
Frontiers in Endocrinology | www.frontiersi

Edited by:
Jeff M. P. Holly,

University of Bristol, United Kingdom

Reviewed by:
Charles Alfred Stanley,

Children’s Hospital of Philadelphia,
United States

Hana Zemkova,
Institute of Physiology (ASCR),

Czechia

*Correspondence:
Peter Krippeit-Drews

peter.krippeit-drews@uni-
tuebingen.de

Specialty section:
This article was submitted to

Cellular Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 25 March 2020
Accepted: 02 October 2020
Published: 27 October 2020

Citation:
Sikimic J, Hoffmeister T, Gresch A,

Kaiser J, Barthlen W, Wolke C,
Wieland I, Lendeckel U,

Krippeit-Drews P, Düfer M
and Drews G (2020) Possible New

Strategies for the Treatment of
Congenital Hyperinsulinism.

Front. Endocrinol. 11:545638.
doi: 10.3389/fendo.2020.545638

ORIGINAL RESEARCH
published: 27 October 2020

doi: 10.3389/fendo.2020.545638
Possible New Strategies for
the Treatment of Congenital
Hyperinsulinism
Jelena Sikimic1, Theresa Hoffmeister2, Anne Gresch2, Julia Kaiser1, Winfried Barthlen3,
Carmen Wolke4, Ilse Wieland5, Uwe Lendeckel4, Peter Krippeit-Drews1*, Martina Düfer2

and Gisela Drews1

1 Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany, 2 Department of
Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany, 3 Department
of Pediatric Surgery, University Medicine Greifswald, Greifswald, Germany, 4 Institute of Medical Biochemistry and Molecular
Biology, University Medicine Greifswald, Greifswald, Germany, 5 Institute of Human Genetics, University Hospital Magdeburg,
Magdeburg, Germany

Objective: Congenital hyperinsulinism (CHI) is a rare disease characterized by persistent
hypoglycemia as a result of inappropriate insulin secretion, which can lead to irreversible
neurological defects in infants. Poor efficacy and strong adverse effects of the current
medications impede successful treatment. The aim of the study was to investigate new
approaches to silence b-cells and thus attenuate insulin secretion.

Research Design and Methods: In the scope of our research, we tested substances
more selective and more potent than the gold standard diazoxide that also interact with
neuroendocrine ATP-sensitive K+ (KATP) channels. Additionally, KATP channel-independent
targets as Ca2+-activated K+ channels of intermediate conductance (KCa3.1) and L-type Ca2+

channels were investigated. Experiments were performed using human islet cell clusters
isolated from tissue of CHI patients (histologically classified as pathological) and islet cell
clusters obtained from C57BL/6N (WT) or SUR1 knockout (SUR1-/-) mice. The cytosolic Ca2+

concentration ([Ca2+]c) was used as a parameter for the pathway regulated by electrical
activity and was determined by fura-2 fluorescence. The mitochondrial membrane potential
(DY) was determined by rhodamine 123 fluorescence and single channel currents were
measured by the patch-clamp technique.

Results: The selective KATP channel opener NN414 (5 µM) diminished [Ca2+]c in isolated
human CHI islet cell clusters and WT mouse islet cell clusters stimulated with 10 mM
glucose. In islet cell clusters lacking functional KATP channels (SUR1-/-) the drug was
without effect. VU0071063 (30 µM), another KATP channel opener considered to be
selective, lowered [Ca2+]c in human CHI islet cell clusters. The compound was also
effective in islet cell clusters from SUR1-/- mice, showing that [Ca2+]c is influenced by
additional effects besides KATP channels. Contrasting to NN414, the drug depolarized DY
in murine islet cell clusters pointing to severe interference with mitochondrial metabolism.
An opener of KCa3.1 channels, DCEBIO (100 µM), significantly decreased [Ca2+]c in
SUR1-/- and human CHI islet cell clusters. To target L-type Ca2+ channels we tested two
n.org October 2020 | Volume 11 | Article 5456381
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already approved drugs, dextromethorphan (DXM) and simvastatin. DXM (100 µM)
efficiently diminished [Ca2+]c in stimulated human CHI islet cell clusters as well as in
stimulated SUR1-/- islet cell clusters. Similar effects on [Ca2+]c were observed in
experiments with simvastatin (7.2 µM).

Conclusions: NN414 seems to provide a good alternative to the currently used KATP

channel opener diazoxide. Targeting KCa3.1 channels by channel openers or L-type Ca2+

channels by DXM or simvastatin might be valuable approaches for treatment of CHI
caused by mutations of KATP channels not sensitive to KATP channel openers.
Keywords: congenital hyperinsulinism, KATP channels, diazoxide, NN414, L-type Ca2+ channels, KCa3.1 channels
INTRODUCTION

Congenital hyperinsulinism (CHI) is a rare heterogeneous
genetic disorder, but the most frequent cause of severe,
persistent hypoglycemia in neonates, infants and children. The
main reasons for developing CHI are defects in important genes
regulating pancreatic b-cell function. To date, mutations in 14
essential genes controlling insulin secretion have been reported
including ABCC8 and KCNJ11. ABCC8 and KCNJ11 genes
encode the KATP channel subunits SUR1 and Kir6.2,
respectively, and mutations in these genes represent the most
prevalent cause of CHI. Defects in these genes are responsible for
the failure of b-cells to respond to normal regulatory
mechanisms, leading to inappropriate and excessive insulin
release despite low blood glucose concentrations resulting in
frequent episodes of hypoglycemia (1, 2). There are some
excellent reviews giving detailed information about molecular
mechanisms underlying the pathophysiology of CHI (1–5).

Based on histopathological observations, three distinct forms
of CHI are described: focal, diffuse and atypical. In focal CHI
affected b-cells are localized only in small specific parts of the
pancreas. Conversely, in diffuse CHI all pancreatic b-cells seem
to be affected (6). If the histology of the tissue does not fit in one
of the forms, it is regarded as an atypical form of CHI. It is
characterized by a mosaic-like assembly of hyper-functional
islets spread over the pancreas (7).

Persistent hypoglycemia is responsible for seizures and finally
for severe brain damage (8). Thus, it is necessary to diagnose CHI
rapidly and to start as early as possible with a suitable treatment.
Treatment options include medical therapy and surgical
intervention (9). First-line drug for treating CHI is the KATP

channel agonist diazoxide (10). However, numerous side effects
of diazoxide limit its use. Some of the most common undesired
effects are Na+ and fluid retention, hypertrichosis and loss of
appetite. Life threatening side effects also occur including cardiac
failure, pulmonary hypertension, hyperuricemia, bone marrow
suppression, and anemia (11–16). Additionally, diazoxide is only
effective when KATP channels are functional (10). Alternatives to
the therapy with diazoxide and novel medications include
glucagon, somatostatin analogues, nifedipine, GLP1-receptor
antagonists [exendin-(9–39)], and sirolimus [ (17–22),
reviewed in (3)]. Many of these drugs act by lowering the Ca2+

influx into b-cells (23–25). The aforementioned drugs also have
n.org 2
numerous undesirable effects, which may be a reason for
reconsidering their therapeutic usefulness: gastrointestinal
symptoms, formation of gall stones, suppression of pituitary
hormones, necrotizing enterocolitis, hypotension, immune
suppression, thrombocytosis, impaired immune response, and
many more (26–31). Recently, a new full human monoclonal
antibody to the insulin receptor XMetD (also known as XOMA
358 or RZ358) has been proposed as a novel therapeutic strategy
(32–35). First results in a Phase 2a clinical trial exhibited an
improved glycemic control in patients with persistent
hypoglycemia (36).

In patients that cannot be treated sufficiently with drugs,
surgical treatment is indicated. While partial pancreatectomy is
beneficial for patients with focal CHI (37, 38), in case of diffuse
and drug-unresponsive CHI, near-total pancreatectomy is
usually required (39, 40). Due to different post-operative
complications like recurrent hypoglycemia, pancreatic exocrine
insufficiency and diabetes, patients with diffuse CHI are far from
being cured after surgery (41, 42). In order to reduce the
development of diabetes postsurgically, a 70 to 90% resection
of pancreas have been considered; however, the outcome is still
unpredictable (39, 43).

Taken together, it is of great importance to explore new
pharmacological options for CHI therapy in order to maintain
euglycemia and reduce severe side effects from current medical
and surgical treatment. Aim of this study was to find new
strategies, which are able to silence b-cells by inhibiting
extensive Ca2+ influx into the cell. For this purpose, new and
approved drugs interacting with KATP channels and with KATP

channel-independent targets have been tested on islet cell
clusters obtained from biopsies of CHI patients and islet cell
clusters from WT and SUR1-/- mice.
MATERIALS AND METHODS

Cell and Islet Preparation
Human islets of Langerhans were obtained from different
biopsies of children undergoing pancreatic surgery. Ethics
approval for the study involving human participants was
approved by the ethic commission of the Universitätsmedizin
Greifswald (BB 050/13). Written informed consent was provided
by the legal guardians of the children for the study. The islets
October 2020 | Volume 11 | Article 545638
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were taken from biopsies of eight CHI patients. Genetic studies
showed that seven patients had mutations in the ABCC8 gene
encoding the SUR1 subunit of KATP channels. In one biopsy no
mutation was found for eight genes tested (Table 1: 2).
According to postsurgical evaluation of the biopsies by the
Department of Pathology at the University Hospital
Greifswald, the tissue was identified as pathological and
assigned to the CHI type (mosaic, diffuse or focal). Islets of
these pathological samples were isolated by injecting collagenase
(2–4 mg/ml) into the biopsy material and by handpicking islets
after digestion at 37°C. Afterward, islets were cultured in a
CMRL 1066 medium with 5.5 mM glucose supplemented with
10% fetal calf serum, 100 U/ml of penicillin, 100 mg/ml of
streptomycin, 10 mM HEPES, and 2 mM L-glutamine. Next day,
the samples were shipped to Tübingen and/or Münster for
further analysis.

Mouse islets of Langerhans were isolated from adult C57BL/
6N (WT) mice or SUR1 knockout (SUR1-/-) mice on a C57BL/
6N background. The mice were bred in the animal facility of the
Department of Pharmacology at the University of Tübingen. The
principles of laboratory animal care (NIH publication no. 85-23,
revised 1985) and German laws were followed. The animal study
was reviewed and approved by the Regierungspräsidium
Tübingen (§ 4 Abs. 3 TierSchG). Islets were isolated and
cultured as previously described (58).
Frontiers in Endocrinology | www.frontiersin.org 3
For experiments, human or mouse islet cell clusters of similar
size were used, obtained by dispersing islets by trypsin treatment.
Human and mouse islet cell clusters were kept in cell culture up
to 3 days.

Solutions and Chemicals
Measurements of [Ca2+]c were performed with a bath solution,
which contained (in mM): 140 NaCl, 5 KCl, 1.2 MgCl2, 2.5
CaCl2, 10 HEPES and glucose as indicated, pH 7.4 adjusted with
NaOH. The same bath solution was used for the determination
of the mitochondrial membrane potential (DY). The pipette
solution for single channel recording contained (in mM): 130
KCl, 1.2 MgCl2, 2 CaCl2, 10 EGTA, and 10 HEPES; pH was
adjusted to 7.4 with KOH. The bath solution contained (in mM):
130 KCl, 2 CaCl2, 10 EGTA, 1 Na2ATP, 1.7 MgCl2, and 20
HEPES with pH adjusted to 7.2 with KOH.

NN414, diazoxide and simvastatin were obtained from
Sigma-Aldrich (Schnelldorf, Germany). DCEBIO was either
purchased from Tocris Bioscience (Bristol, United Kingdom)
or Santa Cruz (Heidelberg, Germany), fura-2-AM from Biotrend
(Köln, Germany), and dextromethorphan (DXM) from Alfa
Aesar (Kandel, Germany). Rhodamine 123 (Rh123), RPMI
1640 medium, CMRL 1066 medium, Dulbecco's modified
Eagle's medium, fetal calf serum (FCS), penicillin/streptomycin,
glutamine, and trypsin were from Invitrogen (Karlsruhe,
TABLE 1 | Genetic characteristics of patients.

Pat.
No.

Age at
surgery
(months)

Gene Nucleotide
position

Protein effect Mutation
type

Gene Zygosity Inheritance Diazoxide
response
(literature)

Diazoxide
response
(individual
clinical
data)

Form Reference

1 1-6 ABCC8 c.4435G >
A

p.(Gly1479Arg) missense exon
37

heterozygote dom/
paternal

(yes) partial mosaic Nichols et al. (44);
Pinney et al. (45);
Sandal et al. (46);
Kapoor et al. (47);
Snider et al. (48)

2 12-24 None* N/A N/A N/A N/A N/A N/A N/A partial diffuse N/A
3 6-12 ABCC8 c.3992-

9G>A
p.0 splicing intron

32
heterozygote rec/paternal (no) partial focal Nestorowicz et al. (49);

Nestorowicz et al.
(50); Arya et al. (51)

4 6-12 ABCC8 c.3970G>T p.(Glu1324*) nonsense exon
32

heterozygote rec/paternal N/A partial focal De Franco et al. (52)

5 6-12 ABCC8 c.2509C>T p.(Arg837*) nonsense exon
21

hetreozygote rec/paternal no no focal Craig et al. (53);
Park et al. (54);
Kapoor et al. (55);
Craigie et al. (53);
Snider et al. (48)

6 24-36 ABCC8 c.1176G>C p.(Gln392His)
p.?

missense
/ splicing

exon
7

homozygote rec/bi-
parental

partial N/A diffuse Ince et al. (56);
Corda et al. (57)

7 12-24 ABCC8 c.1183 A>T
c.4146T>G

p.(Ile395Phe)
p.(Ser1382Arg)

missense exon
8
exon
34

compound
heterozygote

maternal /
de novo

(yes) no diffuse De Franco et al. (52);
ClinVar** ID265990

8 1-6 ABCC8 N/A N/A N/A N/A N/A suspected
paternal

N/A no focal N/A
October 2020
 | Volum
*No mutation was found in 8 CHI genes; **National Center for Biotechnology Information. ClinVar; [VCV000265990.1], https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000265990.1
(accessed July 12, 2020).
The diazoxide response column indicates the response to diazoxide according to literature and brackets are used to note on exceptions.
N/A, not available; dom, dominant; rec, recessive.
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Germany). Collagenase used for human biopsy material was
obtained from Roche Diagnostics GmbH (Mannheim,
Germany). All other chemicals were obtained from Sigma-
Aldrich or Carl Roth (Karlsruhe, Germany) in the purest
form available.

Measurements of [Ca2+]c
Details are described in (58). In brief, islet cell clusters were
loaded with 5 µM fura-2-AM for 30-35 min at 37°C. The cells
were perifused with bath solution with the indicated test
substances. Fluorescence was excited at 340 and 380 nm,
emission was filtered (LP515) and measured by a digital
camera. Cytosolic Ca2+ concentration was measured as the
ratio of the fluorescence intensities (F340/F380) of the emitted
light excited with 340 nm and 380 nm. A ratio, i.e., one data
point, was measured every 3 s. Ca2+ in glucose-activated beta
cells oscillates between a basal and a maximal concentration.
Decisive for insulin secretion is the mean Ca2+ concentration.
Therefore, the data points were averaged 5–8 min before the end
of a maneuver, to compare [Ca2+]c under different
experimental conditions.

Measurements of the Mitochondrial
Membrane Potential (DY)
DY was measured by Rh123 fluorescence at 480 nm excitation
wavelength as described in (59). One data point was measured
every 3 s. The effects were evaluated by averaging the values of
the last 60 s of each interval before solution change. At the end of
each experiment FCCP (0.5 µM) was added to evaluate maximal
mitochondrial depolarization. Rh123 fluorescence corresponds
to the proton gradient across the inner mitochondrial membrane
and thus to ATP production. A decrease in fluorescence indicates
a hyperpolarization and an increase in ATP production and
vice versa.

Patch-clamp recordings
Hamster cDNA encoding for the SUR1E1507K protein together
with WT human cDNA for Kir6.2 was expressed in a stably
transfected HEK-293 cell line (60). Cells were cultured in
Dulbecco’s modified Eagle’s medium supplemented with 10%
FCS, glutamine, 100 U/ml of penicillin, and 100 mg/ml of
streptomycin. Expression was induced by addition of
doxycycline (300 µM) and cells were used for characterization
of channel activity from 24 to 72 h.

Patch-clamp recordings were done in the inside-out
configuration. KATP currents were measured at a membrane
potential of -50 mV (pipette voltage, +50 mV); inward
currents are shown as downward deflections. Patch pipettes
had a resistance of 6–8 MW. Currents were recorded with an
EPC-9 patch-clamp amplifier using Patchmaster software
(HEKA, Lambrecht, Germany). Analyses to estimate mean
current were done offline in IgorPro 7 (Wavemetrics, Inc.,
Lake Oswego, OR). With diazoxide or NN414 so many
channels open simultaneously that a single channel evaluation
of open probability (Po) was not possible. We therefore evaluated
the mean current for 20 s before the end of a maneuver.
Frontiers in Endocrinology | www.frontiersin.org 4
Statistics
Each series of experiments with islet cell clusters from mice was
performed with at least three independent mouse preparations.
The number of preparations for recordings with human islet cell
clusters varied and is indicated for every series. Box plots were
generated using Graphpad Prism 8. Boxes correspond to the
interquartile range, the line within the box to the median, and the
cross to the mean. Whiskers correspond to the maximum and
minimum values. Statistical significance of differences was
assessed by Student’s t test. Multiple comparisons were made
by ANOVA followed by Student-Newman-Keuls test. P values ≤
0.05 were considered significant.
RESULTS

Effects of Nifedipine on the Cytosolic Ca2+

Concentration in Human Islet Cell Clusters
Oscillations of the cytosolic Ca2+ concentration ([Ca2+]c) are
driven by fluctuations of the membrane potential and [Ca2+]c is
the trigger signal for insulin secretion. Consequently, [Ca2+]c is a
very robust surrogate parameter for insulin secretion. It can be
determined easily and online with few cell material, which is an
enormous advantage when working with human tissue. Glucose-
stimulated insulin secretion in human pancreatic b-cells is
completely suppressed by pharmacologic blockage of L-type
Ca2+ channels (61). This mechanism should also be functional
in CHI islet cells. Thus, as control we tested the effect of the L-
type Ca2+ channel blocker nifedipine on [Ca2+]c in human islet
cell clusters isolated from tissue of a patient with diffuse CHI
(Table 1: 7). Figure 1A presents a recording with fast oscillations
of [Ca2+]c on top of a plateau in the presence of a stimulating
glucose concentration of 10 mM. The addition of nifedipine at a
concentration of 5 µM diminished [Ca2+]c significantly
(Figure 1B).

KATP Channel Openers
Effects of Diazoxide on [Ca2+]c of Human
Islet Cell Clusters
KATP channels (SUR1/Kir6.2) of pancreatic b-cells play a crucial
role as they couple cellular metabolism to electrical activity. In
electrically inactive b-cells, KATP channels are open. CHI is
characterized by permanently active b-cells and thus opening
of these channels is one strategy to treat it. Diazoxide is an
opener of KATP channels that is already established in CHI
therapy. We tested the effect of diazoxide on [Ca2+]c as a
control. In human islet cell clusters isolated from two patients,
one with focal and one with mosaic form of CHI (Table 1: 1 and
4), 250 µM diazoxide clearly decreased the mean fluorescence
ratio (Figures 1C, D). These results show that the channels of
these patients are in principle functional and can be influenced
by the KATP channel opener, although mutations in the ABCC8
gene were reported to be the cause of CHI. Obviously, the
complex regulation of the channels is disturbed, e.g., the
sensitivity to MgATP (1).
October 2020 | Volume 11 | Article 545638
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Effects of NN414 on [Ca2+]c of Human and Mouse
Islet Cell Clusters and Mitochondrial Membrane
Potential of Mouse Islet Cell Clusters
The diazoxide analogue NN414 is suggested to be a selective
agonist of pancreatic b-cell KATP channels, and is 100-fold more
potent than diazoxide (62). Therefore, it has been proposed as
useful drug for the treatment of diseases with excessive insulin
secretion (62). NN414, in a concentration of 5 µM, completely
abolished oscillations of [Ca2+]c and reduced [Ca2+]c to basal
levels (Figure 2A). Application of 5 µM NN414 to human CHI
islet cell clusters taken from three different forms (focal, diffuse,
and atypical mosaic, Table 1: 1, 2, and 4) significantly lowered
the mean fluorescence ratio (Figure 2B).

To test whether NN414 specifically interferes with KATP

channels, we studied the effects of this compound on [Ca2+]c
with islet cell clusters of WT mice and mice lacking functional
KATP channels (SUR1-/- mice) (63). As expected, 5 µM NN414
abolished [Ca2+]c oscillations in islet cell clusters of WT mice
(Figure 2C, black trace) and reduced the mean fluorescence
ratio (Figure 2D, left part). By contrast, NN414 hardly affected
[Ca2+]c oscillations and did not decrease the mean fluorescence
ratio in islet cell clusters obtained from SUR1-/- mice (Figures
2C, gray trace, 2D, right part).

Some KATP channel openers affect mitochondrial function in
addition to their direct influence on KATP channels (64). To address
this point, comparative experiments with islet cell clusters of the two
mouse genotypes were performed evaluating a possible effect of
NN414 on themitochondrial membrane potential. Figure 2E shows
typical recordings of DY for a WT and a SUR1-/- islet cell cluster.
The switch from 0.5 to 10 mM glucose is accompanied by a strong
decrease in Rh123 fluorescence reflecting hyperpolarization of DY
Frontiers in Endocrinology | www.frontiersin.org 5
and thus ATP production upon the increase of glucose
concentration (65, 66). This maneuver was performed in each cell
cluster to test for glucose responsiveness. At the end of each
experiment, the uncoupler FCCP was applied to evaluate maximal
mitochondrial depolarization. Neither in WT nor in islet cell
clusters from SUR1-/- mice NN414 (5 µM) exerted any effect on
DY (Figure 2F).

Diazoxide and NN414 Open KATP Channels
Carrying a CHI Mutation
Mutations in the KATP channel subunits are the most common
cause of CHI. However, they do not necessarily lead to diazoxide
unresponsiveness. Response to diazoxide is even observed in
patients in whom non-response would be predicted (67).
Moreover, focal CHI is clinically heterogeneous and
responsiveness or resistance to diazoxide was reported for
patients with the same mutation in KATP channels (68). It is
unclear whether these clinical effects are due to interference of
diazoxide with the mutated channels or off-target effects. As an
example illustrating the efficacy of KATP channel openers on
mutant KATP channels, we used SUR1E1507K/WT Kir 6.2
channels since the SURE1507K mutation leads to CHI (69), but
patients with this Glu to Lys mutation respond well to diazoxide
(45). SUR1E1507K/WT Kir 6.2 channels were expressed in HEK-
293 cells, and diazoxide was tested in comparison to NN414.
Figure 3A shows that when inside/out patches from cells
expressing SUR1E1507K/WT Kir 6.2 channels were pulled into
nucleotide-free medium, numerous channels were activated as
nucleotides inhibiting channel activity by antagonism on their
WT pores were washed away (see start of the experiment before
ATP application). Addition of 1 mM ATP rapidly inhibited
A B

C D

FIGURE 1 | Nifedipine and diazoxide reduce [Ca2+]c in human CHI islet cell clusters. (A) Representative recording showing inhibition of glucose-induced oscillations
of [Ca2+]c by nifedipine (5 µM) in the presence of 10 mM glucose in a human islet cell cluster isolated from pancreatic tissue of a patient with diffuse CHI (Table 1: 7,
depicted as “human, Pt. #7” in the figure). (B) Summary of all experiments recorded in the presence of 10 mM glucose comprising 11 islet cell clusters isolated from
pancreatic tissue of one CHI patient (Table 1: 7). (C) Representative recording showing the influence of diazoxide (250 µM) on glucose-induced oscillations of [Ca2+]c
in the presence of 10 mM glucose in a human islet cell cluster isolated from pancreatic tissue of a patient with focal CHI (Table 1: 4). (D) Summary of all respective
experiments from two patients, one with focal and one with mosaic form of CHI (Table 1: 1, black circles; 4, white circles) (n = 5). *p ≤ 0.05 and ***p ≤ 0.001.
October 2020 | Volume 11 | Article 545638
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channel activity as expected. Application of diazoxide (340 µM)
or NN414 (5 µM) in the presence of ATP led to opening of
SUR1E1507K/WT Kir 6.2 channels. (Figures 3B, C), showing that
KATP channel agonists can directly affect mutated channels.

VU0071063 Silences Islet Cell Clusters in a KATP

Channel-Dependent and -Independent Manner
Recently, Raphemot et al. discovered a novel xanthine derivative,
VU0071063 that directly and selectively activates KATP channels
(70). They found that VU0071063 is more potent and activates
KATP channels with a faster kinetic than diazoxide. These
findings encouraged us to test its effect on changes in [Ca2+]c
on human islet cell clusters from CHI patients. Administration of
VU0071063 (30 µM) to islet cells clusters from pancreatic tissue
with a focal or diffuse lesion (Table 1: 2 and 4) induced a prompt
reduction of [Ca2+]c in all four measurements. Figure 4A shows
a typical example. The mean fluorescence ratio clearly changed
(Figure 4B). Due to the limited pathological material, which
Frontiers in Endocrinology | www.frontiersin.org 6
explains the low number of experiments, we did not perform a
statistical test with this data.

In the human islet cell clusters, a drop of [Ca2+]c was noticed
directly after withdrawal of VU0071063 (Figure 4A, asterisk).
Presumably, this drop is due to ATP-dependent sequestration of
Ca2+ into the ER (71). This suggests that VU0071063 affects
additional targets besides KATP channels. To evaluate this
assumption, [Ca2+]c of islet cell clusters from WT mice and
SUR1-/- mice was measured. VU0071063 (30 µM) suppressed
Ca2+ oscillations and lowered [Ca2+]c in both genotypes (Figures
4C–F). Note that the effect was weaker in the cells of the knock-
out mice. Like in human islet cell clusters, the drug further
reduced [Ca2+]c after its removal in both WT and SUR1-/- mouse
islet cell clusters (Figure 4C, asterisks). This points to alterations
in mitochondrial metabolism, which can cause changes in KATP

channel activity independent of any direct interaction with the
channel proteins (72). As the mitochondrial membrane potential
is for the most part directly linked to ATP production (65), we
A B

C D

E F

FIGURE 2 | Effects of NN414 on [Ca2+]c and mitochondrial membrane potential DY. (A) Representative recording showing the reduction of glucose-induced
oscillations of [Ca2+]c by NN414 (5 µM) in the presence of 10 mM glucose in a human islet cell cluster isolated from pancreatic tissue of a patient with diffuse CHI
(Table 1: 2). (B) Summary of all respective experiments from three patients, one with diffuse, one with focal, and one with mosaic form (Table 1: 1, black circles; 2,
white circles; and 4, gray circles) (n = 30). (C) Representative recordings showing the effect of NN414 (5 µM) on glucose-induced oscillations of [Ca2+]c in islet cell
clusters from WT (dashed curve) and SUR1-/- (gray curve) mice. NN414 significantly reduced [Ca2+]c in islet cell clusters from WT mice, but not in islet cell clusters
from SUR1-/- mice. (D) Summary of all respective experiments (n = 10 for each genotype, three different mouse preparations for each series). (E) Typical recordings
showing measurement of DY in islet cell clusters obtained from WT (dashed curve) and SUR1-/- (gray curve) mice. The switch from 0.5 to 10 mM glucose
hyperpolarizes DY. The addition of NN414 has no influence on DY in WT and SUR-/- islet cell clusters, respectively. (F) Summary of all experiments made under
these conditions (n = 13, three different mouse preparations for each series). ***p ≤ 0.001.
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evaluated effects of VU0071063 on DY. Similar to the
experiments described above, a rise in the glucose
concentration caused a decrease of the fluorescence signal
(Figure 4E). In islet cell clusters of WT mice and of SUR1-/-

mice 30 µM VU0071063 strongly and reversibly depolarized
mitochondrial membrane potential (Figures 4E, F).

KATP Channel-Independent Drugs
In the following part we present drugs and potential strategies,
which could be effective in CHI patients non-responsive to KATP

channel openers.

KCa3.1 Channel Openers as a Potential Approach
In addition to KATP and voltage-gated K+ channels, pancreatic
b-cells express K+ channels regulated by the cytosolic Ca2+

concentration (KCa) (72). Depending on their single channel
conductance, there are three groups whose existence has been
detected in pancreatic b-cells (73–76). It has been
demonstrated that the KCa channels of intermediate
conductance (KCa3.1, SK4) play an important role in the K+

current (Kslow) that contributes to b-cell hyperpolarization at
the end of a burst phase with electrical activity (66, 74, 77, 78).
Previous results from Düfer et al. (74) demonstrated that
activation of KCa3.1 channels hyperpolarized the membrane
potential of pancreatic b-cells from WT mice. Since about 50%
of Kslow is KATP current (79), the sulfonylurea-insensitive KCa

component could be even more significant in b-cells lacking
Frontiers in Endocrinology | www.frontiersin.org 7
functional KATP channels, which resembles the situation in
CHI channelopathies.

To verify this assumption, we evaluated the effect of the
KCa3.1 opener DCEBIO on islet cell clusters isolated from
SUR1-/- mice. DCEBIO (100 µM) effectively abolished the
glucose-induced oscillations of [Ca2+]c (Figure 5A) and
reduced the mean fluorescence ratio (Figure 5B). Next, we
tested the effect of DCEBIO on human islet cell clusters from
tissue of pancreatectomies. DCEBIO was tested on human islet
cell clusters isolated from pancreatic tissues with mosaic and
diffuse forms of CHI (Table 1: 1 and 2). The compound
suppressed the oscillations of [Ca2+]c (Figure 5C) and
significantly decreased the mean fluorescence ratio (Figure 5D).

Effect of Dextromethorphan on [Ca2+]c of Human
Islet Cell Clusters
Dextromethorphan (DXM) is a known antagonist of NMDA
receptors. Active NMDA receptors can activate other ion
channels, like Ca2+-activated K+ channels or KATP channels
and thus potentiate K+ outflow (80). A block of NMDA
receptors leads to prolonged depolarization and increases
insulin secretion (81). Lesser-known is its ability to directly
inhibit L-type Ca2+ channels. Carpenter et al. found that
DXM moderately inhibits L-type Ca2+ channels, thereby
lowering [Ca2+]c. This effect was observed with permanently
depolarized cells under stimulating glucose concentrations (82).
Since permanent depolarization is a characteristic of CHI b-cells,
A B

C

FIGURE 3 | Diazoxide and NN414 open mutated KATP channels. (A) Representative trace showing the activation of SUR1E1507K/WT Kir 6.2 channels expressed in
HEK-293 cells by the channel agonists diazoxide and NN414. This mutation is associated with CHI. At the beginning of the experiment the patch was pulled in
nucleotide-free medium, which activates numerous channels as inhibitory nucleotides leave the pore. Addition of ATP rapidly inhibits almost all channel activity.
Concurrent application of diazoxide (340 µM) or NN414 (5 µM) enhances channel activity. (B, C) Summary of all experiments with diazoxide (n = 7) and NN414
(n = 7), respectively. *p ≤ 0.05. The inset shows single channel openings at extended scales. The channel has an amplitude of about 4 pA, giving, at 50 mV driving
force, a conductance of 80 pS, which is typical for KATP channels under these conditions. Four min under control conditions of the continuous recording were taken
out for the clarity of the figure.
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DXM may offer a possibility to rescue, i.e., silence the
overstimulated cells.

The measurement in Figure 6A shows a recording of [Ca2+]c
of a permanently depolarized islet cell cluster from a SUR1-/-

mouse in the presence of 10 mM glucose and application of 100
µM DXM. The drug significantly lowered the mean fluorescence
ratio (Figure 6B). The mean fluorescence, application of DXM
rapidly reduced [Ca2+]c in an islet cell cluster from a patient with
diffuse CHI (Figure 6C). The mean fluorescence ratio measured
in islet cell clusters obtained from two patients with focal and two
patients with diffuse CHI (Table 1: 3, 5, 6 and 7) was lowered
(Figure 6D).

Statins as a Potential Strategy to Silence Human
Islet Cell Clusters
Lipid-lowering statins are inhibitors of the enzyme HMG-CoA-
reductase, which plays a significant role in cholesterol synthesis
by converting HMG-CoA to mevalonate. For these drugs it has
Frontiers in Endocrinology | www.frontiersin.org 8
been reported that they increase the risk of type 2 diabetes (83).
Different studies have been conducted in order to enlighten the
mechanism how the statins impair insulin secretion. In the study
using b-cells isolated from rats, Yada et al. (84) showed that
simvastatin in a concentration of 3 µg/ml acutely blocked L-type
Ca2+ channels, thus lowering insulin secretion. Furthermore,
Yaluri et al. demonstrated that simvastatin diminished glucose-
stimulated insulin secretion and [Ca2+]c in MIN6 b-cells via
multiple mechanisms (85).

Hence, we considered simvastatin as a potential therapeutic
strategy to treat CHI. In order to confirm that simvastatin shows
its effect when functional KATP channels are lacking, we
measured [Ca2+]c in islet cell clusters from SUR1-/- mice
(Figure 7A). Simvastatin in a concentration of 7.2 µM
[according to the concentration of 3 µg/ml that was used in
the study of Yada et al. (84)] rapidly decreased the glucose-
stimulated Ca2+ oscillations and diminished the mean
fluorescence ratio (Figure 7B). Further, we tested simvastatin
A B

C D

E F

FIGURE 4 | KATP channel-dependent and -independent effects of VU0071063. (A) Representative recording showing the reduction of [Ca2+]c by VU0071063 (30
µM) in the presence of 10 mM glucose in a human islet cell cluster isolated from pancreatic tissue of a CHI patients with a focal lesion (Table 1: 4). The star depicts
the nadir after wash-out of VU0071063. (B) Summary of four experiments obtained from two patients, one with focal and one with diffuse form of CHI. VU0071063
rapidly reduced [Ca2+]c in all 4 experiments, but due to the low number of experiments, the effect is not significant. (Table 1: 2, black circles; 4, white circles). (C)
Representative recordings showing the effect of VU0071063 (30 µM) on oscillations of [Ca2+]c induced by 10 mM glucose in islet cell clusters from WT (dashed
curve) and SUR1-/- (gray curve) mice. VU0071063 significantly reduced [Ca2+]c in islet cell clusters from SUR1-/- mice, revealing KATP channel-independent effects of
the compound. Note the drop in [Ca2+]c after removal of VU0071063 (black star: WT, gray star: SUR1-/-). (D) Summary of all respective experiments; n = 45 and 29
for WT and SUR-/- islet cell clusters. (E) Representative recordings showing the effect of VU0071063 (30 µM) on the mitochondrial membrane potential (DY) in islet
cell clusters obtained from WT (dashed curve) and SUR1-/- (gray curve) mice. (F) Summary of all respective experiments; n = 42 and 39 for WT and SUR-/- islet cell
clusters. Cell cluster were isolated from three WT and three SUR1-/- mice. *p ≤ 0.05 and ***p ≤ 0.001.
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on human islet cell clusters. Figure 7C shows a representative
measurement of [Ca2+]c in an islet cell cluster isolated from
pancreatic tissue of a patient with focal CHI. The mean
fluorescence ratio markedly declined (Figure 7D). The biopsy
material was obtained from two patients with focal and two
patients with diffuse CHI (Table 1: 5 – 8).
DISCUSSION

Possible KATP Channel-Dependent
Strategies to Treat CHI
In the present study islet cell clusters isolated from biopsies of
CHI patients were used to search for new strategies to treat the
disease. Pancreatic islet cell clusters isolated from either focal,
diffuse or atypical pancreatic tissue were used as material. We are
aware that these are distinct diseases. Due to the limited material
we did not separate our results according to the different CHI
forms. Noteworthy, the aim of the study was not to suggest novel
drugs for CHI treatment but to optimize existing approaches, to
search for novel targets and concepts for future drug
development. Islet cell clusters were sensitive to the L-type
Ca2+ channel blocker nifedipine. This maneuver resulted in a
decrease of [Ca2+]c as expected from numerous observations
with murine b-cells and insulin-secreting tumor cell lines as well
as the restricted number of studies with human b-cells. This
shows that the biopsy material is suitable to receive reliable and
reproducible results. This is also confirmed by the results
Frontiers in Endocrinology | www.frontiersin.org 9
observed with diazoxide used as gold standard in CHI
treatment. Noteworthy, nifedipine has been used for the
treatment of diazoxide-unresponsive CHI (19, 29), but due to
reported hypotension in patients with mutations in the ABCC8
gene, it is not commonly recommended for the treatment of CHI
(29, 86).

Diazoxide is usually effective in all forms of CHI including
severe cases caused by mutations in the genes encoding KATP

channels (ABCC8 and KCNJ11), e.g., in (2, 67, 87, 88). Our
sample cohort was derived from patients harboring ABCC8
missense mutations (patients 1, 6, and 7), a mutation affecting
splicing (patient 3) and two nonsense mutations (patients 4,5).
The missense and splicing mutations studied possibly allow
production of SUR1 proteins albeit at reduced function or
level. For nonsense mutation c.3970G>T p.(Glu1324*) detected
in exon 32 of patient 4, nonsense-mediated RNA decay (NMD)
has been predicted in silico, however, clinically the patient was
reported to be diazoxide-responsive at dosage 8mg/kg/d. This
may suggest escape of NMD with this particular mutation and
generation of a truncated SUR1 protein lacking the last encoded
six exons but retaining residual channel function. For one patient
(patient 2) no mutation was found in the KATP channel genes
(ABCC8 and KCNJ11) or in other CHI genes tested. This is not
unusual in clinical routine. As this patient displayed a partial
response to diazoxide (see Table 1) it was included in the study
despite the unknown genetic background. Serious adverse drug
effects are a consequence of the non-selectivity of diazoxide for
pancreatic KATP (SUR1/Kir6.2) channels (89). Besides pancreatic
A B

C D

FIGURE 5 | The KCa3.1 channel opener DCEBIO reduces [Ca2+]c in islet cell clusters isolated from SUR1-/- mice and in human islet cell clusters. (A) Representative
recording showing rapid inhibition of glucose-induced oscillations of [Ca2+]c by DCEBIO (100 µM) in the presence of 10 mM glucose in islet cell clusters from
SUR1-/- mice. (B) Summary of all respective experiments; n = 30. Islet cell clusters were obtained from three different SUR1-/- mice preparations. ***p ≤ 0.001.
(C) Representative recording showing the reduction of glucose-induced oscillations of [Ca2+]c by DCEBIO (100 µM) in the presence of 10 mM glucose in a human
islet cell cluster isolated from pancreatic tissue affected by diffuse CHI (Table 1: 2). (D) Summary of all respective experiments from biopsies of two CHI patients, one
with diffuse, one with mosaic form (Table 1: 1, black circles; 2, white circles) (n = 27). ***p ≤ 0.001.
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KATP channels, the drug activates those of smooth muscles
(SUR2B/Kir6.2 and SUR2B/Kir6.1) and exerts weak
stimulatory effects on KATP channels of the cardiac muscle
(SUR2A/Kir6.2) (90). One of the most common adverse effects
of diazoxide, hirsutism, could be explained by activating both
SUR1/Kir6.2 and SUR2B/Kir6.2 channels in hair follicles
(91, 92).

NN414
As one strategy to improve CHI therapy we tested KATP channel
openers more specific for b-cells. In comparison to diazoxide,
NN414 is reported to be a selective SUR1 agonist, 100-fold more
potent than diazoxide, suggesting that the drug is effective at
much lower concentrations (62). Early, prediabetic stages of type
2 diabetes mellitus (T2DM) are normally characterized by
compensatory hypersecretion of insulin. KATP channel openers
have been suggested as beneficial medication to counteract
excessive hormone release in prediabetic patients as insulin
hypersecretion may cause or contribute to the development of
glucose intolerance and b-cell degeneration in T2DM (93).
NN414 has been used in numerous in vitro and in vivo studies
to achieve b-cell rest, thereby preserving b-cell function and
preventing apoptosis (94, 95). An animal in vivo study revealed a
significant potential of NN414 in the treatment of disorders
resulting from excessive insulin release (96). Alemzadeh et al.
showed in a 6-week study that NN414 reduced hyperinsulinemia
and improved glucose responsiveness in Zucker obese rats in a
dose-dependent manner. NN414 entered human clinical trials
for the treatment of T2DM. In healthy subjects, it inhibited
insulin release, was well tolerated, and did not induce clinically
Frontiers in Endocrinology | www.frontiersin.org 10
relevant changes in safety parameters besides side effects on the
gastrointestinal tract (97). NN414 was advanced in phase 2 of
clinical trials where it showed a tendency to improve b-cell
secretory function in diabetic patients (98, 99). The clinical trial
was stopped because of elevated liver enzymes in treated patients
(99, 100). The SUR1 selectivity, the low doses, and the
reproducible Ca2+-lowering effect observed in our study in islet
cell clusters from biopsy material (Figures 2A, B) suggest to
consider NN414 as a potential alternative to diazoxide for the
treatment of CHI with at least partially functioning KATP

channels. Of note, this paper is not intended to characterize
different types of CHI with respect to their diazoxide
responsiveness or to recommend general treatment of all CHI
types with NN414. Liver enzymes have to be monitored during
therapy with NN414, but moderate elevation of their plasma
concentration is no criterion to exclude the drug, although it
would be desirable to develop NN414 analogues without this side
effect. Notably, increased concentrations of circulating liver
enzymes is one of the most reported side effects for octreotide
that is used off-label as second-line therapeutic in the long-term
management of CHI and for sirolimus that is proposed for
patients resistant to diazoxide and octreotide (28, 101, 102),
reviewed in (3).

VU0071063
Recently, a novel KATP channel activator, VU0071063 was
discovered (70). VU0071063 is reported to be more selective
for SUR1/Kir6.2 channels than for SUR2A/Kir6.2 and SUR2A/
Kir6.1 channels. It has been demonstrated that it opens SUR1/
Kir6.2 channels with a higher potency than diazoxide (70).
A B

C D

FIGURE 6 | DXM lowers [Ca2+]c in islet cell clusters lacking functional KATP channels. (A) Representative recording showing a rapid decrease of [Ca2+]c by DXM
(100 µM) in the presence of 10 mM glucose in an islet cell cluster from a SUR1-/- mouse. (B) Summary of all respective experiments (n = 13) with different cell cluster
from three SUR1-/- mice. ***p ≤ 0.001. (C) Representative recording showing reduction of [Ca2+]c by DXM (100 µM) in the presence of 15 mM glucose in a human
islet cell cluster isolated from pancreatic tissue of a patient with focal CHI (Table 1: 5). (D) Summary of all respective experiments obtained from biopsies of two
patients with focal and two patients with diffuse CHI (Table 1: 3, gray circles; 5, black circles; 6, white circles; and 7, hatched circles) (n = 16). ***p ≤ 0.001.
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VU0071063 was shown to activate KATP channels expressed in
HEK-293 cells and to reduce glucose-stimulated Ca2+ influx in
murine b-cells (70). Our data demonstrate at a first glance a
beneficial characteristic of VU0071063 in human islet cell
clusters isolated from CHI patients (Figures 4A, B),
supporting the idea of a direct activation of KATP channels in
pancreatic islets. By contrast, the observation that removal of
VU0071063 from the solution initiated a transient drop in
[Ca2+]c suggests that the drug does not selectively interfere
with KATP channels, but also with ATP production (71). This
assumption is supported by the following observations: 1)
VU0071063 strongly and reversibly depolarized DY in both,
WT and SUR1-/- islet cell clusters, which points to inhibition of
ATP formation. 2) The removal of VU0071063 was followed by a
transient drop in [Ca2+]c in WT and SUR1-/- islet cell clusters,
which is presumably due to ATP-dependent SERCA activation.
VU0071063 rapidly and significantly decreased [Ca2+]c in
SUR1-/- islet cell clusters, too. This seems paradoxical as the
ATP depletion leads to Ca2+ release out of the Ca2+ stores;
however, the decreased [Ca2+]c during application of the drug
might be secondary to Ca2+-dependent inactivation of L-type
Ca2+ channels. Our data suggest that the Ca2+-lowering effect of
VU0071063 is caused by a dual mechanism: 1) direct opening of
KATP channels and indirect opening of KATP channels by ATP
depletion; 2) interference with SERCA function and Ca2+ release,
thereby mediating unpredictable interactions with other ion
channels. In conclusion, since VU0071063 raises the
expectation of detrimental effects on mitochondria, thereby
Frontiers in Endocrinology | www.frontiersin.org 11
impairing all ATP-dependent processes, this compound seems
not to be suitable for use in humans without structural
modifications avoiding this side effect. Noteworthy, NN414 did
not affect DY (compare Figures 2E, F to 4E, F) and did hardly
change [Ca2+]c in SUR1

-/- islet cell clusters (compare Figures 2C,
Dto 4C, D). These differences clearly show that the effects of
NN414 are, in contrast to those of VU0071063, caused by a
specific interference with KATP channels.

In summary, our data with KATP channel agonists
demonstrate that these drugs can be effective in different forms
of CHI caused by mutations in KATP channels. As shown by
patch-clamp experiments (Figure 3), diazoxide and NN414 act
as direct channel openers in mutated KATP channels with a
dominant mutation comparable toWT channels. With respect to
specificity, dosage, and expected side effects, NN414 seems
superior to diazoxide. VU0071063 is unsuitable because of its
multiple and yet not completely understood mode of action and
therefore potential adverse side effects.

Possible KATP Channel-Independent
Strategies to Treat CHI
Current Second- And Third-Line Therapy Regimen
Targeting KATP Channel Independent Pathways
There are mutations in ABCC8 or KCNJ11 genes known to
disrupt the expression of KATP channels at the cell surface (4,
103, 104). In this case openers, e.g., diazoxide, are ineffective in
the treatment of CHI (51, 105). For these patients it is
indispensable to find drugs targeting mechanisms, which can
A B

C D

FIGURE 7 | Simvastatin as a potential strategy to silence islet cell clusters affected by CHI. (A) Representative recording showing rapid inhibition of glucose-induced
oscillations of [Ca2+]c by simvastatin (7.2 µM) in the presence of 10 mM glucose in an islet cell cluster from SUR1-/- mice. (B) Summary of all respective experiments
(n = 43) with islet cell clusters obtained from three SUR1-/- mice. ***p ≤ 0.001. (C) Representative recording showing the reduction of glucose-induced oscillations of
[Ca2+]c by simvastatin (7.2 µM) in the presence of 15 mM glucose in a human islet cell cluster isolated from pancreatic tissue of a patient affected by focal CHI (Table
1: 5). (D) Summary of all respective experiments from biopsies of two patients with focal and two patients with diffuse CHI (Table 1: 5, black circles; 6, white circles;
7, gray circles; and 8, hatched circles) (n = 18). ***p ≤ 0.001.
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induce b-cell rest and inhibit insulin release independent of
KATP channels. Currently available alternatives to diazoxide
therapy are somatostatin analogues (octreotide, octreotide-
LAR, and lanreotide), sirolimus and exendin-(9–39) (3).
Octreotide, a short-acting synthetic somatostatin analogue,
inhibits insulin secretion by binding to and activating
somatostatin receptors 2 and 5 (SSTR2 and SSTR5) (106).
Activation of SSTRs shows multifactorial modulation of b-
cells, which involves inhibition of the adenylate cyclase/cAMP
pathway, activation of G protein-activated inwardly rectifying
K+ (GIRK) channels, decrease in Ca2+ influx via P/Q-type Ca2+

channels and inhibition of exocytosis (24, 107, 108). Infants
respond well to initial doses of octreotide, but tachyphylaxis after
a few doses makes it not suitable for the long-term treatment.
Long-acting somatostatin analogues (octreotide-LAR and
lanreotide) have similar effects as octreotide but have the
advantage that they are given once every 4 weeks, which
improves therapy compliance and quality of life (21, 109, 110).
However, due to a similar mechanism of action as octreotide,
long-acting somatostatin analogues show similar side effects
(111). Sirolimus, a mammalian target of rapamycin (mTOR)
inhibitor, is an immunosuppressive and anti-proliferative agent
that has been used in patients with diffuse CHI, unresponsive to
diazoxide and octreotide therapy (22, 112). It suppresses insulin
release by different mechanisms, which have not been fully
elucidated (30). It has been proposed that downregulation of
mTOR pathway decreases insulin production in pancreatic b-
cells and b-cell growth and may restore ketogenesis (112, 113).
Furthermore, upregulation of liver gluconeogenesis by sirolimus
contributes to insulin resistance (114). However, severe and life-
threatening side effects reported for the above-mentioned drugs
restrict their use.

Opening of KCa3.1 Channels
Beside KATP channels, Ca2+-activated K+ channels of
intermediate conductance (KCa3.1, SK4) contribute to Kslow,
the hyperpolarizing current that terminates bursts of action
potentials in b-cells (74, 78). Accordingly, KCa3.1 channels
may become predominant regulators of membrane potential
and insulin secretion when functional KATP channels are
absent, which makes these channels ideal as drug targets in
CHI. Our data show that an opener of KCa3.1 channels,
DCEBIO, was able to strongly reduce [Ca2+]c in SUR1-/- islet
cell clusters. Furthermore, DCEBIO was highly effective in
silencing human islet cell clusters obtained from pancreatic
tissue of CHI patients (Figure 5). These experiments provide
valuable support for the idea of targeting KCa3.1 channels in the
treatment of CHI. To follow this strategy would of course require
the search for new KCa3.1 channel openers with high selectivity
for b-cells since unspecific KCa3.1 channel openers are expected
to exert severe side effects in numerous organs (e.g., lung, cells of
the hematopoietic system, and salivary glands) (115–117).

DXM as L-type Ca2+ Channel Antagonist
The block of NMDA receptors by DXM is expected to increase
insulin secretion (81). However, DXM has a higher affinity for L-
type Ca2+ channels than to its known target, the NMDA receptor
Frontiers in Endocrinology | www.frontiersin.org 12
(118). As mentioned before, DXM moderately inhibits L-type
Ca2+ channels, thereby lowering [Ca2+]c in permanently
depolarized b-cells under stimulating glucose concentrations
(82, 119). This is exactly what we observe in our experiments
with depolarized islet cell clusters isolated from pancreatic tissue
of CHI patients and with depolarized islet cell clusters from
SUR1-/- mice (Figure 6). Thus, DXM could be an alternative
strategy for the treatment of CHI especially in the diffuse form of
CHI. In patients with focal lesions, where only a distinct portion
of b-cells, i.e., the focal ones, is dysregulated, the drug could
cause an undesired increase in [Ca2+]c and insulin secretion in
healthy islets. The benefits of this drug are that it is already
available as a pharmaceutical and that inhibition of L-type Ca2+

channels by e.g., nifedipine is already a proved treatment of CHI
(19, 29). Considering side effects of nifedipine, like hypotension,
the moderate effect of DXM on L-type Ca2+ channels could be of
advantage (82).

Simvastatin
It was shown that simvastatin lowers insulin secretion by
blocking L-type Ca2+ channels (84, 85). The effect of
simvastatin on [Ca2+]c was comparable with that of
nifedipine in the insulin-secreting cell line MIN-6 (85). This
interaction might contribute to the increased risk to develop
diabetes mellitus under a cholesterol-lowering therapy with
statins (83). With respect to CHI patients, this side effect could
constitute a suitable therapeutic approach. Our results
obtained from experiments with islet cell clusters isolated
from SUR1-/- mice and human islet cell clusters isolated
from patients with CHI indeed point toward a possible
beneficial effect of simvastatin in the treatment of CHI
(Figure 7). Noteworthy, statins are widely used and well
tolerated in the long-term therapy. In contrast to nifedipine,
which affects the cardiovascular system, statins are safe with
respect to blood pressure or heart rate (120). Additionally, it is
proposed that statins induce hepatic gluconeogenesis in
human liver cells by activation of the pregnane X receptor
(PXR) (121, 122), which could also counteract hypoglycemic
conditions in CHI patients.
CONCLUSIONS

There is a clear need to develop novel approaches to prevent
hypoglycemia in CHI patients and to establish better therapies
with less side effects for the different forms of CHI. In this study,
we had access to biopsy material of CHI patients and give
suggestions, which drugs or targets should be studied in future.
Promising results were obtained for NN414, DCEBIO, DXM
and simvastatin.
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