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Heart failure with preserved ejection fraction (HFpEF) is a public health epidemic that is

projected to double over the next two decades. Despite the high prevalence of HFpEF,

there are currently no FDA approved therapies for health-related outcomes in this clinical

syndrome making it one the greatest unmet needs in cardiovascular medicine. Aging

and obesity are hallmarks of HFpEF and therefore there is a high incidence of sarcopenic

obesity (SO) associated with this syndrome. The presence of SO in HFpEF patients

is noteworthy as it is associated with co-morbidities, worsened cardiovascular health,

hospitalizations, quality of life, and mortality. Furthermore, SO plays a central role in

exercise intolerance, the most commonly reported clinical symptom of this condition.

The aim of this review is to provide insights into the current knowledge pertaining to

the contributing pathophysiological mechanisms and clinical outcomes associated with

HFpEF-related SO. Current and prospective therapies to address SO in HFpEF, including

lifestyle and pharmaceutical approaches, are discussed. The urgent need for future

research aimed at better understanding the multifaceted physiological contributions

to SO in HFpEF and implementing interventional strategies to specifically target SO

is highlighted.

Keywords: sarcopenia, obesity, heart failure, diastolic, exercise tolerance, quality of life, nutrition, exercise training

INTRODUCTION

Heart failure (HF) is a rapidly growing public health epidemic affecting over 6.2 million Americans,
with about half having HF with preserved ejection fraction (HFpEF) (1). As the American
population continues to age, an increase of 66% in the age group over 80 years old is predicted
by 2030 (2). In addition, the obesity epidemic in the US continues to grow, with 1 in 2 adults
projected to be obese by 2030 (3). As a result of the growing aging and obese population, the
prevalence of HF is expected to increase across all sex, racial, and ethnic groups (2). HF prevalence
is projected to increase 46% by 2030 to affect over 8 million US adults (2). Importantly, despite
the high prevalence of HFpEF, there are currently no FDA approved therapies for health-related
outcomes in this clinical syndrome. Thus, HFpEF treatment is one of the greatest unmet needs in
cardiovascular medicine.

The diagnosis of HFpEF remains a clinical challenge in cardiology, however, HFpEF is typically
characterized by an ejection fraction >50% accompanied by diastolic dysfunction, high filling
pressures and exercise intolerance (4). The complexity of its diagnosis and the recent proposed
algorithms to identify patients with HFpEF have been discussed elsewhere (5).

Within this clinical syndrome, there are distinct phenotypes emerging that could potentially
redefine how we design clinical trials and treat HFpEF patients (6, 7). The identification of
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the phenotypes of HFpEF would potentially allow to define
the most appropriate and tailored therapeutic strategy. This
approach has been proposed to finally allow to identify an
effective therapy in patients with HFpEF that could be applied
in clinical practice.

In regard to the identification of HFpEF phenotypes, obesity
has gained attention as a potential one of HFpEF (8, 9),
with targeted treatment of obesity hypothesized to improve
syndrome-specific health-related outcomes (10). Indeed, HFpEF
is now the most common HF associated with obesity (11, 12).
Specifically, therapies that have been in the past utilized in
patients with obesity, but without HFpEF, such as exercise
training and caloric restriction-induced weight loss, have
recently proven beneficial also in patients with obesity and
concomitant HFpEF, at least with regards to exercise capacity
and patient reported quality of life (QoL). Long-term effects
of such strategies are clearly required to confirm these
initial promising findings, as discussed at length in the
next paragraphs.

Toward developing effective therapies for these patients,
patient reported QoL has emerged as a predominant outcome
measure, with an understanding of the physiological contributors
to QoL emerging as an important area of investigation.
Exercise intolerance is the most commonly reported symptom of
HFpEF. The downstream consequences of exercise intolerance
include reduced physical activity levels and physical function
that have detrimental implications on patient QoL, especially
in those individuals with HFpEF who are younger and
with concomitant obesity and diabetes mellitus (13). While
the manifestations of HFpEF-related exercise intolerance are
multifaceted, there has recently been a paradigm shift away
from the heart and toward the periphery as the major
limitation of exercise capacity. In this respect, abnormalities
in body composition may play an important role in exercise
intolerance and may be an attractive therapeutic target to
improve QoL in these patients. Of note, therapies such
as exercise training that have targeted the extra-cardiac
peripheral abnormalities (i.e., body composition), have shown
beneficial effects in patients with HFpEF, despite little effect
on cardiac function (14–17). These results propose that
targeting non-cardiac abnormalities could potentially result
in improved clinical outcomes in this population, although
therapies that may also improve cardiac dysfunction would
be desirable.

Sarcopenic obesity (SO), a clinical and functional condition
defined by the coexistence of excess adiposity (i.e., obesity) with
a decline in muscle mass and related strength and functionality
(i.e., sarcopenia), is consistently reported in HFpEF patients and
poses as a major limitation to exercise capacity (14). Patients
with SO present with reduced exercise capacity characteristic of
obesity (18), but also those associated with sarcopenia in the
setting of HFpEF (19).

The aim of this review is to provide insights into the
contributing physiological mechanisms and outcomes associated
with HFpEF-related SO toward improving exercise intolerance
and potentially QoL.

SARCOPENIC OBESITY: DEFINITION AND
DIAGNOSIS

SO is commonly defined as the coexistence of sarcopenia and
obesity. A recent systematic review of the definitions and
diagnosis of sarcopenic obesity reported large heterogeneity in
the definition of SO and diagnostic approaches (20). This is likely
due to differences in the definitions of sarcopenia and obesity as
well as the large range of methodologies employed to assess body
composition and strength (20). Despite these limitations, SO is
typically diagnosed by the presence of sarcopenia and obesity,
each evaluated as separate parameters (21). Future directions
in the field are aimed at determining whether SO should be
diagnosed based on one composite parameter (20). This is
based on the thinking that a synergistic relationship between
reduced muscle mass and increased adiposity may result in an
independent clinical phenotype (20). A composite diagnostic
criterion in this case would have to employ concomitant
evaluations of fat mass and fat-free mass (20). As this measure
is yet to be determined and established, the separate definitions
and diagnoses of sarcopenia and obesity are provided herein.

Sarcopenia
A recently revised consensus from the EuropeanWorking Group
on Sarcopenia in Older People (EWGSOP) defined sarcopenia
as a progressive skeletal muscle disorder that increases the risk
of adverse physical outcomes such as falls, fractures, impaired
physical function, disability, and mortality (21). While former
sarcopenia diagnoses were predominantly based on the reduction
of lean mass, the recent consensus prioritizes the presence of
reduced muscle strength (dynapenia) and/or physical function in
the diagnosis of sarcopenia due to its superiority in predicting
adverse events (21). In addition to reductions in functional
measures, concurrent declines in muscle mass (myopenia) (22)
are also required for a sarcopenia diagnosis (Table 1) (21).
With regards to measurements of strength in the diagnosis of
sarcopenia, handgrip strength (21), or knee extensor strength
(20) by dynamometry are recommended. Alternatively, the 30 s
sit to stand test provides a measure of lower body strength
(21). Physical function can be assessed by gait speed, the timed
up and go (a measure of speed and agility), the 400m walk
test or the short physical performance battery (SPPB; gait,
balance, and lower body strength) (21). Recommended methods
of skeletal muscle mass measurement are bioelectrical impedance
analysis (BIA), dual energy X-ray absorptiometry (DXA) or
the gold standard magnetic resonance imaging (MRI) (20, 21).
If these techniques are unavailable, although not optimal, calf
circumference can be utilized (21). Readers are referred to the
EWGSOP consensus for the sarcopenia diagnostic cut off criteria
for the abovementioned methodologies (21).

Obesity
Obesity is defined as an excessive accumulation and storage of fat
in the body that impairs health. Commonly used methodology
to diagnose obesity in SO are body mass index (BMI), waist
circumference (WC), and when BIA or DXA are available,
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TABLE 1 | Diagnostic criteria for sarcopenia.

Dynapenia Myopenia Probable

Sarcopenia

Confirmed

sarcopenia

Confirmed

sarcopenia

Severe

sarcopenia

Low muscle

strength

X X X X X

Low muscle

quantity

X X X

Low physical

performance

X X

Adapted from (15, 16, 19).

with total body fat mass percentage (20). There has been
limited research into which is the most effective measure of
obesity in predicting outcomes in the setting of SO. However,
a recent study by Khor et al. (23) comparing the use of BMI,
WC and fat mass percentage by DXA in the diagnosis of SO
revealed that the different methodologies markedly increased
the variation in SO prevalence. In this respect, SO prevalence
was lowest when BMI was used in comparison to WC and
fat mass percentage (23). The findings also showed that WC
was most strongly correlated with SO related impairments
in physical function (23), supporting previous findings that
regional adipose tissue distribution is important in determining
functional impairments in SO (24). In this respect, in addition to
abdominal adiposity, increased intermuscular fat deposition may
be a pathophysiological contributor to dynapenia and impaired
physical function that is unique to SO (24, 25).

In the recent years, the role of obesity on atrial function, in
addition to ventricles and skeletal muscle has received much
attention (4). Of note, left atrial has shown to provide important
prognostic information in patients with HFpEF, independent on
the presence of obesity; however, when obesity is present, there
is a significant increase in right atrial pressure with exercise,
specifically, an increased right atrial pressure/peak oxygen
consumption has been shown. This suggest that to achieve a given
peak oxygen consumption, patients with obesity, and HFpEF
reach significantly greater right atrial pressure. This highlights
the important role of the left atrial in determining exercise
capacity in patients with HFpEF, in which atrial myopathy is
often found, and proposed to be a major substrate for the
development of atrial fibrillation, which is, in fact, one of
the most common comorbidities reported in this population.
Interestingly, patients with obesity and HFpEF present an
increased epicardial adipose tissue (EAT). The thickness of EAT
is significantly associated with greater body mass index (BMI)
and right atrial pressure, and is inversely associated with reduced
cardiorespiratory fitness (5–8), except for one study, where the
association was paradoxically positive, suggesting a beneficial
effects of EAT (9). Although the direct effects of EAT are not
entirely clear, it has been speculated that EAT may cause a
pericardial restraint, potentially exacerbated by mediastinal fat
or chest wall issues. In addition, the detrimental indirect effects
of EAT that have been proposed are numerous; however, the
proinflammatory effects of EAT have been proposed to drive
most of the inflammation found in the myocardium itself, as

opposed to the non-EAT, whichmay drive the low-grade systemic
inflammation characteristic of obesity and HFpEF (10).

SARCOPENIC OBESITY IN HFpEF

Both sarcopenia and obesity are well-documented as separate
entities in HFpEF patients (25, 26). Firstly, aging represents
the largest risk factor for cardiovascular disease and HFpEF is
the predominant form of HF in the aged population (27). The
development of sarcopenia and increased adiposity are elemental
sequalae of the aging process (28) and therefore elderly HFpEF
patients are already at risk of SO as a function of age. In
addition, HFpEF is typically accompanied by a plethora of co-
morbidities such as type 2 diabetes mellitus, chronic obstructive
pulmonary disease (COPD) and chronic kidney disease (CKD),
the pathophysiology of which contribute to “accelerated aging.”
This not only augments SO in the elderly HFpEF cohort, but it
also prematurely predisposes younger individuals with HFpEF to
aging related SO phenomena. Secondly, overweight and obesity
are highly prevalent in HFpEF affecting >80% of patients (9, 29,
30). In this respect, obesity is emerging as a distinct phenotype
of HFpEF (8, 9, 13, 31). Despite a lack of studies in the HFpEF
population reporting SO as a single entity, the high incidence of
sarcopenia and obesity as separate parameters is indicative of a
widespread SO prevalence in these patients.

CLINICAL CONSEQUENCES OF
SARCOPENIC OBESITY IN HFpEF

Hospitalizations and Survival
Obesity is a clear risk factor for HF, particularly HFpEF (32).
Such effects have been recently proposed to be mediated by the
reduced cardiorespiratory fitness (CRF) characteristic of obesity
(33). Once HF is diagnosed, however, the effects of increased
BMI on clinical outcomes is quite complex, with overweight
and obesity being associated with improved clinical outcomes
in both HFrEF and HFpEF, at least in observational studies
(34). A sub-analysis of the I-PRESERVED trial investigated
the association of BMI and adverse outcomes in 4,019 HFpEF
patients (29). These analyses showed a U-shaped relationship
between BMI and the primary composite endpoint of all-cause
mortality and HF-related hospitalizations (29). The adjusted
risk of for all-cause mortality and HF-related hospitalizations
was significantly greater in patients with a BMI ≥35 kg/m2
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and patients with a BMI <23.5 kg/m2 compared with BMI
categories 23.5–26.4 kg/m2, 26.5–30.9 kg/m2, and 31–34.9 kg/m2

(29). A similar analysis of the CHARM study that included
7,599 HF patients, showed similar findings in the cohort of
HF patients with preserved ejection fraction (ejection fraction
>40%) (30). The difference between these studies was that in
the I-PRESERVED trial, patients with a BMI between 16.5 and
30.9 kg/m2 had the lowest risk of mortality and HF related
hospitalization (29). In comparison, in the CHARM trial, the
risk was lowest in obese patients with a BMI between 30 and
34.9 kg/m2 (30). This finding has been replicated in other large
epidemiological studies of HF, introducing an “obesity paradox”
whereby obesity appears to have a protective effect in HF (35–37).
Whether the obesity paradox exists in the HFpEF cohort of HF
is keenly debated and warrants further investigation (9, 35, 38).
Nonetheless, a consistent finding is that underweight patients
with HFpEF, and those who lose weight over time in the absence
of a structured lifestyle intervention have an increased risk of all-
cause mortality and HF hospitalization rates (29, 30, 39). This
demonstrates the detrimental effects of unintentional weight loss,
likely resulting in reduced lean mass, on clinical outcome in these
patients. Toward gaining a clearer understanding of the obesity
paradox, future studies in HFpEF that investigate the effects
of concomitant sarcopenia and obesity on clinical outcomes
are urgently needed. In such studies, the inclusion of CRF,
muscle strength and impaired physical function alongside body
composition measures would provide a more holistic insight
toward identifying specific treatment targets to improve clinical
outcomes in this complex syndrome (35, 38).

Cardiovascular Outcomes
Whether obesity is a driver of cardiac dysfunction in HFpEF or
whether it coexists alongsideHFpEF, influencing the presentation
of the syndrome remains controversial (8, 10, 40). A study
by Obakata et al. compared HFpEF patients with obesity with
HFpEF patients without obesity and non-obese healthy controls.
Their findings showed that HFpEF patients with obesity had
significantly increased estimated plasma volume, abnormal right,
and left heart cardiac structure and increased ventricular filling
pressures during exercise (8). This data points toward a central
role of obesity in the development and progression of HFpEF (8).
The study, however, did not include a group of obese individuals
without HF, making it impossible to differentiate whether the
effects reported were specifically resulting from the HFpEF
obesity phenotype, or whether individuals with a obesity would
have reported similar findings (10). Alternatively, Carbone et al.
reported no relationship between obesity andmeasures of systolic
and diastolic cardiac function assessed by echocardiography at
rest and at peak exercise (18). Additionally, although weight loss
following caloric restriction in HFpEF patients and concomitant
obesity, despite improved CRF, it has no clinically significant
effects on diastolic function (14).

There is currently little directly linking sarcopenia to cardiac
abnormalities in HFpEF. It is speculated that inflammation and
endocrine changes related tomyopenia, in addition to a sedentary
lifestyle, secondary to sarcopenia, provide a pathophysiological
environment conducive to cardiac diastolic dysfunction (41, 42).

Likewise, the role of SO in driving cardiac abnormalities in
HFpEF remains undetermined. In the SICA-HF study of 117 HF
patients, the quartile of patients with the worst diastolic function
and estimated filling pressures (E/e′ >15) reported the lowest
levels of appendicular lean mass (i.e., lean mass of extremities)
and muscle strength (43). A recent retrospective analysis of
733 Koreans investigated the role of SO on cardiac parameters
in individuals without overt cardiovascular disease (42). The
analyses compared individuals with obesity and without obesity,
with and without concurrent sarcopenia (42). When controlling
for confounding variables, those with SO had the highest risk for
diastolic dysfunction compared to those that had only sarcopenia
or obesity (42). This suggests a potential role of SO in cardiac
dysfunction which appears to be driven by synergistic crosstalk
between reduced lean mass and excess adiposity, however, these
data need to be followed up in studies of HFpEF patients.

Quality of Life
Due to the discouraging lack of positive clinical trials to improve
outcome in HFpEF, there has been a shift toward strategies
that focus on improving patient QoL as the primary endpoint.
A recent amalgamation of leading HFpEF clinical trial data
from NEAT-HFpEF, INDIE-HFpEF, and RELAX by Reddy et al.
assessed relationships betweenHFpEF severity variables and QoL
(13). With participants split into tertiles based upon QoL, the
HFpEF group with worst QoL had the highest BMI and the
greatest prevalence of class 2 obesity (13). After adjusting for age,
sex, and BMI, QoL was worst in those with the lowest physical
activity and physical function measures (11). Furthermore, the
SICA-HF study demonstrates a positive correlation between
appendicular lean mass, muscle strength and QoL (43). These
data hold promise for SO as a potential therapeutic target to
improve patient reported QoL.

Exercise Intolerance
As mentioned previously, exercise tolerance is the most
common reported symptom of HFpEF and holds promise as
a therapeutic target to improve patient reported QoL in this
patient population (44). In these patients, obesity is consistently
linked with a reduction in cardiorespiratory fitness, assessed
as maximal oxygen uptake (VO2peak), the gold standard
measurement of exercise capacity (8, 31). In this respect, the
regional distribution of adipose tissue plays an integral role
in HFpEF related exercise intolerance (24). Intra-Abdominal
fat is the strongest independent predictor of VO2peak, with
abdominal subcutaneous fat, thigh subcutaneous fat and thigh
intramuscular fat: skeletal muscle ratio all negatively associated
with VO2peak (24). The underlying mechanisms of obesity-
related reduction in exercise capacity in HFpEF are not yet
fully elucidated. As diastolic dysfunction has previously been
reported as a central limitation to exercise capacity (45), it is
reasonable to infer that the obesity driven changes in cardiac
function may partly explain these reductions. However, a
paradigm shift toward the periphery implicates skeletal muscle
abnormalities that are synonymous with sarcopenia as the
predominant limitation of exercise capacity in these patients
(46). In this regard, aberrant skeletal muscle structure and
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function reported in HFpEF patients hamper oxygen extraction
and utilization during exercise with deleterious consequences
on exercise capacity (46, 47). Readers are referred to in-depth
reviews detailing skeletal muscle dysfunctions and their role
in exercise intolerance in HF (25, 48). In support of this
paradigm, appendicular muscle mass, and skeletal muscle mass
are strongly associated with VO2peak and physical function
in HFpEF, even when adjusting for other contributing factors
to exercise intolerance such as iron deficiency, pulmonary
function, and New York Heart Association (NYHA) class (43).
The effect of coexisting sarcopenia and obesity on HFpEF
related exercise intolerance is yet to be delineated. However,
an elegant study by Zamani et al. has recently demonstrated
that adiposity is inversely associated with local skeletal muscle
oxygen consumption in HFpEF patients (47). In addition, in
the previously mentioned retrospective analysis of “healthy”
Koreans without overt cardiovascular disease, individuals with
SO reported significantly lower VO2peak compared with those
who only had sarcopenia or obesity (42). This supports the idea of
synergistic cross-talk between adipose tissue and skeletal muscle
that is deleterious to functional capacity. Future investigations
into the effects of adipose tissue on skeletal muscle in the setting
of HFpEF are warranted.

In addition, patients with obesity and HFpEF present with
greater plasma volume and increased filling pressures, which
have not been consistently identified in patients without HFpEF
(1). Moreover, patients with obesity present a greater septal
flattening, likely resulting from a greater external constraints on
the heart caused by obesity (1). In addition, when obesity and
HFpEF coexist, despite similar metabolic work, the measured
external work reported is significantly lower (1). Finally, patients
with the obesity/HFpEF phenotype seem to respond less to
decongestive therapies (2).

PATHOPHYSIOLOGY OF SARCOPENIC
OBESITY IN HFpEF

An overview of the multifaceted pathophysiological mechanisms
that contribute to HFpEF related SO are highlighted in Figure 1.

Inflammation
There is abundant evidence for inflammation in patients
with HFpEF with circulating biomarkers of inflammation
consistently reported to be substantially high in these
patients (49, 50). Systemic inflammation is high in these
patients due to volume overload that increases levels of
angiotensin II, triggering a subsequent immune cascade;
systemic microvascular inflammation; and the presence of
co-morbidities such as hypertension, diabetes, anemia, chronic
kidney disease, ischemic heart disease, stroke, and cancer
are all marked by chronic systemic inflammation (49, 50).
A chronic inflammatory environment has been consistently
implicated in the pathogenesis of sarcopenia by impairing
protein turnover and synthesis and increasing skeletal muscle
catabolism (51). Of particular relevance to SO, the increased
adipose tissue provides an additional source of inflammation

FIGURE 1 | The multifaced pathophysiological contributors to sarcopenia in

HFpEF. These factors all contribute to physical inactivity which results in

reduced energy expenditure and disuse atrophy, initiating a deleterious vicious

cycle between physical inactivity, co-morbidity, and augmented SO.

(52) that directly induces skeletal muscle atrophy (53, 54).
Additionally, monocyte chemoattractant protein (MCP-1), a
key chemokine in inflammatory cell trafficking, has been shown
to be high in cardiac cachexia leading to increased monocyte
and macrophage trafficking to adipose tissue resulting in an
exacerbation of inflammatory cytokine secretion (55, 56).

Oxidative Stress
Circulating markers of oxidative stress are increased in the
setting of HFpEF and SO (57). The role of oxidative stress in
HFpEF related obesity is not yet fully understood however, in
individuals with SO, increased oxidative stress has been shown
to be correlated with cardiovascular disease risk (57). Increased
oxidative stress contributes to endothelial dysfunction by
reducing the production and bioavailability of nitric oxide (NO)
resulting in microvascular dysfunction which is a hallmark of
HFpEF (58, 59). Impaired endothelial function can hamper blood
flow and oxygen diffusion to the workingmuscle, thus potentially
playing a role in exercise intolerance and the development of
sarcopenia (25, 46). The sources of oxidative stress in HFpEF are
multifaceted and have not yet been fully elucidated. Certainly,
inflammation is characteristic of this HFpEF that is augmented
by SO is a likely major contributor to increased levels of oxidative
stress (60, 61). Cardiac ischemia and tissue hypoxia have also
been implicated to play a role in HFpEF related oxidative stress
(61, 62). In this respect, hypoxia related increases in uric acid
have been reported in these patients (62). Therefore, xanthine
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oxidase, the ROS generating enzyme the catalyzes the oxidation
of xanthine to uric acid could be a potential source of oxidative
stress in HFpEF. Mitochondrial dysfunction that is consistently
reported in HFpEF is an additional source of oxidative stress
(63). Uncoupled endothelial nitric oxide synthesis (eNOS) due
to reduced levels of the NO precursor L-Arginine and increased
levels of the L-Arginine competitor asymmetric dimethylarginine
is also a likely source of oxidative stress in these patients
(62). Whether an activated renin angiotensin aldosterone system
(RAAS) leading to increased levels of Angiotensin II is a
source of oxidative stress in these patients remains controversial
(64, 65). The discouraging lack of efficacy of RAAS targeted
therapies in this syndrome supports some evidence that RAAS
is not a major contributor to oxidative stress (65). As broad-
level antioxidant therapies have generally not been successful
at improving cardiovascular end-points (66), it is important
that future research in HFpEF identifies the specific sources of
excessive reactive species generation in order to develop targeted
strategies to reduce oxidative stress.

Endocrine Abnormalities
Multihormone hormone deficiency (MHDS) has been cited as
a cause and consequence of HF (67, 68). Although relatively
unexplored in the HFpEF cohort of HF, many of these patients
present with one or more components of MHDS, these being
an aberrant insulin like growth factor/growth hormone (IGF-
1/GH) axis, abnormal levels of thyroid hormones, and androgens
and insulin resistance (67–69). These hormone abnormalities are
implicated in skeletal muscle catabolism and anabolic deficiency
with downstream consequences on functional capacity (68).

Chronic low grade inflammation in obesity that may
contribute to muscle wasting is regulated in part by adiponectin,
leptin, and insulin controlling various inflammatory and
anti-inflammatory processes (70–74). In obesity, homeostatic
model assessment of insulin resistance (HOMA-IR) values are
commonly increased (70, 71) and leptin is elevated, too (74).
Adiponectin has been shown to be low and negatively correlated
with BMI, plasma insulin, tumor necrosis factor alpha (TNF-α),
and interleukin 6 (IL-6) (70). Heart failure with reduced ejection
fraction (HFrEF) is known to have an uncommon adiponectin
cascade compared to what is seen in obesity related conditions
though it is unknown whether this also occurs in HFpEF due to
limited research. One study that sought to evaluate this cascade
in the two HF subtypes determined that in HFpEF and HFrEF
leptin levels were high compared to matched healthy controls
(72). Adiponectin was the same across groups until adjusted
for age and BMI where it was higher in HF than controls (72).
Adiponectin resistance has been determined to be present in
HFpEF through higher adiponectin mRNA expression despite
similar adiponectin secretion compared to healthy controls (73).
Similar to obesity, adiponectin has a negative correlation to
BMI in HF whilst leptin and insulin correlated positively with
BMI (72).

Mitochondrial Dysfunction
Skeletal muscle mitochondrial dysfunction is sentinel to
the pathogenesis of sarcopenia through its dysregulation

of myocyte function and viability (75). Impairments in
mitochondrial function occur in parallel with decrements in
strength throughout the spectrum of sarcopenia (76). In aging
models of sarcopenia in mice, skeletal muscle mitochondrial
dysfunction appears to be precursor to the development of
sarcopenia as abnormalities are observed prior to declines in
strength and muscle dystrophy (76). Potential contributors to
HFpEF related mitochondrial dysfunction are thought to be
chronic adrenergic activity, inflammation and oxidative stress
(25, 77–81).

Additionally, skeletal muscle mitochondrial dysfunction
results in a disruption in metabolism due to a reduced capacity
for lipid oxidation. In the presence of increased circulating free
fatty acids and triglycerides, incomplete fatty acid oxidation,
and insulin resistance, an impairment in mitochondrial oxidative
capacity could result in substrate overload and the previously
described accumulation of lipid intermediates in the skeletal
muscle (82). As previously mentioned, this accumulation of
intramuscular fat is associated with SO and is positively
associated with functional capacity in HFpEF (24).

Iron Deficiency
Iron deficiency (ID) is highly prevalent in HFpEF and is more
prominent in patients with more severe diastolic dysfunction.
HFpEF related ID is thought to be a result of inflammation
mediated reductions hepcidin, the principal regulator of
iron absorption and tissue distribution (83–85). In addition,
gastrointestinal irregularities that reduce gastric emptying and
intestinal iron absorption are evident in these patients (83,
84, 86). In HFpEF patients, meta-analyses have shown ID to
be correlated with reductions in exercise capacity, physical
functional and worse QoL (83, 87). ID is hypothesized to play a
role in leanmass abnormalities, sarcopenia and the consequential
reductions in functional capacity via impaired cardiac and
skeletal mitochondrial function as these organelles require iron
for optimal oxidative phosphorylation enzyme function (83, 88).

Disuse
Individuals with HFpEF are highly sedentary and therefore
the resultant reduction in energy expenditure combined with
disuse atrophy may contribute to SO in these patients (46,
89, 90). Sarcopenia is caused for the most part by physical
inactivity. Patients with obesity that, however, remain physically
active and maintain a preserved cardiorespiratory fitness,
may not necessarily develop sarcopenia, possibly resulting in
more favorable prognosis. Interestingly, a recent analysis of
Korean individuals suggested that sarcopenia may also directly
affect cardiac diastolic function, therefore impairing exercise
capacity not only by affecting the peripheral determinants of
cardiorespiratory fitness, but possibly by also affecting cardiac
function (3).

Certainly, the co-morbidities and symptoms associated with
HFpEF may contribute to exertional fatigue and the reduction
in physical activity, thus augmenting a vicious cycle of disuse
atrophy and increased adiposity (Figure 2). Although the role of
physical inactivity in HFpEF related SO has not yet been clearly
established, increasing physical activity levels through exercise
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FIGURE 2 | The downward spiral of SO and physical inactivity that culminates in reduced quality of life, increased hospitalization, and mortality. Interventions targeting

SO in HFpEF are urgently warranted to reverse the associated detrimental downstream consequences.

training is one of the only therapies that has proven efficacious
for improving exercise capacity (16, 91–93). The predominant
mechanisms of these improvements in exercise tolerance are
suggested to be mediated for the most part through beneficial
skeletal muscle adaptations (15, 24, 91, 94).

CURRENT AND PROSPECTIVE
INTERVENTIONS FOR SARCOPENIC
OBESITY IN HFpEF

Exercise Training
Despite relatively few randomized controlled trials that
investigated exercise training in HFpEF, exercise training has
consistently been shown to be efficacious at improving exercise
capacity and QoL in this patient population (15, 91, 95–99). The
implemented exercise interventions are predominantly aerobic
in nature with exercise prescribed initially at a light-moderate
intensity and gradually progressed to a moderate-vigorous
intensity (15, 91, 95, 96, 98). High intensity interval training
appears to be superior to moderate (100) continuous training
at eliciting improvements in exercise capacity (91, 94, 97).

As meta-analyses reveal limited changes in cardiac function
following exercise training in HFpEF (15), the beneficial
effects of training on exercise tolerance appear to be driven by
peripheral improvements in skeletal muscle health and function
(94). With reference to SO, there are currently no known trials
in HFpEF that have investigated the effects of exercise on body
composition as the primary outcome. In this respect, high
intensity progressive resistance training is deemed the most
effective mode of exercise to elicit an anabolic response and
has shown positive results in other sarcopenic and cachexic
populations (101–104). Such investigations are warranted in
HFpEF patients with SO.

Dietary Interventions and Bariatric Surgery
Effective nutrition interventions are urgently needed in the
overall HF population and are especially lacking in HFpEF
(105). To date, no nutrition interventions have specifically been
performed in patients with comorbid HFpEF and SO. Healthy
dietary patterns, specifically the Mediterranean diet (MedDiet)
may be associated with a lower incidence of sarcopenia (106–
108). Recently, a prospective study in Spain assessed adherence
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to the MedDiet in 991 patients diagnosed in the emergency
department with acute HF on a primary endpoint of all-
cause mortality. While the primary endpoint was not met, the
secondary endpoint of rehospitalization was significant lower in
those adhering to a MedDiet (HR = 0.76, 95% CI 0.62–0.93)
(105, 109). TheMedDiet is rich in fruits, vegetables, whole grains,
legumes, and particularly unsaturated fatty acids (UFA), which
have been associated with more favorable body composition,
such as greater fat-free mass (FFM) and FFM to fat mass (FM)
ratio as well as improved cardiac diastolic function and greater
VO2peak inHFpEF patients (110). Of note, in the UFA-Preserved
pilot study, a diet supplemented with foods rich in UFA such
as extra-virgin olive oil, canola oil, and mixed tree nuts was
associated with increased plasma levels of UFA in patients with
obesity and HFpEF, showing that it is a feasible intervention in
this population and associated with favorable changes in CRF
(111). A larger ongoing randomized crossover trial, the UFA-
Preserved 2 (NCT03966755), is designed to evaluate the effects
of daily UFA supplementation through dietary sources on a
primary outcome of change in dietary UFA and plasma UFA
biomarkers, while also assessing changes in body composition,
cardiac function and exercise capacity. Another healthy dietary
pattern, the Dietary Approaches to Stop Hypertension (DASH)
diet, is effective in treating hypertension and has also been shown
to reduce clinic and 24-h systolic (155–138 and 130–123mmHg,
respectively), and diastolic (79–72, and 67–62) blood pressure,
arterial stiffness measured by carotid-femoral pulse wave velocity
(12.4 to 11.0 m/s), improve diastolic left ventricular relaxation
(difference in c=−4.2± 6.2) and chamber stiffness (difference in
k = −81 ± 99 s-1) and ventricular-arterial coupling (difference
in Ees:Ea= −0.2 ± 0.3) when combined with sodium restriction
in HFpEF patients (80, 112). Recently, the GOURMET-HF trial
assigned 66 patients with HFrEF and HFpEF discharged from
the hospital after admission for HF exacerbation 1:1 to either a
sodium restricted (<1,500 mg/day) DASH diet, which was home
delivered, or usual care for 4 weeks. While the study did not meet
the primary outcome of between group change in Kansas City
Cardiomyopathy Questionnaire summary score, but participants
assigned to the DASH diet demonstrated a favorable trend in
rehospitalization at 30 days (11 vs. 27%) (113).

Protein supplementation, coupled with resistance exercise,
may help increase appendicular muscle mass while reducing
total and abdominal obesity as well as inflammatory biomarkers
in women with sarcopenic obesity (114). While the most
recent Heart Failure Society of America Scientific Statement
recommended a protein intake of at least 1.1 g per kilogram per
day (115), trials of protein and amino acid supplementation in
patients with sarcopenia and HF have primarily performed in
HFrEF patients and have yielded mixed results (116, 117).

Finally, the SECRET trial assigned 100 patients with obesity
and HFpEF to a 2 × 2 factorial trial of exercise training, caloric
restriction, both caloric restriction, and exercise training or
control. The main effect of caloric restriction was weight loss
(−7 kg, 95% CI−5−9) which resulted in an increase in VO2peak
(+1.3, 95% CI 0.2–2.3), as well as a reduction in FM (−5 kg,
95% CI−4−6, p < 0.001) and percent body FM (−2%, 95%
CI−1−3) (14). However, lean mass (−2 kg, 95% CI−1−3) was
also reduced in these patients with caloric restriction alone, an

important consideration in patients with SO (14). Notably, main
effect of exercise revealed no loss of lean mass, suggesting that
concomitant exercise training may help to preserve lean mass
with caloric restriction (14). The currently enrolling SECRET-
II trial (NCT02636439) is testing caloric restriction combined
with aerobic exercise training alone vs. combined with resistance
exercise training in patients with HFpEF.

In addition to weight loss induced by caloric restriction,
there is a growing interest in understanding the role of bariatric
surgery in this population. In HF, observational studies suggest
clinical benefits of this intervention (11), however, randomized
controlled trial are needed to confirm those findings. First,
bariatric surgery induces significant weight loss to a greater
degree than lifestyle intervention alone. This effect alone would
allow to improve exercise capacity and quality of life (12, 13).
The other potential effects of bariatric surgery are numerous,
including the ability to reduce epicardial adipose tissue, which
would be beneficial based on the above discussion. Moreover,
bariatric surgery has been associated with reduced markers
of systemic inflammation as well as localized adipose tissue
inflammation (11), potential targets in patients with obesity
and HFpEF.

Considering the lack of available therapies in HFpEF and
prevalence of SO in this population, there is an urgent need
to identify whether dietary pattern, protein supplementation or
caloric restriction as well as bariatric surgery are able to improve
outcomes in this population.

Pharmaceutical and Nutraceutical
The discouraging lack of clinical outcomes pertaining to
pharmacological therapies in HFpEF has provided a major
challenge to cardiologists managing this syndrome. Despite
a lack of beneficial outcomes pertaining to hospitalization
and mortality in these patients, pharmaceutical therapies have
resulted in clinical meaningful improvements in exercise capacity
and QoL (96). In this respect, vasodilators, and chronotropic
therapies appear to be efficacious, whist RAAS inhibitors have
no effect (96). The DHART Trials investigating the effects
of IL-1 blockade in HFpEF patients have shown promising
improvements in exercise capacity and quality of life (77,
118, 119). In addition, inorganic and organic nitrates hold
promise for improving exercise capacity in these patients (120–
122). As with exercise training, there are no pharmacological
strategies that have specifically targeted SO in human subject
trials of HFpEF. As we continue to understand more about the
pathophysiology of HFpEF related SO, future pharmacological
or nutraceutical therapies targeting these aberrant molecular
pathways in combination with exercise training may be a
powerful approach to combat SO.

CONCLUSIONS

In summary, SO is prevalent in patients with HFpEF and has
noteworthy adverse consequences on end point outcomes,
health related outcomes and patient reported QoL. Although
the multifaceted pathophysiology of HFpEF related SO is not
yet fully understood, inflammation, oxidative stress, hormonal
imbalances, iron deficiency, and sedentary lifestyle appear
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to contribute to this condition. In addition, the plethora
of comorbidities that accompany this syndrome further
exacerbate the physiological milieu implicated in SO. Moreover,
being obesity a major risk factors for several comorbidities,
including coronary heart disease, future research should
try to assess the diverse effects of obesity and HFpEF on
clinical outcomes.

Whilst exercise training as well as some dietary and
pharmaceutical approaches appear to be efficacious at improving
exercise capacity and QoL, there is a lack of interventional trials
that specifically target SO in these patients. There is therefore
an urgent need for lifestyle, pharmaceutical or nutraceutical
approaches to address SO toward improving clinical and disease
modifying outcomes in HFpEF.
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