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Background: Some patients with acromegaly do not reach the remission standard

in the short term after surgery but achieve remission without additional postoperative

treatment during long-term follow-up; this phenomenon is defined as postoperative

delayed remission (DR). DR may complicate the interpretation of surgical outcomes in

patients with acromegaly and interfere with decision-making regarding postoperative

adjuvant therapy.

Objective: We aimed to develop and validate machine learning (ML) models for

predicting DR in acromegaly patients who have not achieved remission within 6 months

of surgery.

Methods: We enrolled 306 acromegaly patients and randomly divided them into

training and test datasets. We used the recursive feature elimination (RFE) algorithm to

select features and applied six ML algorithms to construct DR prediction models. The

performance of these ML models was validated using receiver operating characteristics

analysis. We used permutation importance, SHapley Additive exPlanations (SHAP),

and local interpretable model–agnostic explanation (LIME) algorithms to determine the

importance of the selected features and interpret the ML models.

Results: Fifty-five (17.97%) acromegaly patients met the criteria for DR, and five features

(post-1w rGH, post-1w nGH, post-6m rGH, post-6m IGF-1, and post-6m nGH) were

significantly associated with DR in both the training and the test datasets. After the RFE

feature selection, the XGboost model, which comprised the 15 important features, had

the greatest discriminatory ability (area under the curve = 0.8349, sensitivity = 0.8889,

Youden’s index = 0.6842). The XGboost model showed good discrimination ability and

provided significantly better estimates of DR of patients with acromegaly compared

with using only the Knosp grade. The results obtained from permutation importance,

SHAP, and LIME algorithms showed that post-6m IGF-1 is the most important feature in

XGboost algorithm prediction and showed the reliability and the clinical practicability of

the XGboost model in DR prediction.
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Conclusions: ML-based models can serve as an effective non-invasive approach to

predicting DR and could aid in determining individual treatment and follow-up strategies

for acromegaly patients who have not achieved remission within 6 months of surgery.

Keywords: acromegaly, delayed remission, machine learning, LIME, SHAP

INTRODUCTION

Acromegaly is a chronic endocrine disease that is mostly caused
by growth hormone (GH)-secreting pituitary adenomas (PAs),
resulting in excessive circulating levels of insulin-like growth
factor 1 (IGF1) and in high morbidity and mortality (1, 2).
According to the current Endocrine Society Clinical Practice
Guidelines on acromegaly, transsphenoidal surgery (TSS) is the
first-line treatment, and its initial cure rate for macroadenomas
is 40–50% (3). The remission of acromegaly needs to meet
the following two conditions at least 12 weeks after surgery:
normalized levels of IGF1 and a randomGH level of<1.0µg/L or
a nadir GH level of<0.4µg/L following an oral glucose tolerance
test (OGTT) (3, 4).

According to the literature and our clinical experience, some
patients with acromegaly do not reach the remission standard
in the short term after surgery but achieve remission without
additional postoperative treatment during long-term follow-up;
this phenomenon is defined as postoperative delayed remission
(5, 6). Changes in GH and IGF1 levels may be inconsistent
following surgery, and the reason for delayed remission may be a
longer-than-expected period required for IGF1 levels to return to
normal (7). The reason may also be that the residual tumor cells
gradually necrotize with ischemia after surgery.

Delayed remission may affect a doctor’s ability to judge
the surgical response and to determine whether the patient
needs postoperative adjuvant therapy. Previous studies have
focused on the retrospective analysis of clinical risk factors
and their associations with delayed remission, and the results
have revealed that postoperative 3-month IGF1 (post-3m IGF1)
levels might have a significant influence on delayed remission
(6). However, the two previous studies (5, 6) on delayed
remission in patients with acromegaly have used 3 months as
the observation time for postoperative remission, which was
too short. It is more reasonable to observe the remission of
acromegaly patients within 6 months after surgery. Moreover,
the prognosis should not be determined by only one feature.

Abbreviations: PAs, pituitary adenomas; IGF1, insulin-like growth factor 1; GH,

growth hormone; OGTT, oral glucose tolerance test; post-3m, postoperative

3 months; ML, machine learning; MRI, magnetic resonance imaging; pre-

rGH, preoperative random GH; pre-nGH, preoperative nadir GH; post-rGH,

postoperative random GH; post-nGH, postoperative nadir GH; MTD, maximal

tumor diameter; IHC, immunohistochemistry; KNN, k-nearest neighbor; LR,

logistic regression; GBDT, gradient boosting decision tree; XGBoost, extreme

gradient boost; AdaBoost, adaptive boosting; CatBoost, categorical boosting; RF,

random forest; RFE, recursive feature elimination; AUC, area under curve; ACC,

accuracy; PPV, positive predictive value; NPV, negative predictive value; PLR,

positive likelihood ratio; NLR, negative likelihood ratio; LIME, local interpretable

model–agnostic explanation; SHAP, SHapley Additive exPlanations; PDP, partial

correlation plot.

The combined analysis of multiple features may be more helpful
for clinical treatment decision-making (8, 9). Thus, compared
with a simple analysis of prognosis-related risk factors, it is
more conducive to clinical use to build a prediction model
with multiple important clinical features. As far as we know,
there have been no previous attempts to construct a prediction
model for delayed remission of acromegaly with multiple clinical
features. Therefore, the establishment of a more comprehensive,
effective, and widely used delayed remission prediction model
has important implications for the treatment of acromegaly
patients who have not achieved remission within 6 months
of surgery.

Machine learning (ML) is a subset of artificial intelligence
whereby knowledge and information are automatically acquired
by extracting patterns from large databases (10, 11). ML is
increasingly used in the medical community, particularly in
the field of oncology. Previous studies have demonstrated that
ML models can provide better accuracy and discrimination
for the prediction of prognoses for lung adenocarcinoma
(12) and breast cancer (13), chemoradiation therapy response
in rectal cancer (14), radiotherapy response for acromegaly
(15), surgical outcomes for head and neck cancer (16), and
diagnosis for leukemia (17). For sellar region tumors, ML
could be more effective for predicting a patient’s clinical
outcome and could provide better clinical decision support for
neuroendocrinologists and neurosurgeons (18).

However, to the best of our knowledge, there have been
no previous attempts to use ML algorithms to predict long-
term outcomes in patients with acromegaly. Hence, the aims
of the present study were to establish an ML model for
predicting delayed remission and to try to explain and
evaluate the interpretability of that ML model, with a view
to assist in the decision-making process regarding acromegaly
patients who have not achieved remission within 6 months
of surgery.

MATERIALS AND METHODS

Study Population
The present study was conducted with the participation
of acromegaly patients admitted to the Department of
Neurosurgery at the Peking Union Medical College Hospital
(PUMCH) between January 2000 and October 2017. As
shown in the Endocrine Society Clinical Practice Guideline
on acromegaly (3), the preoperative diagnostic criteria for
acromegaly are as follows: (1) adult patients with clinical
symptoms of acromegaly (3), (2) PA confirmed by pituitary
magnetic resonance imaging (MRI), and (3) preoperative IGF1
(pre-IGF1) values exceeding the upper limit of the age- and the
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gender-related reference range (19) and lack of suppression of
GH to <1.0 ng/ml following documented hyperglycemia during
an oral glucose load.

The inclusion criteria were as follows: (1) the acromegaly
patients had undergone initial TSS conducted by the same
experienced surgeons in the pituitary treatment group using
a microscope or an endoscope in our hospital, (2) PAs had
been confirmed by postoperative pathological examination, (3)
at 6 months following surgery, the patients who did not
meet the postoperative endocrine remission criteria [i.e., either
postoperative random GH (post-rGH) levels <1.0 ng/ml or
postoperative nadir GH (post-nGH) levels <0.4 ng/ml that were
associated with normal age- and gender-matched IGF1 levels]
(3, 4), (4) no history of radiotherapy or medical therapy following
TSS, and (5) the patients had endocrine follow-up data for more
than 18 months following TSS.

After screening, a total of 306 acromegaly patients were
eligible for inclusion in the study. They were randomly divided
into a training dataset (n = 244), which was used for model
construction, and a test dataset (n = 62), which was used for
model validation (i.e., a 4:1 ratio, respectively). This study was
approved by the ethical review committee of the PUMCH, and
the need for patients’ informed consent was waived.

Clinical Features
The following 18 relevant clinical features were collected: age,
gender, tumor size, Knosp grade (20), hypertension, fasting blood
glucose level, pre-rGH level, pre-IGF1 level, preoperative nadir
GH (pre-nGH) level, tumor texture, cavernous sinus invasion,
post-1w rGH level, post-1w IGF1 level, post-1w nGH level, Ki-67
level (<3 or ≥3%), post-6m rGH level, post-6m IGF1 level, and
post-6m nGH level. The tumor size and the Knosp grade were
determined using preoperative pituitary contrast-enhanced MRI
images (20, 21). The cavernous sinus invasion (22) and the tumor
texture (2) were determined by the surgeon during the operation.
The cavernous sinus invasion of tumors was considered to
be positive if the tumor extended the cavernous sinus and a
cavernous sinus defect was observed (23). Tumor that could be
suctioned out using an aspirator was considered as soft, while a
tumor that could not be suctioned out was considered as firm
(2). The Ki-67 index was defined by an immunohistochemistry
assay. The definition of delayed remission is that the acromegaly
patients do not meet the aforementioned endocrine remission
criteria within 6 months of surgery but achieve remission during
long-term follow-up (at least 18 months after surgery) without
additional postoperative treatment (5). The Pearson correlation
coefficient matrix between 18 clinical risk features and remission
outcomes is shown in Supplementary Figure 1.

Study Design and ML Algorithms
Before developing the ML prediction model based on the 18
clinical features mentioned above, we first supplemented the
missing values according to the k-nearest neighbor algorithm
(11, 24). The absence of clinical features cannot exceed 8%,
and patients with more than one missing value would be
excluded. The continuous data were normalized by z-score
normalization (25), and the categorical data were transformed

via one-hot encoding (26). To address the serious imbalance in
the number of patients with delayed and non-delayed remission,
we intend to synthesize new patient samples of delayed remission
using three commonly used resampling techniques in the
training dataset: the synthetic minority oversampling technique
(SMOTE), SMOTETomek, and SMOTEENN (27, 28). After
data resampling, the resampling technology used in the present
study was determined based on the specificity value in the ML
algorithm described below.

We used the following six representative supervised ML
algorithms for clinical feature screening and model construction
in the training dataset: logistic regression (LR), gradient boosting
decision tree (GBDT), adaptive boosting (AdaBoost), extreme
gradient boost (XGBoost), categorical boosting (CatBoost), and
random forest (RF) (23, 29). The detailed parameters of the six
algorithms are presented in Supplementary Table 1.

Feature Selection and Model Construction
The ML predictive models for delayed remission were developed
using the six algorithms on all included variables. We carried
out feature selection to remove invalid features containing
irrelevant or redundant information. The importance of each
feature was assessed using the recursive feature elimination (RFE)
algorithm, with all features being sorted according to their level
of importance. After the features had been sequentially reduced
in order of importance, the remaining features were introduced
into the corresponding ML algorithm.We calculated the receiver
operating characteristic (ROC) curves and the area under ROC
(AUC) values of models with different numbers of variables. For
each iteration, a random 5-fold cross-validation was performed
for training dataset based on the corresponding number of
clinical features. The experiment was repeated five times, and we
used a grid search approach to identify the optimal parameters
for each model in the training dataset (23).

We assessed the predictive performance according to the
AUC, accuracy (ACC), Youden’s index, and other measurement
indicators (30). By comparing the AUC values of the models
in the training dataset, we determined the model with the
best predictive performance and externally verified it in the
test dataset. DeLong test was used to compare the prediction
performance of the best ML model and the Knosp grade.

Model Interpretation
ML models usually have distinctive black box and
uninterpretable characteristics, which means that the function
between the features and the response is invisible to the
researcher (23, 31–33).

Permutation importance is an algorithm that calculates the
importance score of each feature variable of the dataset (34). The
permutation feature importance is defined as the decrease in a
model score when a single feature value is randomly shuffled (35).
This process breaks the relationship between features and goals,
so the decline in model scores indicates how much the model
depends on the feature. This technique benefits from the agnostic
nature of the model and can be calculated multiple times with
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TABLE 1 | Patients’ characteristics of the training and the test datasets.

Characteristic Total Training dataset Test dataset P-value

N 306 244 62

Age (mean ± SD, year) 37.69 ± 11.90 38.37 ± 11.35 35.03 ± 13.63 0.05

Gender

Female 162 129 33 0.96

Male 144 115 29

Tumor Size

Microadenoma 54 45 9 0.469

Macroadenoma 252 199 53

Knosp Grade

Grade 0 67 57 10 0.460

Grade 1 33 27 6

Grade 2 50 36 14

Grade 3 99 77 22

Grade 4 57 47 1o

Hypertension

No 199 155 44 0.272

Yes 107 89 18

Fasting Blood Glucose

Normal 119 94 25 0.234

Impaired glucose tolerance 109 92 17

Diabetes 78 58 20

Pre-rGH (ng/ml) 27.50 (9.05–66.00) 28.37 (9.80–67.35) 22.35 (8.20–63.20) 0.337

Pre-IGF-1 (ng/ml) 921.31 ± 277.81 918.67 ± 278.95 931.74 ± 275.30 0.741

Pre-nGH (ng/ml) 17.60 (6.10–38.83) 18.20 (6.40–39.83) 14.40 (5.20–34.78) 0.354

Cavernous Sinus Invasion

No 204 166 38 0.315

Yes 102 78 24

Tumor Texture

Soft 239 195 44 0.128

Firm 67 49 18

Ki-67 (%)

<3% 211 169 42 0.817

≥3% 95 75 20

Post-1w rGH (ng/ml) 3.99 (1.70–10.45) 4.20 (1.70–10.95) 3.40 (1.90–9.79) 0.845

Post-1w IGF-1 (ng/ml) 701.50 (559.25–908.00) 693.00 (554.75–893.5) 730.33 (561.78–969.25) 0.367

Post-1w nGH (ng/ml) 2.80 (1.10–6.65) 2.87 (1.09–6.74) 2.39 (1.14–6.90) 0.914

Post-6m rGH (ng/ml) 3.45 (1.80–8.10) 3.50 (1.65–7.95) 3.40 (1.98–8.60) 0.772

Post-6m IGF-1 (ng/ml) 524.50 (367.00–732.25) 535.70 (367.25–739.50) 499.00 (364.50–726.25) 0.772

Post-6m nGH (ng/ml) 1.99 (0.90–4.56) 1.99 (0.90–4.37) 1.99 (0.97–5.74) 0.541

Delayed Remission

No 251 198 53 0.427

Yes 55 46 9

SD, standard deviation; MTD, maximal tumor diameter; pre-, preoperative; rGH, random GH; nGH, nadir GH; post-1w, postoperative 1 week; post-6m, postoperative 6 months.

Continuous features consistent with a normal distribution were presented as mean ± standard deviation; otherwise, the median and the quartile are used. Chi-square or Fisher’s exact

test was used to compare the differences in categorical features.

different permutations of features. We used this widely adopted
method to calculate feature importance in our ML model.

We then introduced an explanation technique called local
interpretable model–agnostic explanation (LIME) (36), which
explains the predictions of any classifier in an interpretable

and faithful manner by learning an interpretable model locally
around the prediction. Intuitively, an explanation is a local linear
approximation of themodel’s behavior. It is more straightforward
to approximate it around the vicinity of a particular instance
when themodel is seen as a black box. LIME perturbs the instance
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TABLE 2 | Univariate analysis of the clinical characteristics of patients in the training and the test datasets.

Characteristic Training dataset (n = 244) P-value Test dataset (n = 62) P-value

Non-remission Delayed remission Non-remission Delayed remission

N

Age (mean ± SD, year) 37.62 ± 10.78 41.57 ± 13.19 0.033 35.17 ± 13.77 34.22 ± 13.56 0.849

Gender

Female 108 21 0.276 29 4 0.568

Male 90 25 24 5

Tumor Size

Microadenoma 29 16 0.002 8 1 0.754

Macroadenoma 169 30 45 8

Knosp Grade

Grade 0 38 19 0.000 8 2 0.453

Grade 1 17 10 4 2

Grade 2 28 8 12 2

Grade 3 71 6 19 3

Grade 4 44 3 10 0

Hypertension

No 132 23 0.034 39 5 0.271

Yes 66 23 14 4

Fasting Blood Glucose

Normal 78 16 0.454 22 3 0.876

Impaired glucose tolerance 71 21 14 3

Diabetes 49 9 17 3

Pre-rGH (ng/ml) 33.60 (12.07–77.55) 11.06 (4.48–30.70) 0.001 22.60 (8.20–65.65) 20.00 (10.35–26.35) 0.589

Pre-IGF-1 (ng/ml) 939.14 ± 253.71 830.52 ± 358.63 0.057 922.95 ± 274.32 983.56 ± 291.94 0.546

Pre-nGH (ng/ml) 20.45 (8.38–43.78) 9.43 (2.21–21.60) 0.001 14.40 (5.20–37.55) 14.40 (8.65–21.80) 0.920

Cavernous Sinus Invasion

No 129 37 0.045 31 7 0.272

Yes 69 9 22 2

Tumor Texture

Soft 156 39 0.361 36 8 0.200

Firm 42 7 17 1

Ki-67 (%)

<3% 130 39 0.011 36 6 0.941

≥3% 68 7 17 3

Post-1w rGH (ng/ml) 5.39 (2.18–14.85) 1.29 (0.78–2.23) 0.001 4.33 (2.30–10.10) 1.30 (1.10–2.65) 0.004

Post-1w IGF-1 (ng/ml) 756.81 ± 254.28 611.20 ± 251.13 0.001 738.66 (562.68–977.00) 704.00 (471.50–939.00) 0.478

Post-1w nGH (ng/ml) 3.91 (1.61–8.68) 0.83 (0.46–1.63) 0.000 2.92 (1.41–7.82) 1.06 (0.93–2.27) 0.033

Post-6m rGH (ng/ml) 4.50 (2.58–9.50) 1.05 (0.275–2.15) 0.000 3.70 (2.39–10.25) 0.90 (0.45–4.20) 0.033

Post-6m IGF-1 (ng/ml) 628.28 ± 248.67 332.63 ± 87.07 0.000 529.00 (379.00–782.00) 384.00 (286.00–391.50) 0.011

Post-6m nGH (ng/ml) 2.57 (1.33–5.09) 0.39 (0.12–1.02) 0.000 2.10 (1.33–6.45) 0.71 (0.24–2.41) 0.009

SD, standard deviation; MTD, maximal tumor diameter; pre-, preoperative; rGH, random GH; nGH, nadir GH; post-1w, postoperative 1 week; post-6m, postoperative 6 months.

Continuous features consistent with a normal distribution were presented as mean ± standard deviation; otherwise, the median and the quartile are used. Chi-square or Fisher’s exact

test was used to compare the differences in categorical features.

that used to be explained and learns a sparse linear model around
it as an explanation.

The SHapley Additive exPlanations (SHAP) approach is an
extension of LIME; feature weights are represented as SHapley
values from game theory. The SHAP approach has a high
potential for rationalizing the predictions made by complex ML
models (37). In the present study, we used the SHAP method to

observe the influence of each feature on the prediction results
during the prediction process applied to each sample.

Finally, we used a partial correlation plot (PDP) to show the
marginal effects of the most important features of the prediction
results from the best ML model (38). A PDP can show whether
the relationship between the target and a feature is linear,
monotonic, or more complex.
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Statistical Analysis
We used version 2.7 of the Python Programming Language
(Python Software Foundation,Wilmington, DE, USA) to develop
and evaluate these ML models. Independent-sample t-tests were
used to compare the differences in normal continuous features
and the performance of the different ML models, and Wilcoxon
test was used for non-normal continuous features.

RESULTS

Patient Characteristics
After screening, 306 acromegaly patients who had not achieved
the remission criteria within 6 months of surgery and had more
than 18 months of follow-up data were identified and included in
the study. The clinical characteristics of the patients (244 patients
in the training dataset and 62 patients in the test dataset) are
shown in Table 1. A total of 55 (17.97%) patients met the criteria
for delayed remission: 46 (18.85%) patients in the training dataset
and nine (14.52%) patients in the test dataset. We detected no
significant interclass differences in any of the 18 clinical features
between the training dataset and the test dataset (p= 0.05–0.914).
The results justify the use of the two datasets as training and
test datasets.

As shown in Table 2, both in the training and the test datasets,
five features (post-1w rGH, post-1w nGH, post-6m rGH, post-
6m IGF-1, and post-6m nGH) were significantly associated with
the delayed remission of acromegaly patients (p = 0.000–0.049).
Moreover, age, tumor size, Knosp grade, hypertension, pre-rGH,
pre-nGH, cavernous sinus invasion, andKi-67 index only showed
a significant relationship with delayed remission in the training
dataset, but there was no statistical difference in the validation
dataset. However, we found no significant differences in gender,
fasting blood glucose, pre-IGF-1, or tumor texture between the
delayed remission and non-delayed remission groups in both the
training and the test datasets (p= 0.057–0.454).

Patient Resampling, Feature Selection, and
Model Construction
The prediction model we build is geared to identify as many
patients with acromegaly as possible with delayed remission,
so the sensitivity of the model is particularly important. The
evaluation of three resampling methods in six ML algorithms
revealed that the SMOTEENNmethod had the highest sensitivity
values in all six ML models (Table 3). Therefore, we chose
the SMOTEENN algorithm as the most suitable resampling
method for the training dataset in the present study because it
was less susceptible to overfitting and had a higher prediction
performance than the other resampling methods.

The 18 available features in the training dataset were used
to build delayed remission prediction models based on six
ML algorithms. Through the process of RFE feature selection,
we determined the optimal feature numbers and AUCs of
each algorithm in the training dataset. The best predictive
performance was observed in LR (AUC = 0.9060), followed by
XGBoost (AUC = 0.8968), CatBoost (AUC = 0.8925), GBDT
(AUC = 0.8861), RF (AUC = 0.8647), and AdaBoost (AUC =

0.7313) in the training dataset (Figure 1A).

TABLE 3 | The performance of multiple resampling methods on the six

ML models.

Resampling

methods

SP of ML

LR

Adaboost GBDT XGBoost CatBoost RF

None 0.4444 0.6667 0.5556 0.6667 0.5556 0.4445

SMOTE 0.5556 0.6667 0.5556 0.5556 0.5556 0.5556

SMOTETomek 0.5556 0.6667 0.5556 0.5556 0.5556 0.4445

SMOTEENN 0.5556 0.6667 0.6667 0.7778 0.6667 0.5556

SP, specificity; ML, machine learning; LR, logistic regression; RF, random forest.

We then verified the performance of these models in the
test dataset and the AUC, ACC, sensitivity, and specificity of
each ML model in the test dataset, as shown in Table 4. The
results revealed that the prediction model with the highest AUC,
sensitivity, and Youden’s index was the XGboost model, based on
the top 15 important clinical features (AUC = 0.8349, sensitivity
= 0.8889, Youden’s index= 0.6842) in the test dataset. However,
we observed the highest values of ACC (0.7903) and specificity
(0.8302) when the LR model contained all 18 clinical features in
the test dataset (Figure 1B).

The results of the DeLong test suggested that the prediction
performance of the XGboost model was significantly better than
that of using only the Knosp grade in the training dataset (AUC=

0.7130) and the test dataset (AUC = 0.665). Finally, as described
above, according to the best sensitivity, we choose XGboost
model as our final prediction model.

Feature Importance
After the application of the classifier-specific feature evaluator
for the XGboost model, the included features were ranked based
on their information gain; the results of permutation importance
demonstrated that the top two risk features were post-6m IGF-1
and post-6m nGH (Figure 2A).

To further understand and get an overview on the importance
of the features, we implemented the SHAP algorithm, which
can identify and map clinical features to the molecular graphs
by increasing or decreasing the probability of the predicted
activities, thereby enabling the visualization of structural patterns
that determine predictions. The top two risk features were post-
6m IGF1 and post-6m rGH, as shown in Figures 2B, C; the lower
the values of the two features, the more likely the chance of
delayed remission.

Univariate and multivariate logistic regression analysis was
used to determine the independent clinical risk variables for
delayed remission. Similar to the previous results of SHAP, we
found a significant association between delayed remission and
post-6m IGF1 (OR = 0.991, 95% CI 0.987–0.995, p = 0.000),
which means that high post-6m IGF1 tends to achieve a lower
delayed remission ratio. Another significant predictor is post-
6m nGH; a lower post-6m rGH value is linked to a higher
delayed remission ratio (OR = 0.615, 95% CI 0.437–0.866,
p= 0.005) (Table 5).

Frontiers in Endocrinology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 643

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Dai et al. ML Models Predict Acromegaly DR

FIGURE 1 | Receiver operating characteristic curves showing the delayed remission predictive performance of six machine learning algorithms based on the selected

significant features in the training (A) and test (B) datasets. LR, logistic regression; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boost;

AdaBoost, adaptive boosting; CatBoost, categorical boosting.

TABLE 4 | The best performance of the six ML algorithms in the test dataset.

Algorithms LR Adaboost GBDT XGboost Catboost RF

Feature number 18 14 7 15 15 9

AUC 0.7945 0.7013 0.8061 0.8260 0.8239 0.7338

Threshold 0.00008 1 0.9997 0.6041 0.2743 0.9

Youden index 0.3858 0.4025 0.4759 0.6436 0.4025 0.3292

ACC 0.7903 0.7258 0.7097 0.7742 0.7258 0.7419

Specificity 0.8302 0.7358 0.6981 0.7547 0.7358 0.7736

Sensitivity 0.5556 0.6667 0.7778 0.8889 0.6667 0.5556

PPV 0.3571 0.3 0.3043 0.381 0.3 0.2941

NPV 0.9167 0.9286 0.9487 0.9756 0.9286 0.9111

PLR 3.2716 2.5238 2.5764 3.6239 2.5238 2.4537

NLR 0.5354 0.453 0.3183 0.1472 0.453 0.5745

LR, logistic regression; RF, random forest; AUC, area under the curve; ACC, accuracy;

PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio;

NLR, negative likelihood ratio.

Model Interpretation
We used LIME to investigate the feature contributions of each
prediction. First, in the test dataset, we presented two patients
that had been correctly predicted by the XGBoost prediction
models. Usually, the interpretations generated by correctly
predicted patients are intuitive and clear: patient 1 from the
“true positive” group was correctly predicted as having a high
probability of delayed remission (Figure 3A), and patient 2 from
the “true negative” group was correctly predicted as having a low
probability of delayed remission (Figure 3B).

In Figure 3A, XGboost predicts a 100% probability of delayed
remission in patient 1, and the prediction is mainly based on

post-6m IGF1= 392.00 ng/ml, post-6m rGH= 0.3< 0.85 ng/ml,
and post-3m nGH = 0.24 < 0.28 ng/ml. We found delayed
remission in patient 1 during follow-up, and the XGBoost
model accurately predicted delayed remission in patient 1. After
follow-up, patient 2 did not achieve delayed remission, and
XGBoost predicted a 99% probability of non-delayed remission
(Figure 3B). According to the data for patient 2, post-6m IGF1=
500.00 > 412.00 ng/ml, Knosp grade= 4 > 3, and post-6m nGH
> 1.12, which contribute to the negative prediction.

An understanding of the reason behind the incorrect
interpretation of the model prediction will increase the clinicians’
trust in model behavior and performance. After checking, the
XGboost model was correct in predicting all patients with
delayed remission in the test dataset. Therefore, we presented a
patient 3 with “false positive” predictions (non-delayed remission
patient, incorrectly predicted with high probabilities of delayed
remission) by the XGBoost model (Figure 3C). The results
showed that post-6m IGF1, post-6m nGH, post-1w nGH, and
pre-1rGH were the most influential features that caused the
prediction error in the XGboost model.

Partial Correlation Plot
We fitted an XGBoost model to predict delayed remission and
used PDP to visualize the relationships learned by the model.
The influence and the marginal effect of post-6m IGF1 and post-
6m rGH—the two most important features of the model—on
the predicted delayed remission are presented in Figure 4. The
results showed that, as the values continued to increase, the
effect of post-6m IGF1 and post-6m rGH on the model gradually
increased: the higher the value of post-6m IGF1 or post-6m rGH,
the lower the delayed remission probability. However, when the
value of post-6m IGF1increased above 510 ng/ml (Figure 4A) or
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FIGURE 2 | Feature importance ranking based on permutation importance (A) and SHapley Additive exPlanations (SHAP) values (B,C) in XGboost model. (A) The

features are ranked based on the permutation importance method in the XGboost model. (B) The features are ranked according to the sum of the SHAP values for all

patients, and the SHAP values are used to show the distribution of the effect of each feature on the XGboost model outputs. Red indicates that the value of a feature

is high, and blue indicates that the value of a feature is low. The x-axis indicates the effect of SHAP values on the model output. The larger the value of the x-axis, the

greater the probability of delayed remission. (C) Standard bar charts were drawn and sorted using the average absolute value of the shape values of each feature in

the XGboost model.

the value of post-6m rGH increased above 7.0 ng/ml (Figure 4B),
the effect tended to remain constant. These results make sense
in the context of the clinical prediction of delayed remission and
support the reliability of our prediction models.

DISCUSSION

In the present study, we developed and validated six ML
models for predicting whether acromegaly patients who had not
achieved remission in 6 months after TSS would experience
delayed remission in long-term follow-up. The XGboost model

demonstrated favorable performance as an effective non-
invasive tool for determining individual treatment strategies for
acromegaly patients.

As already mentioned, according to the current endocrine
guidelines, it is customary to judge a patient’s surgical response
on whether they will achieve endocrine remission within at least
3 months after surgery (3). Patients who have not been cured by
surgery usually require further postoperative treatment to control
the symptoms and the progression of acromegaly (39). However,
some acromegaly patients experience delayed remission without
adjuvant postoperative therapy during long-term follow-up (5).
The underlying mechanism of delayed remission in acromegaly

Frontiers in Endocrinology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 643

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Dai et al. ML Models Predict Acromegaly DR

TABLE 5 | Univariate and multivariate analyses measure the correlation between the clinical features and the delayed remission.

Variable Univariate analysis Multivariate analysis

Odds ratio (OR) 95% CI p-value OR 95% CI p-value

Age 1.023 0.998–1.049 0.067

Gender 1.442 0.803–2.591 0.221

Tumor size 0.386 0.198–0.755 0.005 0.539 0.189–1.535 0.247

Knosp grade 0.592 0.476–0.736 0.000 0.725 0.522–1.029 0.072

Hypertension 2.061 1.141–3.724 0.017 1.674 0.714–3.925 0.236

Fasting blood glucose 1.013 0.701–1.465 0.945

Pre-rGH (ng/ml) 0.991 0.984–0.998 0.018 1.005 0.974–1.037 0.771

Pre-IGF-1(ng/ml) 0.999 0.998–1.000 0.054

Pre-nGH (ng/ml) 0.989 0.978–0.999 0.036 1.016 0.974–1.037 0.473

Cavernous sinus invasion 0.44 0.216–0.893 0.023 0.814 0.272–2.438 0.713

Tumor texture 0.554 0.248–1.238 0.150

Ki-67 (%) 0.434 0.208–0.904 0.026 0.605 0.213–1.720 0.346

Post-1w rGH (ng/ml) 0.917 0.863–0.973 0.004 1.031 0.839–1.267 0.771

Post-1w IGF-1 (ng/ml) 0.998 0.996–0.999 0.001 1.000 0.998–1.002 0.661

Post-1w nGH (ng/ml) 0.903 0.837–0.974 0.008 1.003 0.762–1.320 0.985

Post-6m rGH (ng/ml) 0.488 0.379–0.627 0.000 0.615 0.437–0.866 0.005

Post-6m IGF-1 (ng/ml) 0.991 0.988–0.994 0.000 0.991 0.987–0.995 0.000

Post-6m nGH (ng/ml) 0.249 0.155–0.400 0.000 0.54 0.285–1.022 0.058

after TSS remains unclear. One possible hypothesis for delayed
remission is that it takes longer than expected for IGF1 levels to
return to normal (7). Another hypothesis is that there are still
some residual GH-secreting tumor cells after pituitary adenoma
resection. Although the GH level is decreased after the operation,
it is still higher than the normal range, so the patients cannot
reach the remission standard in the short time after the operation.
However, because the previous operation destroyed the blood
supply of tumor cells, resulting in tumor cell ischemia and
necrosis, the secretion level of GH gradually decreased, and
then these patients eventually found in long-term follow-up that
delayed remission was achieved without postoperative adjuvant
treatment (5). Delayed remission may affect a doctor’s ability to
judge the surgical response and to determine whether the patient
requires postoperative adjuvant therapy. Therefore, the accurate
identification of delayed remission in short-term “unremission”
acromegaly patients can be helpful with regard to decisions on
long-term follow-up and treatment strategies.

Previous studies have focused on the retrospective analysis of
clinical risk factors and their associations with delayed remission.
Wang et al. found that the values of Knosp grade, post-1w
rGH, post-1w nGH, post-3m rGH, post-3m IGF1, and post-
3m nGH differed significantly between a delayed remission
group and a persistent non-remission group (5). Shen et al.
found that post-3m IGF1 can be used as a predictor of delayed
remission in long-term follow-up (6). The two studies (5, 6) used
3 months as the observation time for postoperative remission,
which was too short. Moreover, it is generally believed that a
prognosis should not be determined by only one risk factor
and that the combined analysis of multiple features is more
valuable (40). To date, many studies have demonstrated that

the ML approach provides more accurate predictive power than
conventional methods with regard to the diagnosis, treatment,
and prognosis of saddle region diseases (18) and multiple tumors
(12, 41, 42). However, no predictive models for delayed remission
in acromegaly patients have been developed. Therefore, in
the present study, we retrospectively included 306 acromegaly
patients who had not met the remission criteria within 6 months
of surgery and established six delayed remission ML prediction
models based on 18 clinical features. The six models maintained
high performance, with AUCs ranging from 0.7013 to 0.8260
and ACCs ranging from 0.7097 to 0.7903 in the test dataset.
The multiple clinical risk features prediction model with the
highest AUC, sensitivity, and Youden’s index was XGboost,
and the prediction performance of the XGboost model was
significantly better than that of using only the Knosp grade. The
XGboost model showed the best predictive performance and was
determined to be the final model used for this study and for
clinical use.

Our research has some advantages. First, as with the results
of previous studies, the ratio of patients with delayed remission
to those with persistent non-remission was 55:251, which
demonstrates a significant data imbalance in our data. When
performing ML on unbalanced datasets, a small number of
samples may not be detected, resulting in learning failure (43).
The SMOTE technique can generate a minority class within
overlapping areas and is a promising method for dealing with
imbalanced datasets. Previous research has demonstrated that
SMOTE can also help solve the problem of dataset imbalance
in the medical field, such as in the context of type 2 diabetes
prediction (44) and lung nodule recognition (45). In the present
study, for the patients in theminority class (the delayed remission
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FIGURE 3 | Results of local interpretable model–agnostic explanation (LIME) with XGBoost classifiers applied to two correctly predicted patients [one negative

(non-delayed remission) and one positive (delayed remission) patient)] and one incorrectly predicted patient (non-delayed remission patient, incorrectly predicted with

high probabilities of delayed remission). The figure reveals the role of various features in the incidence of delayed remission in each patient. The first column represents

the prediction probabilities of negative and positive results achieved from the classifiers. The second column shows the contributions made by the features included in

the models to the probability. The third column displays the original data values of these features. (A) LIME explanation for patient 1 as true positive, (B) LIME

explanation for patient 2 as true negative, and (C) LIME explanation for patient 3 as false positive.

group), the SMOTE algorithm was able to find k samples (usually
five) closest in distance to the minority sample. The distance
between the minority sample and its nearest five neighbors was
obtained from the standard Euclidean distance. As demonstrated
by Ramezankhani et al. (44), synthetic new samples are

generated according to the variables and the distance between
a minority sample and its nearest neighbor. SMOTEENN and
SMOTETomek are new methods derived from SMOTE and
aim to eliminate the potentially poor-quality samples generated
by SMOTE (27, 28, 46). These generated patients are created
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FIGURE 4 | Partial correlation plot of delayed remission probability based on post-6m IGF1 (A) and post-6m rGH (B) in the XGBoost model. The y-axis represents the

predicted probability compared with the baseline, and the x-axis represents the value of post-6m IGF1or post-6m rGH. The blue areas represent confidence intervals.

based on the characteristics of the original dataset, so they are
similar to the original patients in the minority class (the delayed
remission group) (47). Based on the evaluation of these three
resampling methods of the six ML algorithms, we confirmed
that SMOTEENN was the most suitable method for the data in
our study.

Second, one disadvantage of ML is that it is considered as a
“black box” without a transparent interpretation of the learning

process or the outputs, and the function between the clinical
features and the response is invisible to the doctor (48). However,
it is necessary for doctors to understand the reasons for the
ML models to make such predictions in clinical settings and to
provide expert knowledge-based validation for the interpretation
of ML model outputs. Therefore, in the present study, we first
introduced SHAP—a conceptual new agnostic interpretation
method—to explain the output-delayed remission prediction
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ML models. Before SHAP was widely used, researchers often
used feature importance or partial dependence plots to explain
the ML model. However, although these methods reveal the
contribution made by their features to the predictive ability of
the model, it is impossible to judge whether the influence of
these features on the final forecast is positive or negative. In
2017, Lundberg and Lee proposed the wide application of the
SHAP method to explain various complex models (including
the black box model). SHAP connects game theory with local
explanations, uniting several previous methods, and representing
the possible consistent and locally accurate additive feature
attribution method based on expectations (49). Compared with
conventional feature importance, SHAP has the following two
advantages: First, it solves the problem of multicollinearity: it
considers not only the influence of a single feature but also
the synergy between features. Second, it clarifies whether the
influence of a feature is positive or negative. In the present
research, we used SHAP to explain why the XGboost model
exhibited the best performance and found that the top two risk
features were post-6m IGF1 and post-6m rGH; the lower the
values of these two features, the greater the likelihood of delayed
remission. This result is consistent with clinical cognition and
the results from previous studies (5, 6) and clinical practice
and further verifies the reliability of the XGboost model. It also
demonstrated that the hormone level within 1 week after surgery
has poor performance in predicting the long-term prognosis of
patients with acromegaly, and the hormone level at 6 months
after surgery can play a more important role.

Moreover, it is well-known that explaining the prediction of
the black box ML model has become a key issue and is gaining
momentum. In particular, achieving the best performance of
ML models is not the only focus of data scientists. People
are increasingly concerned about the need to explain the
predictions of black-box ML models at the global and the local
levels (50). Therefore, we introduced a technique called LIME
(51), which explains the predictions of any classifier in an
interpretable and faithful manner by learning an interpretable
model locally around the prediction. Intuitively, an explanation
is a local linear approximation of the model’s behavior. It is
more straightforward to approximate it around the vicinity of
a particular instance when the model is seen as a black box.
LIME perturbs the instance that used to be explained and
learns a sparse linear model around it as an explanation. In
the present study, we used the LIME technique to clarify the
explanations produced by two correctly predicted patients and
to understand the causes and the explanations of the model’s
incorrect prediction, which will greatly increase a clinician’s
trust in model behavior and performance. Finally, PDP was
used to explain the marginal effects of post-6m IGF1 and post-
6m rGH, the two most important features of the XGBoost
model. This makes sense in the context of the clinical prediction
of delayed remission and helps to confirm the reliability of
our prediction models. Furthermore, compared with a simple
correlation analysis between clinical factors and prognosis, our
ML model has the ability to discover and integrate clinical
features that are meaningful for prognosis and can give specific
prognostic probability values.

The present study also has some limitations. First, this is a
single-center retrospective study involving a small number of
patients, so more patients from multiple sources are required
to validate the robustness and the repeatability of our model.
Second, prospective studies are needed to help confirm the
reliability of our model. Third, the follow-up period (at
least 18 months post-operation) was relatively short. Because
patients who have not achieved remission for a long time
after surgery usually undergo adjuvant therapy and therefore
would not meet the inclusion criteria of the present study and
because ML algorithms need a relatively large sample size to
avoid overfitting, we decided to evaluate patients who were
followed up for ≥18 months to obtain a larger sample. Finally,
in future studies, clinical ML models should be combined
with radiomics to build a more comprehensive and accurate
predictive model.

CONCLUSION

In conclusion, it is feasible to use ML-based model to predict
delayed remission or persistent active disease in patients with
acromegaly whose remission status is uncertain. The use of
ML model containing multiple clinical features can serve as an
effective non-invasive approach to predict delayed remission and
could aid in determining individual treatment and follow-up
strategies for acromegaly patients who have not achieved
remission within 6 months of surgery.
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