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17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many

cardiovascular protective effects. Via three receptors known to date, including estrogen

receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka

GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues.

Nevertheless, effects of E2 and its receptors on components of the calcium signaling

machinery (CSM), the underlying mechanisms, and the linked functional impact are

only beginning to be elucidated. A picture is emerging of the reciprocality between

estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent

and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and

GPER are regulated by Ca2+ at the receptor level and downstream signaling via a

feedforward loop. This article reviews current understanding of the effects of E2 and its

receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and

combined functional impact. An overview of themain CSM components in cardiovascular

tissues will be first provided, followed by a brief review of estrogen receptors and their

Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+

signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects

of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed.

Finally, a case study will illustrate how themanymechanisms are coordinated tomoderate

Ca2+-dependent activities in the cardiovascular system.

Keywords: estrogen, G protein—coupled estrogen receptor, calcium, calmodulin, calmodulin-binding proteins,

cardiomyocytes, vascular smooth muscle, endothelium

MAIN COMPONENTS OF THE CALCIUM SIGNALING MACHINERY
(CSM) IN CARDIOVASCULAR TISSUES

The CSM herein refers to proteins responsible for the generation or sequestration of intracellular
Ca2+ signals and their transduction to target activities. In this section, key CSM components
in cardiovascular tissues will be briefly described to facilitate review of the relevant effects and
mechanisms of estrogenic agonists and receptors.

Intracellular Ca2+ Stores, Release, and Uptake Mechanisms
Organelles Functioning as Intracellular Ca2+ Stores
The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main Ca2+ store in cardiomyocytes,
vascular smoothmuscle cells (VSMCs) (1, 2), and endothelial cells (ECs), where the ER stores∼75%
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Tran Estrogen Biology and Calcium Signaling

Ca2+ and mitochondria house ∼25% (3). The Golgi (4, 5)
and lysosomes have more recently been recognized as Ca2+

reservoirs (6, 7). Ca2+ reaches 5 × 10−4 M in the ER/SR
and lysosomes and 1.3–2.5 × 10−4 M between the trans-Golgi
and cis-Golgi (5, 8). The medial Golgi also releases Ca2+ in
response to inositol-triphosphate receptor (IP3R) and ryanodine
receptor (RyR) stimulation (9). Crosstalk between the ER/SR and
other organelles affects their Ca2+ fluxes (10–14). In neonatal
cardiomyocytes, beat-to-beat oscillations in mitochondrial and
cytosolic Ca2+ occur in parallel (15), and mitochondrial uptake
reduces cytosolic Ca2+ (16).

Mechanisms of Ca2+ Uptake Into Ca2+ Stores
SR/ER Ca2+-ATPases (SERCAs) are the key Ca2+ uptake
mechanisms. For each ATP hydrolyzed, they pump 2 Ca2+

ions into the ER/SR in exchange for less than four H+

ions (17). SERCA2b is ubiquitously expressed. SERCA2a
predominates in cardiomyocytes and is essential for cardiac
development (18). SERCA3 is the predominant vascular isoform;
its deletion causes smooth muscle relaxation abnormality (19,
20). SERCA3 has lower affinity for Ca2+ and is only active at
high Ca2+ levels. Non-phosphorylated phospholamban interacts
with SERCA1a, SERCA2a, and SERCA2b and reduces their
Ca2+ affinity. Phosphorylation at Ser16 and Thr17 removes
phospholamban–SERCA interaction, promoting SERCA activity
(21, 22). Sarcolipin also binds SERCAs and reduces their Ca2+

affinity. Its deletion increases SR Ca2+ uptake (23).
The secretory pathway Ca2+ pump (SPCA) mediates Ca2+

uptake into the Golgi with nanomolar affinity for Ca2+. Unlike
the SERCA, Ca2+ transport by SPCA is not associated with
counter transport of H+. In the medial Golgi, both SERCA and
SPCA participate in Ca2+ uptake (9).

Mitochondrial Ca2+ uptake is mediated by the voltage-
dependent anion channel (VDAC) and the mitochondrial Ca2+

uniporter (MCU). VDACs are non-selective anion channels in
the open state yet in the “closed” state permit influxes of cations

Abbreviations: AF domain, transcriptional activation function domain; CaM,

calmodulin; Ca2+-CaM, Ca2+-bound calmodulin; cAMP, cyclic adenosine

monophosphate; CICR, Ca2+-induced Ca2+ release; CRAC, Ca2+ release-

activated channels; CSM, Ca2+ signaling machinery; E2, 17β-estradiol; ECs,

endothelial cells; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric

oxide synthase; ERβ, estrogen receptor β; ERα, estrogen receptor α; ERK1/2,

extracellular signal-related kinases 1 and 2; FRET, fluorescence resonance energy

transfer; GPER, G protein-coupled estrogen receptor 1; GPR30, G protein-coupled

estrogen receptor 1; HEK293 cells, human embryonic kidney 293 cells; ICa,L,

L-type Ca2+ channel current; IP3Rs, inositol-trisphosphate receptors; LTCC, L-

type Ca2+ channels; LV, left ventricle; MAPK, mitogen-activated protein kinases;

mCRC, mitochondrial Ca2+ retention capacity; MCU, mitochondrial Ca2+

uniporter; MEK1, MAP (mitogen-activated protein) kinase/ERK (extracellular

signal-regulated kinase) kinase 1; mPTP, mitochondrial permeability transition

pore; NCX, Na+-Ca2+ exchanger; OVX, ovariectomy/ovariectomized; PDZ,

PSD-95/Dlg/ZO; PKC, protein kinase C; PLCβ, phospholipase C-β; PMCA,

plasma membrane Ca2+-ATPase; PSD-95, post-synaptic density protein 95;

RMP, resting membrane potential; RyRs, ryanodine receptors; SCPA, secretory

pathway Ca2+ pump; SERCA, sarcoplasmic/endoplasmic reticulum-ATPase;

SMD, submembrane domains of G protein-coupled receptors; SOCE, store-

operated Ca2+ entry; SOICR, store overload-induced Ca2+ release; SR/ER, sarco-

endoplasmic reticulum; STIM1, stromal interaction molecule 1; VDAC, voltage-

dependent anion channel; VDCC, voltage-dependent Ca2+ channels; VDCE,

voltage-dependent Ca2+ entry; VSMCs, vascular smooth muscle cells.

such as K+, Na+, and Ca2+ into the mitochondria (24). VDAC
isoforms participate equally in transporting Ca2+ triggered by
IP3-producing agonists; however, VDAC1 selectively transports
apoptotic Ca2+ signals (25). Myocardial VDAC2 regulates
rhythmicity by influencing the spatial and temporal properties
of cytoplasmic Ca2+ signals (26). The MCU constitutes a low-
affinity yet selective Ca2+ channel pore as part of a mitochondrial
Ca2+ uptake protein complex (MICU) and the essential MCU
regulator (27, 28).

Mechanisms of Ca2+ Release From Ca2+ Stores
In IP3Rs, IP3 binds with IP3R2 > IP3R1 > IP3R3 affinity
order (29) and cooperatively switches IP3R tetramers to an
open conformation to form clusters and release Ca2+ (30, 31).
IP3Rs regulate Ca2+ release from the ER/SR, Golgi apparatus,
and nucleus (32). ER/SR Ca2+ release depletes ER Ca2+ and
triggers store-operated Ca2+ entry (SOCE). IP3R2 predominates
in the cardiomyocytes (33). In failing hearts, IP3R-mediated
Ca2+ transients are enhanced, and mitochondrial Ca2+ uptake
is reduced, which facilitates contraction and spontaneous action
potentials that increase arrhythmogenicity (34). In VSMCs, all
IP3Rs are expressed and are important for agonist-induced
contraction (35). Endothelial IP3R1 is predominant in the brain
(36), whereas IP3R2 and IP3R3 are abundant in the aorta and
pulmonary arteries (37, 38).

RyRs (RyR1–RyR3) are the main SR Ca2+ release channels
(39). Regulation by cytosolic Ca2+: In cardiomyocytes, RyR2
predominates (40) and is closed, activated, and inhibited,
respectively, at Ca2+ <10−7 M, ∼10−7-10−5 M, and >10−3

M (41). Entry via voltage-dependent Ca2+ channels (VDCCs)
stimulates Ca2+-induced Ca2+ release (CICR) via RyR2,
contributing to myocardial contraction. In VSMCs, RyR2
predominates in the aorta and pulmonary and cerebral arteries,
while RyR3 is the only isoform in basilar arteries (42–44). CICR
also contributes to VSMC contraction, but not as critically as in
cardiomyocytes; indeed, skinned smooth muscle fiber bundles
can contract at Ca2+ levels that do not activate RyRs (45). In ECs,
RyR2 is on the ER and mitochondria (46); however, RyR agonists
only cause a slow Ca2+ release that corresponds to a reduction
in the IP3-sensitive Ca2+ pool (47, 48). Regulation by SR Ca2+

is important in cardiomyocytes. SR Ca2+ overload triggers
spontaneous RyR2-mediated Ca2+ release, a phenomenon called
store overload-induced Ca2+ release (SOICR) (49, 50). SOICR
can cause delayed afterdepolarizations leading to tachycardias
and is abolished by an E4872A mutation in the RyR2 gate (51).

Ca2+ Entry
Store-Operated Ca2+ Entry (SOCE)
SOCE is a ubiquitous mechanism where Ca2+ store depletion
triggers Ca2+ influx (52, 53). Proposed in the 1980s, SOCE
was confirmed in the mid-2000s with the discoveries of the
stromal interaction molecule 1 (STIM1) (54–56) and Orai Ca2+

channels (57–59). STIM1 residesmainly on the ER/SRmembrane
and has a luminal EF hand that houses a Ca2+-binding loop
(60). In Ca2+-full ER/SR, the loop is in a closed conformation.
Upon ER/SR Ca2+ depletion, Ca2+ leaving the loop promotes
STIM1 oligomerization to interact with Orai1 channels and
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trigger Ca2+ entry (61–63). STIM1 also interacts with L-type
Ca2+ channels (LTCCs) (64), maintains ER/SR structure (65–67),
and is upregulated in atherosclerosis and hypertension (68–71).
Myocardial SOCE is normally not prominent; however, STIM1
and SOCE are increased in heart failure (67, 72–76). In VSMCs,
SOCE contributes significantly to contraction; α1AR-mediated
contraction is reduced ∼30% in SM-specific STIM1−/− animals
(77). In ECs, SOCE is the major Ca2+ entry and is required for
many critical functions such as endothelial nitric oxide synthase
(eNOS) activity and proliferation (78–82).

Voltage-Dependent Ca2+ Entry (VDCE)
Functional voltage-dependent Ca2+ channels (VDCCs) are the
hallmark of tissue excitability and are present in cardiomyocytes
and VSMCs, but not ECs. In cardiomyocytes, LTCCs are located
mostly in transverse T tubules in apposition to RyR2s (83). Ca2+

entry via LTCCs triggers CICR via RyR2. In VSMCs, LTCCs
also play a critical role in Ca2+ entry and contraction (84). The
LTCC complex (85) consists of α1, α2, β, δ, and γ subunits. Four
LTCC members are named according to their α1 pore-forming
subunits: Cav1.1, Cav1.2, Cav1.3, and Cav1.4 (86). Cav1.2 is
predominant in cardiac and smooth muscles.

Ca2+ Extrusion via the Plasma
Membrane/Sarcolemma
The plasma membrane Ca2+-ATPases (PMCAs) prevail for
Ca2+ extrusion in non-excitable tissues while the Na+-Ca2+

exchanger (NCX) is more important in excitable cells. SERCA2a,
NCX, and PMCA sequester, respectively, ∼70, 28, and 2% of
cytosolic Ca2+ in cardiomyocytes (83) and 25, 25, and 50%
in ECs (87).

Plasma Membrane Ca2+-ATPase
PMCAs extrude one Ca2+ ion for each ATP used and function as
Ca2+-H+ exchangers (88–90). PMCAs are regulated by a Ca2+-
dependent interaction with calmodulin (CaM). At low Ca2+, a
C-terminal autoinhibitory domain binds to two cytosolic loops
and inhibits pump activity. Increased Ca2+ promotes CaM–
PMCA interaction, which removes inhibition and activates Ca2+

efflux (91, 92). PSD-95 promotes expression and distribution of
PMCA4b via PDZ binding (93). PMCAs are inhibited by C-
terminal tyrosine phosphorylation (94). Myocardial PMCAs play
a little role under physiological conditions. However, expressions
of PMCA1 and PMCA4 are reduced by up to 70 and 50%,
respectively, in end-stage heart failure (95), and cardiac-specific
overexpression of PMCA4b improved myocardial functions in
ischemia–reperfusion injury and heart failure (96). PMCAs
concentrate in the caveolae of VSMCs and ECs (97, 98). PMCA1
suppresses VSMC proliferation (99, 100), while PMCA4mediates
cell cycle (101, 102). In ECs, PMCA1b, and PMCA4b are
predominant (87, 103, 104).

Na+-Ca2+ Exchanger
The NCX may function in two modes. In the forward mode,
myocardial NCX1 balances LTCC-mediated Ca2+ entry and
RyR-mediated Ca2+ release during cardiac excitation, extruding
∼25% of the Ca2+ needed to activate myofilaments (105).

NCX1 also predominates in VSMCs (106, 107). In ECs, NCX
accounts for ∼25% of Ca2+ removal (87). Endothelial NCX and
PMCA dynamically adjust their Ca2+ extrusion rates to maintain
sufficient efflux (104). In the reverse mode, upon myocardial
depolarization, Na+ entry causes the NCX to transiently operate
in this mode, promoting Ca2+ entry. This is much less efficient
in triggering SR Ca2+ release compared to LTCC-mediated
Ca2+ entry (108, 109). However, it primes the dyad to increase
LTCC-mediated CICR (110). In VSMCs, reverse-mode NCX1
facilitates Ca2+ entry and mediates contraction, vascular tone,
and blood pressure (111, 112). The reversemode is not significant
in ECs.

Sex Differences in Ca2+ Signaling Proteins
Higher mRNA levels of Cav1.2, RyR, and NCX, but not of
phospholamban and SERCA2, have been observed in female
than in male rat hearts (113). However, caffeine-induced Ca2+

release is lower in cardiomyocytes from female hearts (114).
Cav1.2 mRNA is higher in coronary smooth muscle from male
than from female pigs (115). In smooth muscle cells (SMCs),
expressions of ERα and ERβ, but not G protein-coupled estrogen
receptor 1 (GPER), are higher in female than in male rats (116).
These differences and the lower Cav1.2 expression (115) may be
responsible for less contraction of VSMCs from females (116). No
studies have examined sex differences in Ca2+ handling proteins
in ECs.

Transduction of Ca2+ Signals—The
Essential Role of Calmodulin (CaM)
While some Ca2+-dependent proteins are activated directly by
Ca2+, many are activated by a complex between Ca2+ and CaM.
CaM has two lobes linked by a flexible helix and can interact with
∼300 target proteins (117, 118). Ca2+-free CaM binds or serves
as structural subunits of∼15 proteins (119). However, each CaM
lobe has two Ca2+-binding sites, and cooperative Ca2+ binding
induces conformations that allow CaM to interact with many
proteins, aided by the flexibility of the central helix (120, 121).
Thus, CaM is the ubiquitous Ca2+ signal transducer. Activities of
Ca2+/CaM-binding proteins depend on the Ca2+ signals, CaM
availability, and properties of the interaction between Ca2+-CaM
and the target proteins. Many of these factors are subject to
estrogenic moderation.

Despite being required for activation of many Ca2+-
dependent proteins, up to 50% of cellular CaM is engaged in
inseparable interactions, leaving much less available for dynamic
target binding (122). This generates an environment of limited
CaM (123), as has been demonstrated in ECs (124), VSMCs (125),
and cardiomyocytes (126). Consequently, competition for CaM
generates a unique crosstalk among CaM-dependent proteins
(124, 127), and factors that alter CaM level are predicted to
have pervasive functional impact. It is noteworthy that virtually
all CSM components interact with CaM and, in the context of
reciprocality between estrogenic and Ca2+ signaling pathways,
that ERα and GPER are both regulated by direct interactions
with Ca2+-CaM.
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ESTROGEN RECEPTORS AND THEIR
CALCIUM-DEPENDENT REGULATION

Estrogen Receptor α (ERα)
ERα (128–130) is a nuclear receptor that, upon E2 binding
(Kd ∼ 10−10 M), assumes an active conformation to bind
estrogen-responsive elements (EREs) in the promoters of target
genes, modulating their transcription (131). Its N-terminus has
a transcriptional activation function (AF-1) domain, a DNA-
binding domain, and a hinge region; the C-terminus houses
the ligand-binding domain and a second AF-2 domain. ERα is
robustly expressed in the heart (132), VSMCs, and ECs (133–
136).

ERα activities are strongly regulated by the Ca2+-dependent
interaction with CaM. ERα binds CaM in a Ca2+-dependent
fashion with a Kd of 1.6 × 10−10 M and an EC50(Ca

2+) value
of ∼3 × 10−7 M (137). When ERα from Wistar rats’ uteri
is used, CaM decreases ERα-E2 binding but increases liganded
ERα-ERE interaction (138, 139). A comparison of the CaM-
bound/CaM-unbound ERα ratio in the cytosolic (unliganded)
and nuclear (liganded) ERα pools isolated from MCF-7 cells
suggests that E2 binding induces a conformation that favors ERα-
CaM interaction (138). The CaM-binding domain was initially
predicted to be a.a. 298–310 (137) but was later determined
to be a.a. 298–317, with a.a. 248–317 required for maximal
interaction (140). Further studies revealed that a.a. 287–311 is
required to interact with both CaM lobes (141). CaM binding
promotes ERα homodimerization that is critical for transcription
activity (140, 142). With two lobes, each CaM binds two ERα

molecules and thus stabilizes ERα dimerization (143). Notably,
analogs of ERα17p (a.a. 295–311) that are unable to bind CaM
downregulates ERα, stimulates ERα-dependent transcription,
and enhances proliferation of MCF-7 cells, as does the wild-type
ERα17p, indicating that this domain may also be involved in
CaM-independent posttranslational regulation of ERα (144).

Estrogen Receptor β (ERβ)
ERβ has∼96% and 55–58% sequence homology with ERα in the
DNA- and ligand-binding domains, respectively (145, 146). ERβ

binds E2 with a Kd of ∼4–6 × 10−10 M. ERβ forms homodimers
but more preferentially forms heterodimers with ERα, which
bind E2 with a Kd of ∼2 × 10−9 M and are transcriptionally
active (147). ERβ is abundantly expressed in the vasculature
(133–136). However, its expression and direct actions in the heart
are controversial; cardiac manifestations in ERβ−/− animals have
been attributed to indirect effects from vascular changes (148).
ERβ is not regulated by Ca2+ or CaM (149).

GPER
GPER (150), aka GPR30, was cloned from various tissues in the
1990s (151–156). GPR30 is required for estrogenic activation of
extracellular signal-related kinase (ERK)1/2 via transactivation
of the epidermal growth factor receptor (EGFR) and release of
the heparan-bound epidermal growth factor (EGF) (157, 158). It
was shown to bind E2 in 2005 (159, 160), and the designation
GPER was adopted by the International Union of Basic and

Clinical Pharmacology in 2007 (161). A host of steroidal and non-
steroidal agents and specific GPER agonists can activate GPER
(150). GPER couples with Gαs or Gαi/o. Supporting Gαs coupling
are data that (1) most membrane-bound [35S]GTPγ-S from cells
overexpressing GPER and treated with E2 coimmunoprecipitate
with Gαs (159), (2) GPER is present in Gαs-pull-down fraction
from GPER-expressing cells, and (3) E2 promotes GPER-
dependent cyclic adenosine monophosphate (cAMP) production
(162). Supporting GPER-Gαi/o association are results that
pertussis toxin prevents (1) E2-induced, GPER-mediated ERK1/2
phosphorylation in cells transfected with GPER (134, 157);
(2) upregulation of c-fos in ERα/ERβ-negative, GPER-positive
SKBr3 cells (163); and (3) E2-induced Ca2+ signals in ECs (164).

GPER is robustly expressed in cardiovascular tissues (133–
136). In ECs, GPER mRNA is increased 8-fold by shear stress
(154). GPER is localized on the ER/SR membrane (160) and
responds to cell-permeable ligands (165). However, it also resides
on the plasma membrane (166) and requires its C-terminal PDZ-
binding motif to do so (167). The plasmalemmal GPER pool
seems to constitutively undergo clathrin-dependent endocytosis
and accumulate in the trans-Golgi network for ubiquitination
in the proteasome without recycling to the plasma membrane,
a process unaffected by agonist stimulation (168). Despite its
predominant expression in the ER/SR, the sequence that drives
GPER localization here has not been identified.

GPER is directly regulated by Ca2+-CaM complexes. In
VSMCs and ECs, GPER coimmunoprecipitates with CaM in
a constitutive association that is promoted by treatment with
E2, G-1, or receptor-independent stimulation of Ca2+ entry
(169, 170). GPER is the first G protein-coupled receptor (GPCR)
shown to possess four CaM-binding sites on its respective four
submembrane domains (SMDs) (169). Fluorescence resonance
energy transfer (FRET) biosensors based on SMDs of GPER
bind CaM with Kd from 0.4 to 136 × 10−6 M and affinity
ranking SMD2 > SMD4 > SMD3 > SMD1. These interactions
are Ca2+ dependent, with an EC50 (Ca2+) of 1.3 × 10−7-5 ×

10−6 M, values within the physiological Ca2+ range (169). Due to
technical challenges with purifying full-length GPCRs, the KCaM

for GPER as a holoreceptor is not available. The presence of four
CaM-binding sites makes this task even more challenging and,
in some way, not useful functionally. Functionally, mutations
that reduce CaM binding but that do not perturb GPER-
Gβγ preassociation drastically prevent GPER-mediated ERK1/2
phosphorylation (170).

STIMULATION OF CALCIUM SIGNALS BY
ESTROGEN AND GPER AGONISTS

Observations
In rat hearts, E2 (10−12-10−8 M) triggers 45Ca2+ uptake that is
inhibited by LTCC antagonists (171). In VSMCs, GPER agonist
G-1 triggers a slow-rising Ca2+ signal that is <2 × 10−7

M (172). In MCF-7 cells, E2 (10−7 M) induces Ca2+ store
release and entry, yet only the former is required to activate
mitogen-activated protein kinase (MAPK) (173). Interestingly,
the ERα/ERβ antagonist ICI182,780 (10−6 M) also triggered
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FIGURE 1 | Components of the CSM that are affected by E2 and/or GPER in excitable and non-excitable cardiovascular tissues. See text for details.

Ca2+ signals in these cells. In ECs, E2 (10−10-10−9 M) triggers
Ca2+ store release and entry, effects not affected by ERα/ERβ

inhibitor tamoxifen (164, 174). The data with ICI182,780 and
tamoxifen implicate a receptor other than ERα or ERβ in
mediating the Ca2+ signal. Both reagents were later shown to
be GPER agonists, triggering ERK1/2 phosphorylation only in
cells expressing GPER (157, 159). Later studies confirmed Ca2+

signals stimulated by E2, GPER agonist G-1, and ICI182,780 in
cells expressing GPER endogenously and absence of this effect in
GPER−/− cells (160, 175, 176).

Mechanisms (Figure 1)
Direct E2-Cav1.2 Interaction
E2 (10

−11-10−9 M) potentiates ICa,L in neurons andHEK293 cells
overexpressing the α1C subunit; nifedipine displaces membrane
E2 binding; and E2’s effect is reduced by a dihydropyridine-
insensitive LTCC mutant, indicating that E2 binds to the
dihydropyridine-binding site (177). Intriguingly, E2 and the
dihydropyridines exert opposite effects on ICa,L.

Direct, Membrane-Delimited Activation of Ca2+

Channels by Gα Subunits
GPCR stimulation can trigger Ca2+ signals independently of
the second messenger (178–180). GPER couples with Gαs and
Gαi/o, which can interact with LTCC (178, 181, 182) and trigger
Ca2+ entry.

Release of Gβγ Subunit Upon GPER-Associated Gαi

Stimulation
Gβγ stimulates PLCβ (183–185) and activates IP3R1 (186), both
of which trigger Ca2+ store depletion and SOCE. Consistently,
E2-induced Ca2+ store release and entry in ECs are completely
inhibited by pertussis toxin and PLCβ inhibitor U73122 (164).
Also, HEK293 cells only produce a Ca2+ response to E2
when expressing HA-tagged GPER (162). Since (1) Ca2+ entry
channels are located on the membrane and (2) Gβγ activates
IP3Rs by interacting with the IP3-binding sites (186) on IP3Rs’
cytosolic domains, both the membrane-delimited/Gα-mediated
and Gβγ-mediated mechanisms should only be operable by the
plasmalemmal GPER pool. A distinguishing feature is that the
former mechanism would not trigger SR/ER Ca2+ release in the
absence of extracellular Ca2+, whereas the latter would. Based
on this feature, data fitting the former are available from renal
tubular cells (176); and data fitting the latter, from vascular
ECs (164).

Functional Impact
Do Ca2+ signals stimulated by estrogenic agonists activate Ca2+-
dependent activities? When reported, the concentration of a
Ca2+ signal allows for prediction of proteins that may or may not
be affected by it. For example, E2 induces ER Ca2+ release signals
of ∼2 × 10−7 M and activates MAPK (173), because this Ca2+

level is sufficient for MAPK activity (187); indeed, Ca2+ chelation
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abolishes E2’s effect (173). Considering that GPER mediates the
effect of E2 to trigger Ca2+ signals that activate MAPK, GPER
activity can promote many downstream effects (163, 170, 188).
In ECs, E2 (10−9-10−6 M) stimulates very small Ca2+ signals
(<10−7 M) (174). One can predict that only proteins with
very high Ca2+ sensitivity, for example, phosphorylated eNOS
(170, 189, 190), would be activated by these signals. Whether a
Ca2+ signal can produce a predicted effect also depends on other
factors. For example, the Ca2+ signal of ∼2 × 10−7 M triggered
by G-1 in VSMCs (172) would be sufficient to activate myosin
light-chain kinase (MLCK) and cause vasoconstriction, based
on MLCK’s properties (191). However, G-1 causes vasodilation
(172, 192–194), likely by activating eNOS (170, 193, 195–
198), inhibiting VSMC Ca2+ (199), and stimulating SMC K+

efflux (200).

CALCIUM ENTRY INHIBITION BY
ESTROGENIC AGONISTS AND ESTROGEN
RECEPTORS

To a large extent, estrogenic regulation of Ca2+ signaling involves
effects of estrogenic agonists and receptors on the Ca2+ signals
triggered by other stimuli, via both E2-dependent and E2-
independent mechanisms.

Store-Operated Ca2+ Entry (Figure 1)
In VSMCs, E2 (10−8-10−5 M) inhibits norepinephrine- and
phenylephrine-induced arterial constriction in the presence of
extracellular Ca2+ but not that induced in Ca2+-free medium
(201, 202). These effects may be attributed to inhibition of both
VDCE and SOCE, as α1 adrenoceptor agonists can activate both
(77). GPER-mediated inhibition of SOCE has been shown in
ECs, where G-1 (10−8-10−6 M) suppresses SOCE induced by
thapsigargin or bradykinin (203). Interestingly, the observations
that in the absence of any treatment with agonists, thapsigargin-
induced SOCE is increased by 80% in GPER-knockdown ECs
and is reduced by 40% in GPER-overexpressing HEK293 cells
implicate E2-independent mechanisms (203).

How E2/GPER suppresses SOCE seems to involve STIM1.
G-1 treatment prevents thapsigargin-induced STIM1 puncta,
indicating inhibition of STIM1’s association with the Ca2+

channel; and Ser575/608/621Ala mutations of STIM1 reduce
the inhibitory effect of G-1 (203). Consistently, E2 inhibits
Ser575 STIM1 phosphorylation in bronchial epithelial cells, thus
suppressing STIM1 mobility and SOCE (204). Our initial data
also indicate that dynamic physical interaction between them
contributes importantly to GPER’s inhibition of SOCE (205).

Voltage-Dependent Ca2+ Entry (Figure 1)
Electrically induced Ca2+ signals are increased in cardiomyocytes
from ovariectomized (OVX) animals (206–208). Many lines of
evidence indicate that GPER mediates the inhibitory effect of E2
on ICa,L. These include inhibitory effects of E2 (1–3 × 10−5 M)
and combined ERα/ERβ antagonists/GPER agonists (ICI182,780,
tamoxifen, or raloxifene) on ICa,L in cardiomyocytes from
both WT and ERα−/−/ERβ−/− animals, as reviewed in (132).
Similarly, in VSMCs, E2 inhibits electrically induced ICa,L (209,

210), and ERα/ERβ antagonists/GPER agonists tamoxifen and
ICI164,384 inhibit high-K+-induced contraction (202). GPER
agonist G-1 (10−6 M) inhibits nifedipine-sensitive Ca2+ spikes
in LTCC-expressing A7R5 SMCs, an effect prevented by GPER
antagonist G-15 (10−6 M) (199); these concentrations are specific
for GPER (175, 211). Consistently, ERα knockout does not affect
E2’s inhibition of KCl-induced 45Ca2+ uptake in VSMCs and
vasorelaxation (212).

How E2 inhibits electrically induced VDCE is still unknown.
Hypothetically, at high levels, E2 binding to the dihydropyridine-
binding site on LTCC (177) may instead inhibit ICa,L. As
for prevention of β adrenoceptor (βAR)-mediated potentiation
of VDCE, recent evidence suggests that GPER may be an
intrinsic component of β1AR activation. Thus, G-1 inhibits
isoproterenol-induced increases in left ventricle (LV) pressure,
heart rate, ectopic contractions, ICa,L, LTCC phosphorylation,
and total myocardial Ca2+ signal, while the GPER inhibitor G-36
promotes ISO-induced Ca2+ signal and LTCC phosphorylation
(213). Speculatively, GPER may do so in part by interacting
with β1AR or with A kinase-anchoring protein 5, thus inhibiting
cAMP production (167). These may represent some E2-
independent effects of GPER. Studies in GPER-knockout tissues
are needed to further clarify the mechanisms.

ESTROGENIC REGULATION OF
CYTOPLASMIC CALCIUM REMOVAL
MECHANISMS

SERCA Activity
Few studies, mostly in cardiac tissues, have examined the effects
of E2 on SERCA activity, with somewhat conflicting results. E2
(1–30 × 10−6 M) does not affect the Vmax of SR vesicle Ca2+

uptake in canine LV tissue (214). However, ovariectomy reduces
the Vmax but increases the Ca

2+ sensitivity for SR Ca2+ uptake
of rat LV homogenates or SR-enriched membrane fractions;
mechanistically, these effects appear to be associated with reduced
Thr17 phosphorylation of phospholamban and are restored
by treatment with either E2 or progesterone (215) (Figure 1).
How E2 and progesterone promote Thr17 phosphorylation
of phospholamban is unknown, perhaps by inhibiting CaM
kinase II (216), the enzyme that phosphorylates phospholamban
(21). The effect of E2 on SERCA activity in VSMCs has not
been examined.

NCX Activity
As with SERCA activity, few studies have measured the effects
of E2 on NCX activity. Na+-dependent 45Ca2+ uptake in rat LV
myocytes is increased by ∼3-fold after 60 days of ovariectomy,
which is restored by replenishment with E2 (1.5 mg/60
days) (208). During myocardial ischemia, intracellular Na+

concentration is higher in male than in female cardiomyocytes
and is associated with increased Ca2+ concentration as a result of
increased NCX activity (217). These studies are consistent with
an inhibitory effect of E2 on NCX activity in both the forward
and reverse modes (Figure 1). However, the mechanisms of this
inhibition are unclear.
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Mitochondrial Ca2+ Uptake
In the heart, diethylstilbestrol (0.9–1.8 × 10−3 M) inhibits
mitochondrial 45Ca2+ uptake (218). Mitochondrial Ca2+

retention capacity (mCRC), a combination of mitochondrial
Ca2+ uptake, total mitochondrial Ca2+-binding sites, and
mitochondrial Ca2+ release mechanisms, is a determinant of the
protective role of the mitochondria during cytoplasmic Ca2+

overload. E2 (4× 10−8 M) increases myocardial mCRC following
ischemia–reperfusion, an effect abolished by genetic deletion of
GPER but not of ERα or ERβ;mechanistically, this effect seems to
involve PKC-dependent, MAPK-dependent phosphorylation of
glycogen synthase kinase (GSK)-3β, leading to inhibition of the
mitochondrial permeability transition pore (219). Consistently,
E2 (10−8 M) inhibits high Ca2+-induced cytochrome c release
from myocardial mitochondria (220). In ECs, 48-h E2 (10−8

M) treatment inhibits mitochondrial Ca2+ uptake, an effect
abolished by the ERα/ERβ antagonist ICI182,780 (10−8 M)
(221). The mechanisms whereby E2 inhibits mitochondrial Ca2+

uptake are still unknown (Figure 1).

PMCA Activity
Recent data show that GPER inhibits PMCA activity via both
E2-dependent and E2-independent mechanisms (Figure 1). E2-
dependent mechanisms are evidenced by the effects of G-1 (10−8-
10−6 M) and E2 (1–5 × 10−9 M) to inhibit PMCA-mediated
efflux in primary ECs without affecting PMCA expression
levels and to promote PMCA phosphorylation at Tyr1176
(135, 170), which is known to inhibit pump activity (94).
Notably, this phosphorylation masks the stimulatory effect of
enhancing the PMCA–CaM interaction produced by 48-h E2
treatment (170). E2-independent mechanisms are indicated by the
findings that (1) GPER constitutively interacts with PMCA4b
via the anchoring action of PSD-95 at their C-terminal PDZ-
binding motifs; (2) overexpression of GPER decreases PMCA
activity; (3) GPER knockdown promotes PMCA activity; and
(4) PSD-95 knockdown or truncation of the PDZ-binding
motif on GPER releases GPER–PMCA association and promotes
PMCA activity (135). Functionally, thesemechanisms collectively
prolong agonist-induced Ca2+ signal and enhance eNOS activity
in ECs (135, 170, 203). Consistent with suppressed Ca2+ efflux,
the Ca2+ signals stimulated by E2 and the GPER agonist G-1
in cells overexpressing GPER reported by various laboratories
display much more prolonged plateau phases compared to Ca2+

signals in cells not overexpressing GPER or those stimulated by
other agonists such as ATP or bradykinin (160, 162, 164, 175).
GPER–PMCA4b interaction seems to be mutually influential,
such that knockdown of PMCA decreases GPER-mediated
ERK1/2 phosphorylation, while GPER knockdown does the
opposite on PMCA activity (135).

ESTROGENIC REGULATION OF CALCIUM
SIGNAL TRANSDUCTION—THE
CALMODULIN NETWORK

Since CaM is the universal Ca2+ signal transducer for numerous
proteins (117, 118), is insufficiently expressed for its targets

(122, 125, 126), and is a source of competition among target
proteins (124, 127), factors that regulate its expression and target
interactions are predicted to have a pervasive impact. The effects
of E2 on the CaM network have been examined in some detail in
vascular ECs in recent studies (135, 169, 170). E2 treatment (1–
5 × 10−9 M, 48 h) upregulates total CaM by around 7-fold and
free Ca2+-CaM by∼15-fold in primary ECs. Data obtained using
specific estrogen receptor agonists, gene silencing, and receptor
overexpression indicate that GPER, but not ERα or ERβ, mediates
this effect. Thus, the GPER agonist G-1 (10−9-10−7 M), but not
the ERα agonist propyl pyrazole triol (PPT) (3 × 10−10-2 ×

10−7 M) or the ERβ agonist diarylpropionitrile (DPN) (10−10-
5 × 10−8 M), increases CaM expression; GPER knockdown
reduces the effect of E2 to upregulate CaM; and E2 upregulates
CaM in SKBR3 cells that express only GPER and not ERα or
ERβ (170). Consistently, the ERα/ERβ antagonist/GPER agonist
ICI182,780 dose-dependently upregulates CaM. Mechanistically,
GPER exerts this action via the activities of EGFR and
MAPK/ERK kinase 1 (MEK1). Functionally, E2 upregulates
CaM and promotes the PMCA–CaM interaction; however, the
predicted stimulatory effect on Ca2+ extrusion is masked by E2-
induced inhibitory phosphorylation at Tyr1176 of PMCA (170);
additionally, GPER exerts E2-dependent and E2-independent
effects to inhibit PMCA (135). These collective actions prolong
Ca2+ signals, promote Ca2+-CaM complex formation, and
increase Ca2+-CaM associations with low- to high-affinity
CaM network members, represented by GPER itself, ERα,
and eNOS (170). Considering that CaM binding stabilizes
ERα homodimers, these effects are expected to promote other
genomic actions of E2 as well. Thus, a feedforward mechanism
exists in which GPER mediates E2’s effects to increase CaM and
inhibits Ca2+ efflux, prolonging cytoplasmic Ca2+ signals, and
the resultant increases in Ca2+-CaM complexes in turn promote
the activities of GPER itself and other CaM network members
(170) (Figure 1).

ESTROGENIC MODERATION OF
CALCIUM-DEPENDENT ACTIVITIES

How do the various mechanisms discussed so far come together
in regulating cardiovascular functions? An immediate challenge
is how to reconcile the effects of estrogenic agonists to both
trigger acute Ca2+ signals by themselves and inhibit otherwise
stimulated Ca2+ signals. The Ca2+ signals triggered by estrogenic
agonists in primary cardiovascular cells are generally of very low
amplitude. Furthermore, as in experiments testing their effects on
Ca2+ signals otherwise triggered, estrogenic agonists are present
in situ with other stimuli whose Ca2+ signals they inhibit. Thus,
for mechanisms that generate cytoplasmic Ca2+ signals, E2 and
GPER exert ultimate inhibitory effects. For cytoplasmic Ca2+

removal mechanisms, estrogenic agonists and GPER also are
inhibitory. For Ca2+ signal transduction, E2, via a feedforward
at GPER, increases CaM expression and enhances linkage in the
CaM-binding proteome.

All things considered, E2 and GPER, via both E2-
dependent and E2-independent mechanisms, act to moderate
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FIGURE 2 | Moderation of cardiovascular functions by E2 and GPER via effects on Ca2+ signal generation, Ca2+ signal removal, and Ca2+ signal transduction. See

text for details. Modified with permission from the author’s previous publication (170).

Ca2+-dependent activities in the cardiovascular system. They
“clamp” cytoplasmic Ca2+ signals by lowering peaks (inhibition
of signal generation) and raising troughs (inhibition of signal
removal), collectively confining tissues in a narrower yet more
sustained operating range of Ca2+. Also, GPER-mediated
increases in CaM expression and CaM network linkage improve
Ca2+ signal transduction efficiency. Considering the Ca2+

sensitivity of Ca2+-dependent proteins in this context, one can
predict that those with low Ca2+ sensitivity (requiring high Ca2+

for activation) are more likely to be affected by the inhibition of
Ca2+ signal generation. On the other hand, proteins with high
Ca2+ sensitivity (requiring low Ca2+ for activation) are more
likely to be promoted by the inhibition of Ca2+ removal and less
affected by the suppression of Ca2+ signal generation (Figure 2).

This notion has been demonstrated experimentally via the
case of eNOS, a Ca2+-dependent CaM-binding protein (222)
with sub-nanomolar affinity for CaM (127). CaM interaction
and subsequent activation of wild-type eNOS have high Ca2+

sensitivities, with respective EC50(Ca
2+) values ∼1.8 × 10−7

and 4 × 10−7 M (190). eNOS is also regulated by multisite
phosphorylation (223). Notably, its bi-phosphorylation at Ser617
and Ser1179 promotes NO production by increasing the Ca2+

sensitivity for both CaM binding and enzyme activation,
reducing their respective EC50 (Ca2+) values to ∼0.7 × 10−7

and 1.3 × 10−7 M, thus rendering the synthase active at resting
cytoplasmic Ca2+ (189). E2 and GPER (1) prolong endothelial
cytoplasmic Ca2+ signal by inhibiting Ca2+ efflux (135, 170),
(2) promote eNOS phosphorylation at Ser617 and Ser1179 (170,
198), (3) increase CaM expression and eNOS–CaM interaction
(170), and (4) suppress endothelial SOCE (203). When we
incorporate these effects into a verified sequential “CaM binding
eNOS activation” model (189, 190), eNOS activity and NO
accumulation are shown to substantially increase across the time

course of bradykinin-induced Ca2+ signal in ECs by treatment
with G-1 (203). Importantly, major contributions to this outcome
include the increases in CaM binding, phosphorylation, Ca2+

sensitivity, and duration of Ca2+ signals due to Ca2+ efflux
inhibition, but little or no effect of the inhibition of SOCE
(203), due obviously to the synthase’s high Ca2+ sensitivity
(Figure 3). Thus, via multifaceted actions on components of
the CSM, E2 and GPER moderate Ca2+-dependent activities
by differentially affecting the continuum of Ca2+-dependent
proteins based on their Ca2+ sensitivities for Ca2+ or
Ca2+-CaM complexes.

Considering the two Ca2+-dependent estrogen receptors—
ERα and GPER—how does the presence of one influence the
effects of the other on Ca2+ signaling? A complex relationship is
predicted to exist in which ERα transcriptional activities affect the
expression of certain Ca2+ signaling proteins but are themselves
influenced by the amplitudes and dynamics of Ca2+ signals
limited by GPER activation and the availability of CaM that is
promoted by GPER action (170). In turn, as CaM is limited in
cells (122, 124, 126, 127), the high affinity binding of CaM by
ERα and GPER further limits CaM availability and will influence
CaM-dependent regulation of each other at the receptor level, a
predictable outcome of the functional crosstalk via competition
for limited CaM (124, 127). These relationships may represent
but a small aspect of the reciprocality between estrogen and
Ca2+ signaling.

CONCLUSION AND FUTURE
PERSPECTIVES

Reciprocality between estrogen signaling and Ca2+-dependent
activities is becoming evident. Considering the impact of estrogen
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FIGURE 3 | Moderation of Ca2+-dependent eNOS activity by GPER activation. (A) Cytoplasmic Ca2+ clamping by GPER activation in ECs (203). The solid line

represents Ca2+ signals produced in response to agonist stimulation in the absence of GPER activation. The sparsely dotted area represents the range of cytoplasmic

Ca2+ signals, in which peak and trough are seen due to maximal effects of Ca2+ entry and Ca2+ efflux. The stippled blue line represents Ca2+ signals produced in the

presence of GPER and its activation. These signals are clamped in a narrower range (the blue area) due to inhibitory effects on both SOCE [green stripes (203)] and

PMCA4b-mediated Ca2+ efflux [red stripes (135, 170)]. (B) Average time courses of cytoplasmic Ca2+ signals measured in primary ECs treated with bradykinin in the

absence of extracellular Ca2+ followed by treatment with vehicle or G-1; total Ca2+ signals were triggered by re-addition of extracellular Ca2+ [arrow (203)]. (C)

Calculated eNOS point activity corresponding to each Ca2+ value in (B) considering only changes in Ca2+ due to GPER activation using a verified sequential

eNOS–CaM binding eNOS activation model [equation, where (K1, K2) and (K3, K4 ) are derived products of the binding constants of Ca2+ at the Ca2+-binding sites on

the N and C lobes of CaM in binding to CaM and interaction of Ca2+-CaM and eNOS (189, 190). (D) Calculated eNOS point activity corresponding to each Ca2+

value measured in (B), factoring in changes in Ca2+, CaM binding, and eNOS phosphorylation (170, 203). See details in text and (170, 203). Reproduced with

permission from the author’s previous publication (203).

and its receptors on Ca2+ signaling, E2, and in many cases,
GPER exert inhibitory effects on many components of the CSM
in cardiovascular tissues, from Ca2+ store release and uptake
(214, 215, 221) and Ca2+ entry (199, 201–210, 212, 213) to
cytosolic Ca2+ removal mechanisms (135, 170, 208, 217–221).
Considering the impact of Ca2+ signaling on estrogen biology, both
ERα and GPER are strongly regulated by direct Ca2+-dependent
interactions with CaM. These interactions serve to stabilize
receptor dimerization and enhance subsequent transcriptional
activities [the case of ERα (137, 138, 142, 143)] or promote
receptor-mediated downstream signaling [the case of GPER
(169, 170)]. Also, E2-induced MAPK activation has long been
known to be dependent on the Ca2+ signal produced (173).
Reciprocality between estrogen biology and Ca2+ signaling
is further evidenced by the demonstration of a feedforward

mechanism, in which E2, via GPER activation, upregulates
total cellular CaM expression and free intracellular Ca2+-CaM
concentration, which promotes functions of GPER and ERα

and other classes of Ca2+-CaM-dependent proteins (170). The
combination of these various actions is predicted to affect
Ca2+-dependent functions depending on the affinity and Ca2+

sensitivities of the proteins involved, as exemplified by the case of
eNOS (Figures 2, 3) (170, 203).

The moderating effects that estrogenic agonists and receptors
exert on the CSM can explain many of their cardiovascular
effects, such as preventing excessive cardiac contraction during
sympathetic stress, limiting adverse outcomes related to Ca2+

overload, and reducing vascular tone. Nevertheless, the effects of
E2 and estrogen receptors on many CSM components have not
been examined. Additionally, many questions remain regarding
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mechanisms of the observed effects that estrogenic agonist and
receptors produce on the CSM. For example, how do E2 and
GPER inhibit ICa,L? What are the mechanisms that position
GPER as an intrinsic component of β1AR signaling in the
myocardium? What are the mechanisms whereby E2 inhibits
the activities of SERCA and NCX? What are the mechanisms
whereby E2 inhibits mitochondrial Ca2+ uptake? Further studies
are needed to answer these questions. Through many examples,
however, it is clear that GPER produces both E2-dependent and
E2-independent effects on the CSM. While the search is ongoing
for approaches to apply specific estrogen receptor agonists to the
prevention of cardiovascular disease, the therapeutic potential of

E2-independent effects of GPER and other estrogen receptors is
as yet an unexplored territory.
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