
higher HLA Class-I expression and novel peptides exposure
to the immune system (49), thus generating a critical positive
feedback loop.
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An additional layer of evidence, supporting the expression
of CXCL10 by alpha-cells, is given by their molecular
equipment needed to induce those signaling pathways which
lead to CXCL10 transcriptional activation. Indeed, analysis of
transcriptome datasets comparing beta- and alpha-cells gene
expression, showed an almost equal expression levels of those
receptors and intracellular molecules which initiate the signaling
cascades leading to CXCL10 transcriptional activation, such as
IFNAR1, IFNAR2, IFNGR, TYK2, TNFRSF1A, and IL-1R (50–
53), thus demonstrating the potential ability of alpha-cells to
respond to the inflammatory milieu and potentially activate
CXCL10 pathway.

However, several open questions remain. Firstly, the potential
role of CXCL10 beside its effects on immune cells recruitment
needs to be clarified; several reports attributed a role for CXCL10
in proliferation and angiogenesis (54). Particularly, it has been
reported that CXCL10 can modulate vascular angiogenesis (55),
also through the inhibition of VEGF-A (56). Angiogenesis has
been linked to beta-cell regeneration through the re-arrangement
of islet microenvironment, thus hypothesizing a role for islet
CXCL10 as a factor involved in the modulation of beta-cell
regeneration (57).

Secondly, the presence of CXCL10 in IDIs with no sign
of inflammation may suggest that CXCL10 transcriptional
activation is not only induced by cytokines and inflammatory
mediators but may be caused by the exposure to additional
factors. In this regard, alternative signaling pathways and
receptors (e.g., TLR4) have been reported for the induction of
CXCL10 (58).

Thirdly, the co-existence of IDI-CXCL10pos and IDI-
CXCL10neg indicates a high level of heterogeneity involving
also pancreatic islets alpha-cells expressing CXCL10; the
identification of those factors determining the expression of
CXCL10 in alpha-cells and how these correlate with individual
islet phenotype would be of major importance to understand the
role of this chemokine in T1D.

In conclusion, we have shown that chemokine
CXCL10 is expressed also by alpha-cells which represent
important contributors to the expression of CXCL10 in
pancreatic islets. These results further underline the role
of alpha-cells in T1D pathogenesis and progression and
suggest the need to advance our knowledge regarding
function and dysfunction of these cells in pancreatic
islet autoimmunity.
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