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Bone is comprised of mineral, collagenous organic matrix, and water. X-ray-based
techniques are the standard approach for bone evaluation in clinics, but they are
unable to detect the organic matrix and water components in bone. Magnetic
resonance imaging (MRI) is being used increasingly for bone evaluation. While MRI can
non-invasively assess the proton pools in soft tissues, cortical bone typically appears as a
signal void with clinical MR techniques because of its short T2*. New MRI techniques have
been recently developed to image bone while avoiding the ionizing radiation present in x-
ray-based methods. Qualitative bone imaging can be achieved using ultrashort echo time
(UTE), single inversion recovery UTE (IR-UTE), dual-inversion recovery UTE (Dual-IR-UTE),
double-inversion recovery UTE (Double-IR-UTE), and zero echo time (ZTE) sequences.
The contrast mechanisms as well as the advantages and disadvantages of each
technique are discussed.

Keywords: cortical bone, trabecular bone, MRI, UTE–ultra-short TE, single inversion recovery UTE, zero echo
time MRI
BACKGROUND

Osteoporosis (OP) is a bone disease which affects millions of people around the world (1) and can
lead to serious long-term disability in many patients. OP development always occurs in synchrony
with increases in cortical bone porosity and with trabecular bone deterioration (2). The
development of non-invasive imaging techniques to evaluate bone structural properties and
stability is crucial to improved diagnosis of OP and monitoring of OP patients undergoing
medical treatments.

Bone is a highly complex hierarchical structure (3) of organic matrix combined with
hydroxyapatite calcium phosphate (HA) crystals. From the architectural point of view, cortical
bone (compact) and trabecular bone (spongy) are two main morphologies of the bone tissue with
approximate porosities under 20% and over 80%, respectively (2, 4). Cortical bone comprises
around 80% of human bone mass (5, 6). Trabecular bone generally exists surrounded by cortical
bone near joints. Despite large pores in trabecular bone sites, most cortical porosities are limited to
pores below 100 µm in size (7, 8).
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Water in cortical and trabecular bone exist in different states
and at various locations (7, 9). In healthy bone, the main portion
of water exists in “bound” form to HA crystals and to the
collagenous matrix (6, 8, 10). The remaining water volume in
bone resides in pores ranging from sub-microns to hundreds of
micrometers in size (7, 8). Bound water indicates the bone mineral
and collagenous matrix, while pore water indicates the porosity of
bone (11, 12). Average bound water T2* is approximately 300 µs
whereas pore water T2* is longer than 1,000 µs and can reach up to
several milliseconds (10, 13–15). Collagen protons have extremely
short T2*s, on the order of several microseconds (10).

Bone mineral density (BMD) measurement has been the
standard bone evaluation method in clinics performed using
x-ray-based techniques including dual-energy x-ray absorptiometry
(DEXA) and quantitative computed tomography (QCT) (2, 16,
17). DEXA-based measurement of BMD is non-reliable due to
very low resolution and its 2D nature. BMD as a predictive
clinical measurement is quite limited in its representation of
bone microstructure and, consequently, of bone fragility,
functionality, and fracture risk (18–21). However, these non-
mineral components may describe the bone microstructural and
biomechanical properties independently from BMD. Although,
QCT enables the measurement of bone microstructure in
addition to BMD however it comes with a high radiation dose.

Employing magnetic resonance imaging (MRI) for bone
evaluation has been increasingly reported in the literature.
MRI-based techniques for bone evaluation avoid the potential
harm associated with x-ray-based imaging techniques (5, 6, 16,
22). MRI-based bone evaluation can also provide valuable
evaluation of the surrounding soft tissues including tendons
(23) and muscles, advantages that are not available in x-ray-
based techniques. Bone has a short apparent transverse
relaxation time (T2*) and is typically visualized with a void
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signal when using conventional clinical pulse sequences with
echo times (TEs) of a several milliseconds or longer (24, 25). The
lack of direct signal originating from bone impairs the ability of
conventional MRI sequences to provide any qualitative or
quantitative bone assessments. It should be noted that MRI has
been used in the past to measure bone microstructure via
indirect visualization of the dark regions (bone) in high-
resolution conventional acquisitions, however, this approach is
limited to distal bone sites and is very motion-sensitive (9, 26).
Recently, new MRI techniques such as ultrashort echo time
(UTE)-MRI have been developed for direct bone imaging and
associated quantitative measurements (5, 6, 16, 22).

Qualitative bone imaging can be achieved using conventional,
ultrashort echo time (UTE), adiabatic inversion recovery UTE (IR-
UTE), dual-inversion recovery UTE (Dual-IR-UTE), double-
inversion recovery UTE (Double-IR-UTE), UTE with rescaled
echo subtraction (UTE-RS), Fat suppression UTE, Water- and fat-
suppressed proton projection imaging (WASPI), and zero echo
time (ZTE) sequences. The contrast mechanisms as well as the
advantages and disadvantages of each technique are discussed in
detail. A brief comparison between discussed MRI techniques is
presented in Table 1. This review will be an update to our
previously published review paper in 2013 (6). As UTE-MRI
bone imaging field is experiencing fast growth, it is believed that
revisiting this review topic would be benedictional to bone
imaging society.
UTE AND IR-UTE PULSE SEQUENCES
AND THEIR CONTRAST MECHANISM

Both UTE and IR-UTE sequences have been developed for
imaging of cortical and trabecular bone as described in the
TABLE 1 | Comparing qualitative MRI techniques for bone imaging.

MRI technique Relative
bone signal

Visualized
proton pool

Contrast Cortical or
trabecular

bone

B0
sensitivity

B1
sensitivity

Scan
time-efficiency*

Appropriate for
axial bone sites

(e.g., spine, pelvis)

Conventional FSE (27) Very Low Water in large
pores

High (reverse
contrast)

Partial cortical
bone

Insensitive Insensitive High High

Conventional STE (28) Very Low Water in large
pores

High (reverse
contrast)

Partial cortical
bone

Sensitive Insensitive High High

Basic UTE (6, 8, 10, 13, 15, 29) High Bound and
pore water

Low Cortical bone Insensitive Insensitive Relatively high High

IR-UTE (25, 30–39) High Bound water High Cortical and
trabecular bone

Insensitive Insensitive Low High

Dual-IR UTE (33, 40, 41) High Bound water High Cortical and
trabecular bone

Sensitive Insensitive Low Moderate

Double-IR UTE (42) High Bound water High Cortical and
trabecular bone

Insensitive Insensitive Low High

Fat suppression UTE (43–45) High Bound and
pore water

Moderate Cortical and
trabecular bone

Sensitive Insensitive Moderate Moderate

UTE-RS (46, 47) High Bound and
pore water

High Cortical bone Sensitive Insensitive Moderate Moderate

WASPI (48–51) High Bound water High Cortical and
trabecular bone

Sensitive Sensitive Relatively low Moderate

ZTE (52–56) Moderate (low
flip angle)

Bound and
pore water

Low Cortical bone Insensitive Insensitive Relatively high High
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following sections. Representative 3DUTE and IR-UTE sequences
are shown in Figure 1. The basic 3D UTE sequence (Figure 1A)
employs a short radiofrequency (RF) rectangular pulse (duration =
26–52 µs) for signal excitation followed by 3D radial ramp
sampling with minimal nominal TEs of 8 to 50 µs depending on
the hardware. For 3D UTE Cones sequence, sampling is
performed over a k-space divided into multiple cone shapes
with twisted radial trajectories along each cone. The Cones
trajectories are more time-efficient than radial trajectories in
covering 3D k-space (46), and resolve the limitations associated
with 2D UTE sequences, namely, sensitivity to eddy currents (57).
Furthermore, the 3D UTE Cones sequence allows anisotropic
fields of view and spatial resolution, resulting in reduced scan
times (58–60). For 2D UTE imaging the rectangular pulse is
replaced with a half RF pulse for slice selective excitation. Both
bound water and pore water can be detected using the basic UTE
sequences (Figure 1B) (14). Adiabatic inversion recovery prepared
Frontiers in Endocrinology | www.frontiersin.org 3
UTE (IR-UTE) sequences have been developed for selective
imaging of collagen-bound water (Figure 1C). With the IR-UTE
sequence, a Silver-Hoult adiabatic inversion pulse (duration = 8.64
ms) is used to invert the pore water longitudinal magnetization.
The longitudinal magnetization of bound water with a very short
T2* cannot be inverted, but can be largely saturated, by the
adiabatic IR pulse due to major relaxation of bound water
magnetization during the adiabatic inversion pulse. The UTE
acquisition is initiated to selectively detect signal from bound
water only after an inversion time (TI) when the inverted pore
water magnetization approaches the null point (Figure 1D).
CONVENTIONAL MR FOR BONE IMAGING

Conventional MRI sequences generally visualize the bone tissue
with a signal void surrounded by bright signal from adjacent soft
A
B

D

E F

C

FIGURE 1 | (A) The 3D UTE and (C) IR-UTE sequences, as well as the contrast mechanisms for imaging of (B) total water and (D) collagen-bound water. The UTE
sequence employs a short rectangular pulse for signal excitation followed by 3D radial ramp sampling with a minimal nominal TE of 8 µs. The schematic time point
for UTE acquisition at TE of 8 µs is shown in B. The IR-UTE sequence employs an adiabatic inversion pulse to invert and null the pore water magnetization. The
collagen-bound water magnetization is not inverted and is detected by the subsequent UTE data acquisition. For 2D UTE and IR-UTE imaging the rectangular pulse
is replaced with a half RF pulse for slice selective excitation. (E) Dual-IR and (F) Double-IR UTE sequences combined with the contrast mechanism for bone imaging
(bound water). The Dual-IR UTE sequence utilizes two adiabatic IR pulses with center frequencies of 0 and −440 Hz with narrow bandwidth of around 500 Hz (fat
frequency offset at 3T) to invert long T2 water and fat, respectively. The Double-IR UTE sequence utilizes two identical adiabatic IR pulses with a center frequency of
−220 Hz with broad bandwidth of no less than 1000 Hz (half of the fat frequency offset at 3T) to invert both long T2 water and fat. Bone signal is largely saturated by
each adiabatic IR pulse due to its fast T2* relaxation during the inversion period. At the optimized TI1 and TI2 in both Dual- and Double-IR UTE sequences, both long
T2 water and fat can be suppressed simultaneously, and the bone signals can be acquired with multiple UTE spokes This figure was partially presented before by
Ma et al. (42). Reprinting permission is granted through Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for
presentation purposes. RF, radio frequency pulse; TE, echo time; Gx,y,z, gradient magnetic field in X, Y, Z directions; DAW, data acquisition window; Mz, longitudinal
magnetization; Mxy, transverse magnetization; CW, collagen-bound water; PW, pore water; IR, inversion recovery; TI, inversion time.
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tissues. Pore water may compose up to a quarter of the bone volume
and possesses a short T2* and relatively long T2 (up to 100 ms) (10,
13–15). Therefore, some conventional fast spin echo (FSE) (27) and
short echo time (STE) c sequences have the potential to image pore
water in cortical bone, even though clinical gradient recalled echo
(GRE) sequences are not capable of pore water imaging, as shown
in Figure 2 (Figures 2A, B) and Figure 3A. Consequently, FSE and
STE techniques might be useful in qualitative imaging of highly
porous cortical bone sites, which can be found more in elderly
cohorts. Nevertheless, qualitative imaging of cortical bone with low
porosity requires more advanced MR imaging techniques.
UTE MR BONE IMAGING

UTE MRI sequences with nominal TEs around tens of
microseconds or less can detect signals from both bound water
(T2* ≈ 300 µs) and pore water (T2* > 1,000 µs) pools in cortical
bone, as demonstrated in Figure 2 (Figures 2C, D) (6, 13).
Frontiers in Endocrinology | www.frontiersin.org 4
Collagen protons have extremely short T2*s (T2* on the order of
several microseconds) and are not detectable, even when using
UTE MRI sequences. The effective TEs in UTE are significantly
longer than the T2*s of collagen backbone protons (≈ 10 µs)
because of the use of a relatively long RF excitation pulse as well as
time-consuming ramp sampling (8, 10, 15, 29). UTEMRI imaging
results in high in vivo signal of bone, but it is still lower than the
signal from surrounding soft tissues, which in turn leads to
relatively low contrast as demonstrated in Figure 3B. Improving
the UTE contrast in bone imaging requires fat suppression in
trabecular bone sites while fat and soft tissue suppression in cortical
bone sites. Moreover, pore water suppression can improve the
cortical bone UTE contrast by imaging only the bound water.
IR-UTE MR IMAGING OF CORTICAL BONE

Adiabatic inversion recovery (IR) preparation pulses have been
suggested in different studies to suppress long T2 tissue components
FIGURE 2 | (A) Conventional fast spin echo (FSE), (B) gradient echo (GRE), (C) 3D ultrashort echo time (3D UTE), (D) 3D adiabatic inversion recovery UTE (3D IR-
UTE) MRI images in axial plane of a piece of human cortical bone harvested from the anterior tibial midshaft. FSE and GRE only detect signal from pore water, likely
in Haversian canals (indicated with yellow arrow). UTE MRI results in high signal from all sites of the bone specimen. IR-UTE detects signal from bone with much
higher contrast than UTE MRI can. his figure was previously presented by Du et al. (13). Reprinting permission is granted through Rightslink system. The figure is
modified for presentation purposes. Minor modifications were performed for presentation purposes.
FIGURE 3 | (A) Conventional gradient echo (GRE), (B) ultrashort echo time (UTE), and (C) adiabatic inversion recovery UTE (IR-UTE) image in axial plane of the
lower leg. GRE results in void signal in bone. UTE MRI results in high signal for bone, but low contrast. IR-UTE results in higher contrast between cortical bone and
surrounding soft tissue, similar to that can be seen in CT. This figure was previously presented by Jerban et al. (61). Reprinting permission is granted through
Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D UTE sequence parameters:
FOV = 14×14×14 cm3; voxel size = 0.7×0.7×5 mm3, scan time » 3.2 mins. 3D IR-UTE sequence parameters: FOV = 14×14×14 cm3; voxel size = 0.7×0.7×5 mm3,
TR/TI = 300/110 ms, scan time » 3.5 mins.
September 2020 | Volume 11 | Article 555756

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Jerban et al. Qualitative UTE MRI of Bone
and increase the contrast in UTE MR imaging of cortical bone
(Figure 1). The bound water component in cortical bone can be
selectively imaged with both 2D and 3D IR-UTE sequences. In both
cases, a relatively long adiabatic IR pulse (e.g., Silver-Hoult pulse,
8.64 ms in duration) is employed to invert the longitudinal
magnetizations of first, long T2 water (e.g., free water
components of cortical bone, and water in muscle) and second,
fat in cortical bone and bone marrow (25, 30, 32–34). However, the
simultaneous suppression of pore water, fat, and muscle is highly
challenging due to the significant differences between MR
properties of these three proton pools. Thus, IR-UTE based
imaging of bound water may coexist with some level of pore
water, fat, and muscle contamination. The 2D or 3D UTE data
acquisition starts at an inversion time (TI) designed to allow the
inverted free water and fat longitudinal magnetizations to be at or
close to the null point (Figure 1) (30). Figure 2 shows a comparison
between conventional MRI (FSE and GRE), UTE, and IR-UTE
sequences performed on a piece of anterior tibial cortex imaged in
axial plane. The conventional FSE sequence produces higher signal
in cortical bone compared with the GRE sequence, though both
techniques only detect signal from pore water residing in Haversian
canals. The UTE sequence can detect free water in the pores (high
signal with fine structure) and bound water (uniform background
signal). The signal of the fine structure will disappear using the IR-
UTE sequence which suppresses the free water signal while the
uniform background signal from bound water remains.

Figure 3 shows tibial and fibular midshaft bone in a healthy
young volunteer imaged with GRE, UTE and IR-UTE sequences.
In UTE MRI, bone shows as high signal compared with
conventional MRI technique, but as low signal compared with
surrounding tissues such as marrow fat and muscle. The IR-UTE
technique greatly suppresses signals from both the marrow fat
and muscle, resulting in visualization of cortical bone with a CT-
like contrast that can be used for qualitative bone evaluation.

Adiabatic inversion recovery (AIR) UTE (AIR-UTE) (35, 36)
is an alternative abbreviation used for abovementioned IR-UTE
technique by other groups. AIR-UTE is used to visualize bound
water in cortical bone and provide a qualitative image of cortical
bone structure.
Frontiers in Endocrinology | www.frontiersin.org 5
The IR-UTE-based qualitative bone imaging sequence has
been applied to different bone sites in vivo such as tibia and fibula
(36–38), radius (36), hip (34), and shoulder (39); however, the
contrast and image quality depend on the anatomical location,
coil quality and size, B0 and B1 homogeneity, bone thickness,
image resolution, and slice thickness. These factors affect the
proper visualization of the bone structure, signal to noise ratio
(SNR), suppression uniformity, and image artifacts. Bone sites in
axial skeleton or deeply located in the body such as spine and hip
are more difficult to be scanned compared with tibia and radius
in peripheral bone sites. Specifically, sophisticated thin bone
structure requires high resolution imaging which is highly
sensitive to motion. Larger required coils result in greater B1
inhomogeneity and non-uniform suppression. Figure 4
illustrates coronal images of the hip and femoral head of a
healthy young volunteer using 2D FSE and 3D IR-UTE Cones
sequences (31).
DUAL-IR-UTE IMAGING OF CORTICAL
BONE

Dual-adiabatic inversion recovery (Dual-IR) pulses can also be
employed to invert and null signals from long T2 water and fat,
respectively (33). Dual-IR followed by selective UTE imaging can
detect bound water in cortical bone and provide qualitative bone
evaluations. In this approach, two successive long adiabatic
inversion pulses are employed to invert the longitudinal
magnetization of long T2 water and long T2 fat, respectively (33,
40, 41). The pulse sequence diagram for Dual-IR-UTE is similar to
IR-UTE sequence hovers with an additional inversion recovery
pulse (Figure 1). As a result of a significant transverse relaxation of
cortical bone magnetization with short T2 during the long adiabatic
inversion process, its longitudinal magnetization cannot be inverted
(62). The UTEMRI data acquisition begins after the first delay time
(TI1), which is required for the nulling of the inverted long T2 water
magnetization, and the second delay time (TI2), which is required
for the nulling of the inverted fat magnetization. Figure 5 shows
FIGURE 4 | In vivo imaging of the hip of a 24‐year‐old female volunteer with a (A) clinical 2D T2‐weighted FSE and (B) 3D IR‐UTE Cones sequences. Soft tissues
are well‐suppressed in the 3D IR‐UTE Cones image, while they are bright in the clinical T2‐FSE images. This figure was previously presented by Ma et al. (31).
Reprinting permission is granted through Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for presentation
purposes. 3D IR-UTE sequence parameters: FOV = 38 cm3 × 38 cm3 × 20 cm3; voxel size = 2.4 mm3 × 2.4 mm3 × 5 mm3, TR/TI = 150/64 ms, and scan time ≈

9.5 min.
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representative images of the left distal tibia of a volunteer using
clinical 2D GRE, UTE and Dual-IR-UTE techniques. Cortical bone
is visualized with a void signal using the 2D GRE pulse sequence,
however with a poor contrast using the basic UTE pulse sequence
because of the significant signals acquired from surrounding muscle
and fat. The Dual-IR-UTE sequence suppresses long T2 water
signals, including those from muscle and free water in bone, as
well as from marrow fat, and displays bound water in cortical bone
with high signal and contrast. Dual-IR UTE can be applied to
different body regions. However, this technique only works well for
simultaneous water and fat suppression when the frequency offset
due to the B0 inhomogeneity is less than half of the bandwidth of
the used adiabatic IR pulse.
DOUBLE-INVERSION RECOVERY UTE
(DOUBLE-IR-UTE)

Double inversion recovery (Double-IR) UTE sequence also
employs two adiabatic inversion pulses to invert and null signals
from long T2 tissues (42). Despite Dual-IR-UTE sequence, Double-
Frontiers in Endocrinology | www.frontiersin.org 6
IR-UTE utilizes two identical adiabatic inversion pulses. The center
frequency of these identical pulses are located at the water peak
while their spectral widths are broad enough to cover both water
and fat frequencies (42). These two adiabatic inversion pulses are
applied in sequence with two different inversion times (TI1 and
TI2) in order to invert and null the longitudinal magnetizations of
long T2 muscle and fat. Similar to Dual-IR-UTE technique, due to
the significant transverse relaxation of the cortical bone
magnetization during the long adiabatic inversion pluses, its
longitudinal magnetization cannot be inverted. The pulse
sequence diagram for Double-IR-UTE is similar to IR-UTE
sequence hovers with an additional inversion recovery pulse
(Figure 1). Figure 6 shows representative images of the left distal
tibia of a volunteer using clinical 3D GRE, UTE and Double-IR-
UTE techniques (42). The Double-IR-UTE demonstrated cortical
bone with high signal and contrast as the signal from long T2 water
and fat were suppressed robustly. Notably, bone was visualized with
a signal void using the 3D GRE sequence, and with a poor contrast
using the conventional UTE sequence.

All the IR-UTE-based techniques (IR-UTE, Dual-IR-UTE,
Double-IR-UTE, and AIR-UTE) appear to provide a uniform
suppression of long T2 water and fat signals, which in turn
FIGURE 5 | The tibial midshaft of a healthy young volunteer imaged with (A) GRE, (B) UTE and dual adiabatic inversion recovery UTE (Dual-IR-UTE) sequences. The
Dual-IR-UTE image (C) selectively suppresses signal from fat and muscle, and which creates high contrast for cortical bone. This figure was previously presented by
Du et al. (33). Reprinting permission is granted through Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for
presentation purposes. 2D UTE sequence parameters: FOV = 10 cm2 × 10 cm2; voxel size = 0.2 cm2 × 0.2 cm2 and scan time ≈ 3 min. 3D Dual-IR-UTE sequence
parameters: FOV = 10 cm2 × 10 cm2; voxel size = 0.2×0.2, TR/TI1/TI2 = 300/140/110 ms, and scan time ≈ 3 min.
FIGURE 6 | In vivo imaging of the lower leg of young healthy volunteer using (A) clinical 3D GRE sequence (no signal in cortical bone), (B) the conventional 3D UTE
sequence (detects signal in cortical bone signal but with low contrast), and (C) the 3D Double-IR-UTE sequence which shows simultaneous suppression of muscle
and marrow fat, providing higher contrast between cortical bone and surrounding soft tissue. This figure was previously presented by Ma et al. (42). Reprinting
permission is granted through Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D
UTE sequence parameters: FOV = 14 cm3 × 14 cm3 × 12 cm3; voxel size = 0.55 mm3 × 0.55 mm3 × 6 mm3, and scan time ≈ 1.3 min. 3D Double-IR-UTE
sequence parameters: FOV = 14×14×12 cm3; voxel size = 1.1 mm3 × 1.1 mm3 × 6 mm3, TR/TI1/TI2 = 200/100/45 ms, and scan time ≈ 2.9 min.
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provides a good qualitative image of the targeted bone. This is
because adiabatic IR pulses are relatively insensitive to B1 and B0
inhomogeneities (41, 62).

To the best of our knowledge, there is no detailed comparison
study for these techniques. Based on our experience, IR-UTE
sequence is more time-efficient than both Dual- and Double-IR
UTE sequences. IR- and Double-IR UTE sequences are much less
sensitive to the B0 inhomogeneity than Dual-IR UTE sequence.
Dual-IR sequence provides a better SNR compared with Double-
IRUTE sequence. It would be interesting to perform a future study
to compare all these techniques regarding the performance of
SNR, CNR, and the corresponding scan efficiency. The
comparisons presented in Table 1 have been prepared based on
the practical experience of the authors.
FAT SUPPRESSION UTE

Human bone exists in combination with bone marrow which
possess high percentage of fat. The fat presence results in
Frontiers in Endocrinology | www.frontiersin.org 7
chemical shifts and average signal oscillation observed in the
multi-echo MRI in T2 fitting analyses (63). Fat suppression
techniques can be used to remove fat signal contamination in
bone assessment and to improve the bone contrast in UTE-MRI.
Chemical shift fat saturation (FatSat), soft-hard water excitation,
and single point Dixon methods have been employed to suppress
fat in UTE bone imaging (43, 44). FatSat is widely used in clinical
MR sequences, however, it is not suitable for bone imaging due to
the strong signal saturation of the wide spectrum band of bone. The
soft-hard pulse has been proposed to overcome the signal
attenuation effect via utilizing a low power soft-pulse for fat
excitation in the opposite direction of the following hard pulse
(43). Figure 7 shows a comparison between tibial and fibular bone
image contrast in vivo obtained using basic UTE, FatSat, and the
soft-hard water excitation techniques (43). The fat signal could be
suppressed well using both the soft-hard pulse and the FatSat
module in the three illustrated slices. However, the cortical bone
signal (indicated by yellow arrow) were much better preserved in
the soft-hard excitation images (Figures 7D–F) (43). Single-point
Dixon method is a postprocessing method to separate water and fat
FIGURE 7 | In vivo UTE Cones imaging of tibial midshaft of young healthy volunteer using (A–C) a single hard pulse excitation (basic UTE), (D–F) the soft-hard water
excitation pulse, and (G-I) the conventional FatSat module. UTE images are presented in three representative slices. Fat was well suppressed by both the soft-hard
pulse and the FatSat module. The cortical bone and coil elements (indicated by yellow arrows in D–F) were much better preserved in the soft-hard excitation images
(D–F) compared with FatSat images (G–I). This figure was previously presented by Ma et al. (43). The reprinting permission is granted through Rightslink system.
The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D UTE sequence parameters: FOV = 12 cm3 × 12
cm3 × 16 cm3; voxel size = 0.63 mm3 × 0.63 mm3 × 2 mm3, and scan time ≈ 3.4 min.
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signals from a dual-echoUTE acquisition (44). The calculated water
and fat maps can then be used to suppress fat in the UTE image.
UTE WITH RESCALED ECHO
SUBTRACTION (UTE-RS)

UTE with rescaled echo subtraction (UTE-RS) can provide
qualitative imaging of the cortical bone (46, 47). In UTE-RS, the
free induction decay (FID) image is scaled down so that signals from
muscle and fat become lower than those from the second echo (46).
In the subtraction image, signals from muscle and fat are negative,
whereas those from short-T2 species are positive, separating them
from air which has a signal intensity fluctuating around zero (46).
The UTE-RS technique can be efficient in creating high positive
contrast for short T2 species such as cortical bone. Regular unscaled
echo subtraction may reduce bone contrast in this situation.
Performing UTE-RS in trabecular bone sites would be challenging
due to the fat presence in bone marrow and signal oscillation.
Rescaled echo subtraction method has been also used with ZTE
technique (64). Figure 8 shows the tibial cortex of a healthy young
volunteer imaged in the coronal plane using the UTE-RS technique.
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WATER- AND FAT-SUPPRESSED
PROTON PROJECTION IMAGING (WASPI)
OF CORTICAL BONE

Water- and fat-suppressed proton projection MRI (WASPI) is
another MRI sequence developed for selective imaging of bone
water bound to the organic matrix (48–50). In this technique,
two long-duration, yet low-power, rectangular RF pulses are used
to selectively saturate signals from long T2 water and fat. Since
bound water has a short T2*, it will remain largely unsaturated
and provide qualitative imaging of bound water in bone. Figure
9 shows bone WASPI images in the wrist joint of a healthy
volunteer in transverse, coronal and sagittal planes (51).
ZTE BONE IMAGING

An alternative approach for bone imaging is the zero echo time
(ZTE) sequence, which employs a short rectangular excitation
pulse during the fully ramped up readout gradient, followed by
fast radial sampling (52, 53). Alternatively, frequency-modulated
pulse with interleaved transmit-receive operation, can also be
FIGURE 8 | Dual-echo 3D UTE imaging of the tibial cortex of a healthy young volunteer in coronal plane with (A) TE = 8 ms and (B) TE = 2.2 ms. (C) Subtraction of
the second echo from the first echo image rescaled down by a factor of 0.4. This figure was previously presented by Du et al. (46). The reprinting permission is
granted through Rightslink system. The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D UTE
sequence parameters: FOV = 24 × 24 cm3 × 24 cm3; voxel size = 0.8 mm3 × 0.8 mm3× 0.8 mm3, TEs = 0.008/2.2 ms, and scan time ≈ 5.5 min.
FIGURE 9 | In vivo water- and fat-suppressed proton projection imaging (WASPI) of the wrist joint of a healthy volunteer in (A) transverse, (B) coronal and (C)
sagittal slices from the 3D WASPI image dataset. This figure was previously presented by Wu et al. (51). Reprinting permission is granted through Rightslink system.
The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D WASPI sequence parameters: FOV = 12 cm3 ×
12 cm3 × 12 cm3; voxel size = 0.9 mm3 × 0.9 mm3 × 0.9 mm3, and scan time ≈ 18 min.
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used for bone imaging which is known as sweep imaging with
Fourier transformation (SWIFT) (54). Eliminating the rapid
gradient switching between TR intervals results in the decreased
acoustic noises during scans and in the reduced eddy current
artifacts (5). These sequences have the potential to image both
bound water and pore water in bone. These sequences suffer from
a gap of data at the center of k-space as a result of a dead time
caused by the finite RF pulse, transmit-receive switching, and
digital bandpass filtering (53). The missing data in the ZTE
technique can be compensated via oversampled acquisition and
mathematical reconstruction (53). The ZTE data gap can be also
Frontiers in Endocrinology | www.frontiersin.org 9
filled using a Cartesian single-point imaging technique, which is
known as pointwise encoding time reduction with radial
acquisition (PETRA) (55). Figure 10 shows representative
postprocessed ZTE and conventional FSE images of the
shoulder of a young symptomatic patient. CT-like ZTE-based
image (Figure 11A) was obtained after bias-correction and
inverse-logarithmic rescaling (52). The qualitative ZTE bone
image clearly visualizes the bone fragmentation, which is not
clear in FSE image (52). To improve the image contrast ZTE
techniques has been also used with inversion recovery preparation
which suppress long-T2 signal (56).
FIGURE 10 | (A) Zero echo time (ZTE)-based and (B) proton-density-weighted FSE MR imaging of the shoulder of a young symptomatic patient. The CT-like ZTE-
based image (A) is obtained after bias-correction and inverse-logarithmic rescaling (52). Qualitative bone imaging by ZTE shows the bone fragment (indicated with
arrow), which is not clear in FSE image. This figure was previously presented by Breighner et al. (52). Reprinting permission is granted from Radiology journal (RSNA).
The figure is modified for presentation purposes. Minor modifications were performed for presentation purposes. 3D ZTE sequence parameters: FOV = 28 cm3 ×
28 cm3 × 28 cm3; voxel size = 0.87 mm3 × 0.87 mm3 × 1.5 mm3, and scan time ≈ 5 min.
FIGURE 11 | 3D IR-UTE-Cones imaging of (A) the femur/spine and (B) the shoulder sample in the coronal plane, demonstrating high contrast imaging of cortical
and trabecular bone at various sites in the body using a clinical whole-body 3T scanner. 3D IR-UTE sequence parameters for femur/spine: FOV = 45×45×20.8 cm3;
voxel size = 2.5×2.5×4 mm3, TR/TI = 183/78 ms, and scan time » 10 mins. 3D IR-UTE sequence parameters for shoulder: FOV = 20× 20 × 10 cm3; voxel size =
0.8×0.8×2 mm3, TR/TI = 140/61 ms, and scan time » 6 mins. This figure is original and based on data from (31). A version of this figure has been presented before
in ISMRM 2019 conference (poster 3754).
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IR-UTE IMAGING OF TRABECULAR BONE

Direct MR imaging of trabecular bone is technically challenging
due to its fast signal decay, the fat presence in bone marrow, and
local field inhomogeneities that are caused by the trabecular bone
structure (24, 45, 65). Recently, UTE sequences and their variants
(e.g., WASPI and ZTE sequences) have been developed to
directly acquire the signals of phosphorus (66–68) or hydrogen
proton (45, 69, 70) in trabecular bone. Such techniques have been
used successfully for phosphorus density and its relaxation times
assessment in vivo for both cortical and trabecular bone (66–68).
However, further optimization of these techniques for
translation to clinical investigations is limited because the
required hardware for phosphorus imaging is not available in
most clinical scanners.

Direct hydrogen proton imaging of trabecular bone using
WASPI and fat-suppressed UTE techniques have also been
investigated recently (45, 69, 70). Suppressing signals from
long T2 components in bone marrow is crucial in order to
create a high contrast for bone in trabecular sites. WASPI
technique uses two hard pulses with narrow frequency bands
in order to selectively excite water and fat signals. Following the
two hard pulses, strong gradient crushers are used to saturate
water and fat signals before data acquisition (48). Wurnig et al.
employed the UTE sequence to measure T2* of trabecular bone
samples, with a SPIR (spectral pre-saturation with inversion
recovery) module to suppress marrow fat (45). These two
techniques show promising results for trabecular bone, though
they are both sensitive to B1 and B0 inhomogeneities, posing
clinical challenges for in vivo imaging of trabecular bone in the
hip and spine.

To resolve these issues, a broadband adiabatic inversion
recovery prepared 3D UTE Cones (3D IR-UTE-Cones)
sequence has been proposed for direct volumetric imaging of
bone by simultaneous water and fat signal suppression (71)
which later being used for direct trabecular bone imaging (31).
The combination of a short repetition time (TR) and inversion
time (TI) is used to achieve robust suppression of different long
T2 tissues with a range of T1s. Employing an adiabatic full
passage (AFP) pulse sequence with a relatively wide bandwidth
(~1.5 kHz), the proposed IR preparation is approximately
insensitive to the inhomogeneities of B1 and B0 (72). Figure
11 shows high contrast imaging of trabecular bone in the
shoulder, femoral head and neck, as well as the spine with the
3D IR-UTE-Cones sequence (31).
Frontiers in Endocrinology | www.frontiersin.org 10
CONCLUSIONS

MRI-based qualitative imaging of different water compartments
in bone has drawn great interest among musculoskeletal
radiologists and orthopedic researchers. These techniques
provide simultaneous assessment of bone and the surrounding
soft tissues, while avoiding patient exposure to ionizing
radiation. Since conventional clinical MRI techniques fail to
detect signal from bone, here are several qualitative MR
techniques currently being developed for assessment of cortical
bone. Such techniques include UTE MRI, which detects signal
from both bound water and pore water in bone, but with low
contrast due to much higher signals from the surrounding soft
tissues such as muscle and bone marrow fat. IR-UTE-based
sequences provide efficient suppression of long T2 tissues,
allowing bound water imaging with CT-like bone contrast.
Other techniques, such as UTE-RS, WASPI, ZTE and SWIFT
also have potential for qualitative bone imaging. Some of the
described techniques can be used for quantitative bone imaging
and for microstructural evaluations.

This study would be greatly improved if the presented MRI
images would be acquired from subjects with bone diseases or
injuries resulting in a better comparison between presented
techniques. However, most published results in the literature
only have covered healthy bone images. Comparison between the
presented techniques in Table 1 is largely based on practical
experience of the authors. Particularly, the scan time efficiency
was ranked semi-qualitatively, and is affected by acquisition
parameters (e.g., undersampled acquisition, extended sampling,
etc.) and reconstruction algorithms.
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