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Progestogens’ (e.g., progesterone and its neuroactive metabolite, allopregnanolone),

cognitive effects and mechanisms among males are not well-understood. We

hypothesized if progestogen’s effects on cognitive performance are through its

metabolite allopregnanolone, and not actions via binding to traditional progestin

receptors (PRs), then progesterone administration would enhance performance in tasks

mediated by the hippocampus and cortex, coincident with increasing allopregnanolone

concentrations, brain derived neurotrophic factor (BDNF) and/or muscimol binding of

PR knock out (PRKO) and wild-type PR replete mice. Experiment 1: Progesterone

(4 mg/kg, subcutaneously (SC; n = 12/grp), or oil vehicle control, was administered

to gonadally-intact adult male mice PRKO mice and their wild-type counterparts and

cognitive behaviors in object recognition, T-maze and water maze was examined.

Progesterone, compared to vehicle, when administered post-training increased time

investigating novel objects by the PRKO and wild-type mice in the object recognition

task. In the T-maze task, progesterone administration to wild-type and PRKO mice

had significantly greater number of spontaneous alternations compared to their

vehicle-administered counterparts. In the water maze task, PRKO mice administered

vehicle spent significantly fewer seconds in the quadrant associated with the escape

platform on testing compared to all other groups. Experiment 2: Progesterone

administered to wild-type and PRKO mice increased plasma progesterone and

allopregnanolone levels (n = 5/group). PRKO mice had higher allopregnanolone levels

in plasma and hippocampus, but not cortex, when administered progesterone and
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compared to wild-type mice. Experiment 3: Assessment of PR binding revealed

progesterone administered wild-type mice had significantly greater levels of PRs in

the hippocampus and cortex, compared to all other groups (n = 5/group). Wild-type

mice administered progesterone, but not vehicle, had increased BDNF levels in the

hippocampus, but not the cortex, compared to PRKOs. Wild-type as well as PRKO mice

administered progesterone experienced significant increases in maximal GABAA agonist,

muscimol, binding in hippocampus and cortex, compared to their vehicle-administered

counterparts. Thus, adult male mice can be responsive to progesterone for cognitive

performance, and such effectsmay be independent of PRs trophic actions of BDNF levels

in the hippocampus and/or increases in GABAA activity in the hippocampus and cortex.

Keywords: brain-derived neurotrophic factor, prefrontal cortex, allopregnanolone, hippocampus, object

recognition, T-maze, memory

INTRODUCTION

Our understanding of progesterone, a gonadal hormone that
is produced primarily by the ovaries in females, as well as
progestin receptors (PRs) functioning, has primarily come from
studies in females (1–3). Although progesterone has always
been considered a “female-typical hormone,” adult male rodents
produce progesterone in the testes and adrenal cortex (4, 5).
Male rodents have circulating levels of progesterone around
1.5–2 ng/mL (6, 7), compared to a range of 3–35 ng/mL in
females that is seen throughout the estrous cycle (8). Males,
compared to females, have higher levels of steroid receptor
co-activators, which enhance steroid hormone action in many
brain regions (9). Of note, across species, both males and
females have early exposure to maternal progesterone, by which
brain functioning is organized. “Male-typical” hormones, such
as androgens are derived from a cholesterol-based pro-hormone,
progesterone. Thus, despite conceptualization of progesterone as
a female hormone, the extent to which adult males respond to
progesterone is an important question.

Progesterone can exert beneficial effects for cognitive
performance; however, most of the work on progesterone’s
cognitive effects has involved female subjects. Compared to
other treatments, progesterone to rodents assessed in the
Morris water maze reduced latencies to the hidden platform,
increased platform crossings, and time spent swimming in the
quadrant area where the platform had been during training
(10). Progesterone improved reference memory acquisition and
reversal learning in the Morris water maze task, compared
with vehicle treatment (11). In addition, young and aged
rodents administered progesterone, or its neuroactive metabolite,
allopregnanolone, performed significantly better in the object
recognition, object placement, T-maze, and water maze tasks
compared to other groups (12, 13). Progesterone can have
memory-enhancing effects among young adult mice in condition
place preference, inhibitory avoidance and other tasks that may
bemediated by several brain regions, including the hippocampus,
prefrontal cortex (PFC), amygdala, nucleus accumbens, and
cerebellum (14, 15). Thus, progesterone has beneficial effects to
improve cognitive performance of female rodents across a variety

of tasks. The question remains about the responsiveness of males
to progesterone on cognitive performance.

To understand the role and brain targets of progestogens
for cognitive performance among males, different mechanisms
of actions of progesterone and its metabolic allopregnanolone
should be considered. Unlike allopregnanolone, progesterone
binds with high affinity to intracellular PRs (16). Progestin
receptors have been localized to brain targets for
learning/memory effects of progesterone in the hippocampus
(17) and the frontal cortex (18). However, progesterone may
be exerting its effects through its metabolite, allopregnanolone,
which has greater affinity for γ-aminobutyric acid (GABAA)
receptors. Allopregnanolone alters functioning of many
neurotransmitter targets, rather than binding to PRs, when in
physiological concentrations (19–21). Female mice, administered
allopregnanolone or those that were administered progesterone
and could metabolize this to allopregnanolone, performed
significantly better in the object recognition, object placement,
T-maze and water maze tasks compared to female mice
administered vehicle (12). In addition, rodents administered
allopregnanolone, perform better in the water maze, a delayed
nonmatching-to-sample Y-maze task, object recognition and
object placement tasks, and conditioned aversion tasks and
have enhanced conditioned place preference compared to
controls (22–27). Moreover, PR knockout (PRKO) mice, which
lack PRs throughout development (28), have been used. For
example, young and/or aged PRKO and wild-type mice have
increased sexual responding, decreased anxiety-like behavior,
and enhanced cognition following progesterone administration,
despite PRKO mice having low levels of cortical PR binding
(29, 30). Cognitive enhancement among both PRKO and
wild-type mice administered progesterone suggests that PRs are
not necessary for progesterone’s beneficial effects on cognitive
performance. Thus, progesterone’s beneficial effects across
various cognitive tasks may be related to the capacity to produce
allopregnanolone, rather than actions at PRs among females. Of
interest is the effects among males.

Another non-PR target to be considered is brain-derived
neurotrophic factor (BDNF). BDNF is produced both in neurons
and glial cells (31, 32). BDNF is of interest as a marker of
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neural plasticity, which may play a role in synaptic plasticity
and learning/memory (33, 34). There is strong evidence to
support the role of BDNF in synaptic plasticity and cognitive
function (35) and as such, alterations in its function and/or
expression have been implicated in the pathophysiology of
aged-related neurodegenerative diseases including Alzheimer’s
disease, Parkinson’s disease, seizure disorder, major depression
(34, 36–45), and a variety of stressors/events [e.g., ischemia,
hypoglycemia, stressor exposure, etc. (46, 47)]. Restoring BDNF
expression and/or function may be therapeutic. Furthermore,
there is evidence that progesterone and other hormones have
enhancing effects on BDNF expression. BDNF levels are
increased and are associated with administration of progesterone
and/or cognitive enhancement (12, 33, 34, 48–53). Thus,
BDNF may play a role for cognitive enhancement following
progesterone administration.

An important question is the responsiveness of progesterone
in a mouse model that should be less sensitive to progesterone
effects (adult males, low levels of progesterone, and no PRs).
Notably, young males in some cases do not respond to
progesterone as females do. For example, duration spent
immobile in the forced swim task is not reduced with
progesterone administration in young males to the same
extent that it is in age-matched females; this sex difference
is no longer apparent in aged mice (54). We hypothesized
if progesterone’s effects on learning/memory are through
its metabolite allopregnanolone, and not due to traditional
actions via binding to PRs, progesterone administration post-
training will enhance performance in tasks mediated by
the hippocampus and cortex, coincident with increasing
allopregnanolone concentrations in the hippocampus and cortex,
and increase BDNF levels or activity of GABAA receptors of
both PRKO and wildtype mice. To test this, gonadally-intact
male wild-type and PRKO mice were administered progesterone
and/or oil vehicle and exp 1: cognitive behaviors (object
recognition, T-maze and Water maze), exp 2: neuroendocrine
factors (plasma, hippocampal and cortical progesterone and
allopregnanolone levels), and trophic factors, PR binding, BDNF
levels in the hippocampus and cortex, and GABAA activity in the
hippocampus and cortex were assessed.

METHODS AND MATERIALS

The methods utilized for animal husbandry, determination
of WT vs. PRKOs, drug administration, behavioral testing,
euthanasia and tissue collection in the murine subjects in this
study were approved by the Institutional Animal Care and Use
Committee at the University at Albany.

Animal Housing
Subjects were adult (8–10 weeks old), male mice. Mice were
group-housed (4–5 per cage) in polycarbonate cages (26 × 16
× 12 cm) in a temperature-controlled room (21 ± 1◦C) in the
core Laboratory Animal Care Facility at the University at Albany.
The housing room was on a 12/12-h reversed light cycle (lights
off 8:00 a.m.-8:00 p.m.). Mice had continuous access to Purina
Mouse Chow and tap water in their home cages andwere assessed

during their dark phase. There were 50/12-13 mice group in one
cohort and 20/5 mice group in another cohort. The first cohort of
5 per group was done to examine physiological measure around
15 generations of back crossings to bring the PRKO mice from
their 129 background strain onto the c57UA strain, which were
c57 mice that had been subjected to random and frequent fire
alarms with changes in air pressure for 4 years.

Mouse Strain and Genotyping
PRKOmice that were back crossed onto a c57 background are not
distinguishable based upon any obvious phenotypic or behavioral
characteristics from c57 controls. As such, another member of
the laboratory conducted genotyping, as described below, and
randomly assigned them to groups, which were unknown to
the individuals that were testing the animals. Subjects were
wild-type (+/+) or (-/-) PRKO mice, congenic on C57BL/6
background, that were derived from heterozygous (+/–) breeder
pairs from a colony that was maintained at the University
at Albany. These mice were developed by Bert O’Malley’s
laboratory [Baylor College of Medicine, Houston, Texas;
(29, 55)]. Typical polymerase chain reaction (PCR) methods,
modified from Jackson Laboratory’s published protocol, were
utilized to determine the genotype of mice (54, 56). Briefly,
genomic DNA was isolated from tail snips and analyzed by
PCR. PCR was performed by denaturing the DNA at 95◦C for
5min, followed by 30 cycles of amplification: 94◦C for 1min,
60◦C for 1min, 72◦C for 1min, and a final primer extension
step at 72◦C for 10min. The following PR specific primers
were used: P1 (5′TAGACAGTGTCTTAGACTCGTTGTTG-3′),
P2 (5′GATGGGCACATGGATGAAATC-3′), and a neo gene
specific primer, N2 (5′GCATGCTCCAGACTGCCTTGGGAAA-
3′). Primers were obtained from Integrated DNA Technologies
(Coralville, IA). Bands of∼565 and 500 base pairs were amplified
for wild-type and PRKO mice, respectively. PRKO and wild-
type mice were randomly assigned to receive progesterone or
vehicle as described below. The individual who was testing the
animals was blind to the genotype of all animals and the vehicle
or progesterone administration condition.

Progesterone Administration
Crystalline progesterone was obtained from Steraloids, Newport,
RI and dissolved in vegetable oil vehicle. Intact male mice were
randomly assigned to receive progesterone (4 mg/kg) or vehicle
(vegetable oil) by subcutaneous injection (SC) in the nape of the
neck 1 h before behavioral testing in the T-maze, immediately
after training in the single trial of the object recognition task, and
after the last training trial in the water maze (57).

Behavioral Testing
Wild-type and PRKO mice were assigned to one hormone
condition (vehicle or progesterone) and then, tested once per
week in each of the behavioral tasks described below. Behavioral
data were collected simultaneously by an experimenter (T-maze),
the Any-Maze tracking system (Stoelting, Wood Dale, IL; object
recognition), and/or both methods (water maze). On the day
when mice were trained and tested, they were transported in
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their home-cages on a cart to the testing area. Mice were singly-
housed in a clean cage immediately before training and until the
last testing trial, when they were returned to their home-cage in
the vivarium.

Object Recognition
In the object recognition task, mice were trained with two
identical objects, i.e., a plastic toy block or a bottle, that were
placed in an open field. The objects used were those that
mice showed a high and similar degree of investigating during
a single, 3min training trial (58). There were no significant
differences between genotypes or treatment group for time spent
investigating objects during training in the object recognition
task [left object: WT: 12.1 ± 2.2 s (SEM), PRKO: 10.2 ±1.4 s
(SEM); right object: WT: 11.1 ± 1.9 s (SEM), PRKO: 11.9 ±2.3 s
(SEM); training data are from mice that were trained before
receiving treatment]. The durations spent within 5 cm of the
object, directly in contact, investigating and/or orienting toward
the objects were automatically recorded using Any-Maze for the
training and testing trials. Immediately after training, mice were
injected with vehicle and/or progesterone. Mice were tested in
this task 4 h after training. During testing, there was a novel object
and a familiar object (i.e., the object that mice had been trained
with) and mice freely explored in the testing chamber for 3min.
The duration of time the mice spent exploring the familiar and
novel objects were recorded.

T-maze
Spontaneous alternation was assessed in the T-maze, which has
a clear Plexiglas start box connected to a start arm (30.5 × 9 ×

7 cm) and two goal arms (17.8 × 9 × 7 cm). Mice were placed
in the start box 1 h after vehicle or progesterone treatment. The
door was opened and following one forced trial (where either the
left or right side was blocked in a random fashion), the number
of spontaneous alternations made to each goal arm was assessed
for 13 consecutive trials (max latency = 900 s). Each of the 13
trials consisted of the mouse fully returning to the start arm and
then, entering the right or left goal arm (13, 59). Data were hand-
collected by an experimenter and videos of trials were recorded
using Any-Maze or a video-camera. The index of performance in
this task is the number of successful alternating trials out of 13
possible trials.

Water Maze
The water maze was filled with 25◦C tap water and was made
opaque by the addition of white non-toxic tempera paint. Mice
were habituated to the maze by allowing them to swim in the
watermaze with the hidden platform (8× 8 cm) in it. After 1min,
mice were placed on the hidden platform for 10 s. Following
habituation, mice were trained in twelve 1-min trials which were
organized into 3 blocks of 4 trials with a randomized starting
position in the maze represented during each of these 4 trials
in the block. There were 3 different starting positions in the
maze. In each trial, mice had 60 s to find the clear platform
in the opaque water (hidden platform). Latencies to find the
platform and distance traveled were recorded simultaneously
by the experimenter and the Any-Maze tracking program. Each

block of trials had a 30min inter-trial interval. Mice were injected
with vehicle or progesterone immediately after the last training
trial. Before the probe trial to assess spatial memory, the hidden
platform was removed from the water maze. Thirty minutes
following vehicle or progesterone administration, mice were
returned to the water maze at a random position. The latency to
return to the quadrant that had the platform, and the duration
of time spent in that quadrant, were the indices of cognitive
performance in this task. Immediately after the probe trial, mice
were tested in a cued trial of the water maze to assess their ability
to swim to a platform in the maze. During this trial, the latency
of mice to swim to a platform that is made visible and cued is
determined to rule out the ability to perform the task (13, 30).
There were no differences between groups in these measures
(data not shown).

Tissue Collection
Immediately after testing in the water maze, mice were
euthanized by cervical subluxation and decapitation. Whole
brains were collected frommice and stored frozen at−70◦C until
brain regions were processed for enzyme-linked immunosorbent
assays (ELISA), progesterone, allopregnanolone, BDNF, PR
binding and muscimol binding. The cortex and hippocampus
were grossly dissected from the whole brain on ice prior to steroid
and BDNF measurement.

Sample Preparation
The cortex and hippocampus were dissected out and
homogenized with a pestle in 500 microliters of distilled
water in a microcentrifuge tube and centrifuged for 10min at
3,000 x g. Protein concentrations in each sample were measured
using a Nanodrop Spectrometer (Thermo Scientific, Federal
Way, WA).

Allopregnanolone, Progesterone and BDNF
ELISAs
Analyses of allopregnanolone and progesterone were per
standard methods of the ELISA kits purchased from Arbor
Assays (Ann Arbor, MI). Fifty microliters of homogenized
sample were added to each well.

Analyses of BDNF were per standard methods of the Emax
Immunoassay system [Promega, Fisher Scientifics; (12, 60, 61)].
Brain homogenates were homogenized in 10 microliters of
cell lysis buffer (Qiagen) with a pestle in a microcentifuge
tube. Fifty microliters of these prepared homogenates were
diluted in 4 volumes of Dulbecco’s Phosphate-Buffered Saline
(Fisher Scientific). Diluted samples were acid-treated by adding
1 microliter of 1N HCl, incubating for 15min at room
temperature, and then neutralizing the samples by adding 1
microliter of 1 N NaOH.

For allopregnanolone, progesterone and BDNF ELISA, 50
microliters of prepared Detection Reagent A was immediately
pipetted into wells. Plates were shaken, mixed and incubated
for 1 h at 37◦C. Samples were then aspirated and washed 3
times with 350 microliters of 1x wash buffer. Any remaining
liquid from all wells was removed completely by snapping the
plate onto absorbent paper. Next, 100 microliters of prepared

Frontiers in Endocrinology | www.frontiersin.org 4 January 2021 | Volume 11 | Article 552805

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Frye et al. Progesterone Cortical-Behaviors & GABAA-Function w/o PRs

Detection Reagent B was pipetted into each well and incubated
for 30min at 37◦C. Plate was then aspirated and washed 5 times
with 350 microliters of 1x wash buffer and any remaining liquid
was removed from wells by snapping the plate onto absorbent
paper. Then, 90 microliters of substrate solution was pipetted
into each well and incubated for 15–25min at 37◦C and placed
in the dark where the liquid turned blue. Lastly, 50 microliters
of stop solution was pipetted into each well and gently tapped.
The addition of the stop solution turned the liquid yellow.
Immediately after, the plate was read at 450 nm on a microplate
reader (Bio-tek, Thermo Scientific, Federal Way, WA).

Progestin Receptor Binding
Progestin receptors in hippocampus and cortex were investigated
in n = 5 mice per group to confirm that backcrossing PRKOs
to make them congenic on our c57UA strain did not alter
their brain levels of progestin receptors. We used the tritiated
synthetic competitive binding assay as previously described
(54, 55) with RU5020 (promegestrone; 17α, 21-dimethyl-19-
nor-pregna-4,9-diene-3,20-dione), which has a Kd of 0.4 nM
for progestin receptors (62). Progestin receptors are found
in pituitary, reproductive tract and most estrogen receptor-
containing brain regions (62). There are also progestin receptor
sites in brain areas lacking estrogen receptors, such as the cerebral
cortex, which are similar to those induced by estradiol.

Muscimol Binding
As per our previous methods (63), tissues were thawed
and resuspended in 0.05M Tris-HC1 buffer to a protein
concentration of 0.8mg protein per tube in a final volume of
0.5ml. [3H] muscimol (NET 574, spec. act. 14.72 Ci/mmol,
New England Nuclear, Boston, MA, USA) at 10–100 nM
concentrations was added and incubation was continued at 4◦C
for 30min. Non-specific binding was determined by addition of
1mM cold GABA as a displacer of bound [3H] muscimol. The
bound and free fractions were separated by vacuum filtration
through GF/C glass filters and washed twice very quickly with
0.05M Tris buffer [89]. Filters were placed in scintillation vials
to dry overnight. The next day, scintillation cocktail was added
and the vials were counted for radioactivity and degradations per
minute were calculated. The Emax of specific muscimol binding
was used as the variable of interest.

Statistical Analyses
For all measures except the T-maze task, two-way ANOVAs
were used to determine effects of hormone condition (vehicle or
progesterone) and genotype (wild-type or PRKO). Two subjects
were removed from the main cohort, as they varied more than 2
standard deviations from the mean in their group. One subject
was from the wild-type progesterone group and the other was
from the wild-type prko group. This resulted in an equal number
of observations across groups (n = 12/group) and no question
as to the adherence of the assumptions of the premises of
the ANOVAs. A X2-square test of independence with Yates
correction was performed to examine the relationship between
progesterone and genotype and the ability to alternate in the T

maze. The α level for statistical significance was p≤ 0.05. Fisher’s
post-hoc tests were used to examine group differences.

RESULTS

Progesterone to PRKO and Wild-Type Male
Mice Enhances Object Recognition
Progesterone administered mice spent significantly more time
with the novel object during testing in the object recognition
task. Wild-type and PRKO mice administered progesterone
spent more time spent with the novel object compared to their
vehicle administered counterparts [(F (1, 44) =22.88, P < 0.001)
see Figure 1, top]. There were neither effects of genotype, nor
significant interactions of genotype and progesterone, for time
spent with the novel object during testing.

Progesterone to PRKO and Wild-Type Male
Mice Results in More Spontaneous
Alternation in the T-maze Task
A chi-square test of independence was performed to examine
the relationship between progesterone and genotype and the
ability to alternate in the T maze. The relationship between these
variables was significant, according toX2 with Yates correction (4,
N = 48)= 8.9, p= 0.02. Mice, irrespective of wild type or PRKO,
administered progesterone made significantly greater number of
alternations in the T-maze than did vehicle-administered mice.
Indeed, progesterone administered mice made approximately
twice the number of spontaneous alternations than did their
vehicle-administered counterparts. See Figure 1, middle.

Progesterone to PRKO and Wild-Type Male
Mice in the Water Maze Task
Hormone condition and genotype interacted, such that PRKO,
vehicle-administered mice had longer latencies to find the
quadrant where the platform had been, compared to all other
groups [F (3, 44) = 22.87, P < 0.0001]. Progesterone and genotype
also interacted in that PRKO, vehicle-administered mice, spent
less time in the quandrant where the platform had been located
compared to all other groups [F (3, 44) = 13.56, P < 0.0001] See
Figure 1, bottom. There were no significant differences for the
time spent in the quadrant of the hidden platform during the
probe trial and the latency to find the platform in the cued trial
indicating initial performance variables were not a factor (data
not shown).

Progesterone Increased Plasma
Progestogens in PRKO >Wild-Type Male
Mice
Progesterone condition and genotype significantly interacted
to influence circulating plasma progesterone [F (1, 16) = 69.77,
P < 0.0001] and allopregnanolone [F (1, 16) = 28.59, P <

0.0001]. PRKOmice administered progesterone had significantly
higher circulating progesterone (see Figure 2, top left) and
allopregnanolone (see Figure 2, top right) levels compared to all
other groups.
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FIGURE 1 | Results from the vehicle wildtype mice are represented by white bars, P4 wildtype by stippled bars, vehicle PRKO by black bars, and P4 PRKO mice are

represented by diagonally striped bars. There are 12 animals per experimental group. The top panel represents mean time (in secs) spent with novel object (±S.E.M.).

Wildtype or PRKO male mice administered P4 had enhanced cognitive performance in the object recognition task compared to vehicle administration among

wild-type and PRKO mice. The middle panel indicates the mean number of spontaneous alternations (±S.E.M.) in the T-maze out of 13 trials. Wildtype or PRKO male

mice administered P4 had ac greater number of spontaneous alterations in the T-maze compared to vehicle administered groups. The bottom panel represents the

mean number of seconds spent in the quadrant (±S.E.M.) where the hidden platform had been in previous trials. PRKO vehicle mice spent significantly less time in the

quadrant than did all other groups.

Frontiers in Endocrinology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 552805

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Frye et al. Progesterone Cortical-Behaviors & GABAA-Function w/o PRs

FIGURE 2 | The results from the vehicle wildtype mice are represented by white bars, P4 wildtype by stippled bars, vehicle PRKO by black bars, and P4 PRKO mice

are represented by diagonally striped bars. The top left panel represents plasma progesterone levels (n = 5/group) whereas the top right panel represents plasma

allopregnanolone levels (n = 5/group). Progesterone administration significantly increased progesterone and allopregnanolone levels for PRKO > wild-type male mice.

The middle panel represents central levels of progesterone in the hippocampus left side and cortex right side (n = 17/ this and all other brain groups). The bottom

panel represents central levels of allopregnanolone in the hippocampus left side and cortex right side (n = 17/group). Progesterone administration significantly

increased hippocampal and cortical progesterone and allopregnanolone levels for both wild-type and PRKO male mice.
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Progesterone and Genotype Interacted
With Progestogens in Cortex Not
Hippocampus
Progesterone [F (1, 64) =405.86, P < 0.01] and genotype [F (1, 64)

=5.27, P< 0.05] conditions significantly influenced hippocampal
levels of progesterone. Progesterone administration produced
hippocampal levels of progesterone around 3.25 ng/g compared
to vehicle 0.58 ng/g. PRKOs had mean levels of progesterone
around 2.1 ng/g compared to wild-types 1.8 ng/g (see Figure 2,
middle right).

Progesterone condition and genotype significantly interacted
to influence cortical progesterone levels [F (1, 64) = 4.80, P <

0.03]. PRKO mice had significantly higher levels of progesterone
in the cortex (see Figure 2, middle left) compared to all
other groups.

Progesterone Has Effects Irrespective of
Genotype to Alter Central
Allopregnanolone
Progesterone [F (1, 64) = 202.10, P < 0.0001] condition
significantly influenced hippocampal levels of allopregnanolone.
Progesterone administration produced hippocampal levels of
allopregnanolone around 5.2 ng/g compared to vehicle 1.4 ng/g
(see Figure 2, bottom left).

Progesterone [F (1, 64) =80.67, P < 0.0001] condition
significantly influenced cortical levels of allopregnanolone.
Progesterone administration produced cortical levels of
allopregnanolone around 2.6 ng/g compared to vehicle 1.3 ng/g
(see Figure 2, bottom right).

Progesterone Increased Progestin
Receptor Binding Sites in Hippocampus
and Cortex Cortex of Wild-Type but Not
PRKO Male Mice
Progesterone condition significantly interacted with genotype to
influence [3H] RU5020 Emax moles/g in the hippocampus [F

(1, 16) =12.14, P < 0.001]. Progesterone administration produced
increased PR binding to ∼3.5 moles/g compared to all other
groups, which averaged 1.7 (see Figure 3, top left).

Progesterone condition significantly interacted with genotype
to influence [3H] RU5020 Emax N/g in the cortex [F (1, 16)

=252.11, P < 0.0001]. Progesterone administration increased PR
binding to∼4.3 moles/g among wild-types compared to all other
groups, which averaged 2.2 (see Figure 3, top right).

Progesterone Increased BDNF Levels in
Hippocampus but Not Cortex of PRKO and
Wild-Type Male Mice
There was a significant main effect of progesterone to increase
BDNF levels in the hippocampus [F (1, 46) =4.70, P < 0.008]
irrespective of genotype (see Figure 3, middle left).

Progesterone, compared to vehicle administration, increased
BDNF levels in the hippocampus. There was neither an effect
of genotype, nor an interaction between genotype and hormone

condition. These effects were not observed in the cortex (see
Figure 3, middle right).

Progesterone Increased E max Muscimol
Binding in Cortex of PRKO and Wild-Type
Male Mice
Progesterone administration significantly enhanced maximal 3H
muscimol binding in the hippocampus irrespective of genotype
[F (1, 16) =2,030.41, P = 0.0001]. See Figure 3, left. There
was no difference between muscimol binding of wild-type and
PRKO mice.

Progesterone administration significantly enhanced maximal
3H muscimol binding in the cortex irrespective of genotype
[F (1, 16) =2,202.02, P = 0.0001]. See Figure 3, right. There
was no difference between muscimol binding of wild-type and
PRKO mice.

DISCUSSION

This study generally supports our a priori hypothesis that
progesterone, compared to vehicle, to male PRKO and wild-
type mice could improve cognitive performance. In the water
maze task, wild-type mice tended to outperform PRKO
mice, where wild-type mice had shorter latencies to find
the hidden platform compared to PRKO mice. However,
in the object recognition and T-maze tasks, progesterone
improved performance in both the PRKO and wild-type
mice. Progesterone administered to wild-type and PRKO mice
higher progesterone levels in the hippocampus and cortex.
On the contrary, PRKO mice had higher allopregnanolone
in the hippocampus and cortex compared to wild-type mice.
Moreover, wild-type, but not PRKO, mice had higher BDNF
levels in the hippocampus with progesterone administration
compared to vehicle administration. No differences were seen
in the cortex for progesterone to increase BDNF levels. Yet,
muscimol binding in cortex was similarly increased in wt and
PRKO mice administered progesterone. Thus, progesterone’s
actions in wild-type and PRKO male mice to enhance cognitive
performance may be associated with allopregnanolone and/or
BDNF expression, in the hippocampus, or cortical increases in
allopregnanolone and GABAA activity.

In the present study, progesterone improved cognitive
performance in the object recognition and T-maze task among
wild-type and PRKO mice. This finding extends previous
published data. Progesterone treatment immediately post-
training enhances object recognition in young (14), middle-aged,
and aged (64) mice. Also, progesterone administration to young
and/or aged mice improved cognitive performance in these
tasks (13, 60). However, in the water maze task, wild-type mice
tended to outperform PRKO mice. There are beneficial effects
of post-training progesterone on spatial memory consolidation
in the Morris water maze in mice (64). In addition, it has
been previously observed that aged wild-type mice outperform
PRKO mice (57). Although, PRKO mice have reduced levels of
PR binding (65, 66), there are significant increases in cognitive
behavior of progesterone administered PRKO andwild-typemice
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FIGURE 3 | The vehicle wildtype mice results are represented by white bars, P4 wildtype by stippled bars, vehicle PRKO by black bars, and P4 PRKO mice are

represented by diagonally striped bars. The top panel represents Emax progestin receptor binding (n = 5/group) in the hippocampus in the left panel, and cortex in the

right panel. Only wild-type mice administered progesterone showed significant increases in progestin receptor binding. The middle panel represents BDNF levels (n

= 12/group) in the hippocampus in the left panel, and cortex in the right panel. BDNF levels were only increased in progesterone administered wild-type mice in the

hippocampus. The bottom panel represents maximum muscimol binding (n = 5/group) in the hippocampus in the left panel, and cortex in the right panel. Both

wild-type and PRKO male mice administered progesterone showed significant increases in the maximal binding of the GABAa agonist mucimol.
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concomitant with increased levels of allopregnanolone in the
hippocampus (29). Progesterone can also have beneficial effects
in other behaviors. For example, progesterone has beneficial
effects for sexual behavior, motivation, anxiety, response to drugs
of abuse (24) and also, depressive-like behaviors (54). Thus,
progesterone exerts beneficial effects on cognition as well as
other behaviors.

Progesterone can also have neuroprotective effects in the
brain. The neuroprotective effects of progesterone have been
demonstrated in rodent models of neurodegeneration (67),
brain ischemia/stroke (68–71), and traumatic brain injury
(TBI) (72–78). Moreover, progesterone limits the extent of
tissue damage and the impairment of motor functions in
an animal model of stroke (77). Furthermore, progesterone
has neuroprotective and cognitive enhancing effects however
progesterone also can have beneficial effects in other disorders
(i.e., Alzheimer’s, Parkinson etc.). Thus, progesterone can have
neuroprotective and cognition enhancing, which support the
purpose of such investigations.

BDNF levels were increased in the hippocampus with
progesterone administration to wild-type, but not PRKO, mice
compared to vehicle administration. As such, these findings add
and extend the literature on interactions between progesterone
and growth factors. In support, progesterone failed to elicit an
increase in BDNF in PRKO mice but induced an increase in
BDNF levels of wild-type mice (79). This evidence has suggested
that classical intracellular/nuclear PR would be the principle
mediator of the effects of progesterone on BDNF expression
because this effect was inhibited by the pharmacological inhibitor
of PRs, Mifepristone, and was lost in PRKO mice (79). In
addition, levels of BDNF in the cortex and hippocampus
were lowest among mice administered a synthetic progestin,
medroxyprogesterone acetate, that does not act like progesterone
to induce allopregnanolone synthesis, suggesting a downstream
role of this growth factor (12, 79). Indeed, progesterone increased
BDNF levels; however, this may only be possible by way of
its metabolite, allopregnanolone. Furthermore, among young
cycling rodents, manipulation of allopregnanolone synthesis in
the midbrain alters expression of BDNF in the hippocampus
(61). Others have noted that allopregnanolone alters BDNF
expression in other limbic structures, such as the amygdala
and hypothalamus, in addition to the hippocampus (80).
Together, production of allopregnanolone in the hippocampus
may be required for progesterone’s mnemonic effects to increase
BDNF levels.

In the present study, allopregnanolone levels were increased
in the hippocampus and cortex of PRKO and wild-type mice.
This may be due to increased activity of the stress axis, which
can interact to alter circulating and brain levels of steroids
(e.g., neurosteroids), particularly among mice. Though PRKO
mice had increased levels of allopregnanolone, this was not
associated with increased BDNF levels, which support the notion
that PRs may not be involved for cognitive improvements with
progesterone administration. It must be noted that levels of
allopregnanolone and progesterone are very low in male mice,
but they are not completely absent. This may be because there
can be de novo synthesis of allopregnanolone in the brain itself,

in addition to metabolism of circulating progesterone. Indeed,
it may be that these levels of allopregnanolone were produced
via actions in the hippocampus, cortex and/or other regions
in this circuit involved in the behaviors observed. Another
consideration is that the behavioral effects of PRKO mice may
be less related to effects on production of allopregnanolone,
or even other steroids that can be derived in the periphery
or brain (progesterone), but may relate more to different rates
of clearance of neuroactive steroids. Moreover, these effects
may be related to increased rates of progesterone conversion
to allopregnanolone, which is known to increase following
environmental stressors (e.g., cold water swim, restraint) as
well as social challenges (e.g., mating) and mitigates stress
responding [reviewed in (24, 81, 82)]. Furthermore, this may
explain the difference that was shown in the water maze task
(latency to find the platform). The water maze requires a high
degree of physical activity (swimming), remembering where a
hidden escape platform is located in the pool, and a probe trial.
Although this was not directly tested in the present study, the
water maze task may be associated with an increased stress
response in PRKO mice, which could lead to higher levels of
allopregnanolone in circulation among both progesterone and
vehicle administered mice. Thus, clearance of neurosteriods
and/or stress responsiveness may play an important role
in allopregnanolone production. Further investigation of this
is substantiated.

CONCLUSION

In conclusion, progesterone can have beneficial effects for
cognitive performance among males. An important piece to this
story may be progesterone’s metabolite, allopregnanolone, and
effects on BDNF levels in the hippocampus or GABAA receptors
in the cortex.

IMPLICATIONS

Progesterone and its neuroactive metabolite, allopregnanolone,
cognitive effects’ among males is not well-understood and is
addressed in this study. Progesterone (4 mg/kg, or oil vehicle SC)
administered post-training in hippocampus and/or cortex tasks
to wild type or mice lacking functional nuclear PRs. In the water
maze task, wild-type mice tended to outperform PRKO mice.
Progesterone enhanced performance of irrespective of genotype
in the water maze, object learning and T-maze. Progesterone, but
not vehicle, increased progesterone and allopregnanolone levels
of wild-type and PRKO mice; albeit, PRKO mice had higher
allopregnanolone levels than did wild-type in the hippocampus
and cortex. Wild-type mice administered progesterone, but
not vehicle, had increased BDNF levels in the hippocampus
compared to PRKOs. Thus, male mice can be responsive to
progesterone for learning/memory, and such effects do not
require PRs, but may be associated with allopregnanolone
and BDNF levels in the hippocampus or GABAA activity in
the cortex.
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