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The complex functions of adipose tissue have been a focus of research interest over the
past twenty years. Adipose tissue is not only the main energy storage depot, but also one
of the largest endocrine organs in the body and carries out crucial metabolic functions.
Moreover, brown and beige adipose depots are major sites of energy expenditure through
the activation of adaptive, non-shivering thermogenesis. In recent years, numerous
signaling molecules and pathways have emerged as critical regulators of adipose
tissue, in both homeostasis and obesity-related disease. Among the best characterized
are members of the p38 kinase family. The activity of these kinases has emerged as a key
contributor to the biology of the white and brown adipose tissues, and their modulation
could provide new therapeutic approaches against obesity. Here, we give an overview of
the roles of the distinct p38 family members in adipose tissue, focusing on their actions in
adipogenesis, thermogenic activity, and secretory function.
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INTRODUCTION

Obesity has become a global pandemic, in part due to lifestyle changes that have brought about an
imbalance between energy intake and expenditure. Obesity is characterized by the expansion of
adipose tissue through both the hypertrophy of preexisting adipocytes and hyperplasia of adipocyte
precursors (1). Adipose tissue has a unique capacity to expand and retract depending on the energy
demands (2). This plasticity, unparalleled in other organs, makes adipose tissue the main lipid
storage organ. For many years, this was thought to be its only function. However, today adipose
tissue is recognized as an indispensable, multi-faceted, and highly metabolically active organ that
fulfils a range of functions including mechanical protection and thermal insulation, energy storage,
immune responses, endocrine functions, and non-shivering thermogenesis (3). These advances in
adipose tissue biology situate the adipocyte as a central rheostat in the regulation of systemic
nutrient and energy homeostasis (4).

Stress activated protein kinases (SAPKs) are an important family of mitogen activated protein
kinases (MAPKs) that are activated by stress stimuli in a cell-type-dependent manner and transduce
stress signals into the cell (5, 6). The SAPKs include the JNK family (JNK1, JNK2, and JNK3) and
the p38 family, which numbers four members: p38a, p38b, p38g, and p38d. SAPKs in adipose tissue
of obese individuals have been recognized as important contributors to obesity development and
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associated insulin resistance. Obesity triggers JNK activation in
adipose tissue, where it plays an essential role in adipocyte-
mediated insulin resistance (7, 8). In contrast, p38a activity is
markedly decreased in the adipose tissue of mice with diet-
induced or genetically induced (ob/ob) obesity (9). This finding
is borne out by low p38a expression in human adipose tissue
from obese individuals, with the level of this kinase correlating
inversely with body mass index (BMI) (10). However, several
upstream kinases are upregulated in visceral fat from overweight
and obese individuals, including ASK1 and MKK6 (11, 12),
suggesting that other p38 isoforms might be activated in
these conditions.

p38 pathway is one of the main proposed controllers of the
activation of brown adipose tissue (BAT) and the browning of
white adipose tissue (WAT). In both processes, p38 signaling
operates by inducing uncoupling protein 1 (UCP1) transcription
through the activation of cAMP response element-binding
protein (CREB), activating transcription factor 2 (ATF2), and
peroxisome proliferator-activated receptor gamma coactivator
1a (PGC1a) (13). WAT browning and BAT activation are
thought to require activation of the p38 cascade by b-
adrenergic stimuli or other browning agents (13–22). However,
it remains unclear what roles are played in these processes by
each of the p38 family members, which have distinct
physiological functions and expression patterns. It is therefore
vital to determine the precise regulation of this pathway and to
identify which p38 and upstream kinases are implicated in WAT
browning and BAT activation. Recent results obtained in our
laboratory indicate that the activation of each p38 is tissue- and
upstream–kinase-dependent. For example, all p38s in WAT are
activated mostly by MKK3, and mice lacking this kinase show a
robust decrease in p38 activation; however, we recently showed
that in BAT, p38 activation is mainly dependent on MKK6 (12).
Interestingly, in obesity, MKK6 expression increases in WAT but
decreases in BAT. These data suggest that p38 regulation differs
markedly between BAT and WAT.
THE P38 MAPK PATHWAY
AND ADIPOGENESIS

Knowledge about the origin of white and brown adipocytes has
been substantially revised in the last few years. Although brown
and white adipocytes share a mesodermal origin, they originate
from different populations of embryonic multipotent
mesenchymal stem cells (MSCs) (23, 24). Due to its function
in thermogenesis, especially in newborns, BAT develops before
birth, and brown adipocytes originate from the myogenic Myf5-
positive MSC lineage (25). White preadipocytes arise from
adipogenic Myf5-negative MSCs and differentiate to WAT
shortly after birth (26, 27). Despite this difference in MSC
origin, adipogenesis in both white and brown adipocytes
involves the activation of the same key transcription factors:
peroxisome proliferator-activated receptor g (PPARg) and
CCAAT/enhancer-binding proteins (C/EBP) (28, 29). Adipocyte
differentiation is also regulated by bone morphogenetic proteins
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(BMP), members of the transforming growth factor (TGF)-b
superfamily. Differentiation of white adipocytes is regulated by
BMPs 2 and 4 (30–32), whereas BMP7 and PR domain containing
16 (PRDM16) are crucial factors in the differentiation of
preadipocytes to mature brown adipocytes (17, 33). Another
common regulator of brown and white adipocyte differentiation
is the p38 pathway, and here we will summarize the current
knowledge about the role of this kinase family in WAT and
BAT adipogenesis.

p38 Protein Kinase Family Controls White
Adipogenesis
The precise role of p38 kinases in adipogenesis remains unclear,
with some studies indicating that p38 activation promotes
adipogenesis (34–36) while others suggesting that it inhibits
this process (9, 37, 38). More than two decades ago, pioneering
work by Engelman and colleagues demonstrated that p38
orchestrates the early steps in the differentiation of 3T3-L1
fibroblasts to adipocytes by activating the transcription factor
C/EBPb. These authors found that pharmacological inhibition of
p38 blocked the initial stages of adipogenesis but did not affect
the later stages of differentiation (34). Work by the same group
also demonstrated the important contribution of p38 to
adipogenesis and the consequent need to tightly regulate its
activity during this process. This work showed that p38
activation, by salicylate or active MKK6, spontaneously triggers
adipogenesis of 3T3-L1 cells and that uncontrolled and
prolonged activation of p38 results in massive cell death (36).
Nevertheless, other studies have demonstrated a negative role of
p38 in adipogenesis (39). p38 phosphorylates the C/EBP
homologous protein (CHOP), a negative regulator of C/EBPa
(38), and nuclear factor of activated T cells 4 (NFATc4) (37),
both of which regulate adipocyte differentiation. In addition,
Aouadi and colleagues found that p38 activity declines during
adipocyte differentiation and that pharmacological or genetic
p38a deficiency stimulates adipogenesis in vitro and in vivo. The
anti-adipogenic effects of p38 are due to inhibition of C/EBPb
and PPARg activity (9). Contrasting the mouse results, the same
authors demonstrated a positive role of p38 in human
preadipocyte differentiation, showing that pharmacological
inhibition of p38 reduced C/EBPb phosphorylation, PPARg
expression, and lipid accumulation in primary human
preadipocytes (35).

To evaluate the alteration of nuclear proteins during early
stages of 3T3-L1 preadipocyte differentiation, Rabiee et al.
performed a proteomic and phosphoproteomic analysis. After
generating a kinase-substrate database, these authors showed
that most putative protein kinases involved in early adipogenesis
belong to the cyclin-dependent kinase (CDK) family and the
MAPK family, which includes p38 and JNK (40). Further
analysis showed that most transcriptional regulators are
phosphorylated during early adipogenesis and that most of the
phosphorylated peptides included the consensus motif S(p)/T
(p)-P. These are target sequences for CDKs and MAPKs, thus
establishing the fundamental role of MAPKs in adipogenesis.
Interestingly, we recently demonstrated that p38g and p38d can
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act as CDKs and that the CDK and p38 kinase families cooperate
in the phosphorylation of their substrates in the liver (41). It
would be interesting to assess whether these kinase families also
jointly coordinate the differentiation of adipose tissue.

The transcription factor BMP4 plays an important role in
white adipocyte development by triggering MSC commitment to
adipocyte fate (42, 43), inhibiting the brown phenotype during
terminal differentiation, and promoting a shift from the brown
adipocyte phenotype towards a white-like phenotype (32). BMP4
and the related BMP2 mediate adipogenic function via two main
signaling pathways: the canonical SMAD pathway (44) and a
SMAD-independent pathway that involves activation of p38 by
the upstream activators transforming growth factor beta-
activated kinase 1 (TAK1), MKK3, and MKK6 (45). BMP2-
induced p38 activation (45) leads to the phosphorylation of its
downstream substrate ATF2, which in turn regulates PPARg2
expression and adipogenesis (Figure 1). In consequence, ATF2
deletion or the chemical inhibition of p38a/b in mice results in
decreased PPARg2 expression and adipocyte differentiation in
vitro. The reduced WAT content in these mice protects them
against high fat diet (HFD)-induced obesity (46). In addition to
these mechanisms, BMP4-induced activation of SMAD and p38s
was recently shown to induce focal adhesion kinase (FAK) in
early adipogenesis, and FAK silencing or inhibition
downregulated adipogenesis while also reducing SMAD and
p38 activation (47). These findings suggest that there are more
molecular players in these complex processes yet to be
discovered (Figure 1).

p38 signaling is also implicated in the adipogenic action of
monocyte chemotactic protein 1 (MCP1)-induced protein
Frontiers in Endocrinology | www.frontiersin.org 3
(MCPIC). MCP1 and its receptor CCR2 are produced in
preadipocytes during in vitro adipogenesis and contribute to
adipogenesis through the induction of MCPIP (48). During the
later stages of adipogenesis, MCPIP triggers the endoplasmic
reticulum stress response, autophagy, ROS induction, and p38
activation. Chemical inhibition of p38 in 3T3-L1 cells attenuates
the expression of adipogenic markers (adiponectin and
lipoprotein lipase) in MCPIP-induced adipogenesis (49),
suggesting a pro-adipogenic role of the p38 family (Figure 1).

p38 SAPKs As Regulators of
Brown Adipogenesis
Significant progress has also been made in understanding the
molecular mechanisms of brown adipogenesis. BMP2 and BMP4
have been reported to promote white adipogenesis in MSCs or
preadipocytes in vitro when exposed to an adipogenic cocktail (50,
51); however, Tseng et al. showed that in the absence of the
adipogenic cocktail, treatment with BMP2, BMP4, BMP6, or
BMP7 promotes lipid accumulation in brown but not white
preadipocytes (17). Of these BMPs, BMP7 is the only one that
substantially increases the expression of UCP1, other early brown-
fat fate regulators like PRDM16 and PGC1a, and the adipogenic
transcription factors PPARg and C/EBPs, as well as inducing
mitochondrial biogenesis (17). The same study also established
that BMP7-induced brown adipogenesis requires p38 and PGC1a:
BMP7 treatment of brown preadipocytes activated p38, leading to
phosphorylation of its substrate ATF2 (Figure 2), whereas p38
inhibition reducedBMP-7-inducedUCP1expression(17).A recent
comparative epigenomeand transcriptomeprofilingofC3H10T1/2
mesenchymal cells during differentiation into thermogenic brown
FIGURE 1 | Role of p38 in WAT adipogenesis. In Myf5- MSC cells, p38 protein kinase family members are activated by a variety of upstream activators, including
BMP2–TAK1–MKK3/6, BMP4–FAK, and MCP1–MCPIP. p38-mediated phosphorylation and activation of CREB and ATF2 then leads to increased expression of
Pparg2 and WAT adipogenesis. Solid arrows represent the direct effects of molecular players involved in the indicated signaling pathways, while dotted arrows
represent indirect effects, meaning that other unknown molecules might be involved. ATF2, activating transcription factor 2;BMP, bone morphogenetic proteins;
CREB, cAMP response element-binding; ER, endoplasmic reticulum; FAK, focal adhesion kinase; MCP1, monocyte chemotactic protein 1; MCPIP, MCP1-induced
protein; MKK, mitogen-activated protein kinase kinase; ROS, reactive oxygen species; MSC, mesenchymal stem cell; Pparg2, peroxisome proliferator-activated
receptor gamma 2; TAK1, transforming growth factor beta-activated kinase 1; WAT, white adipose tissue. Yellow circled ‘P’ indicates phosphorylation.
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adipocytes revealed that BMP7–p38 signaling potentially targets
Sox genes, which are important for early lineage commitment of
multipotent progenitors to brown adipocytes (52). This study
confirmed that Sox13 promotes adipogenic differentiation, brown
marker gene expression, and mitochondrial respiration (52).

p38–CREB-mediated mitochondrial biogenesis is also
promoted by the adipogenesis regulator Wnt3a. Treatment of
in vitro differentiated 3T3-L1 adipocytes with Wnt3a upregulates
the expression of mitochondrial genes and mitochondrial copy
number in a process independent of the canonical Wnt/b-
catenin pathway (53). Instead, Wnt3a induces rapid and
transient activation of p38 (54, 55), and pharmacological
inhibition of p38 reduces CREB activation and attenuates the
observed effects of Wnt3a (Figure 2).

A number of naturally occurring compounds with pro- or anti-
adipogenic effects on white and brown adipogenesis have been
found to act mainly through the AMPKa and p38 pathways.
These compounds include phloretin (56), sinigrin (57), and
cryptotanshione (58). Phloretin is a glucose transporter inhibitor
found in some fruits that enhances adipogenesis in the bone-
marrow derived stromal cell line ST2 by inhibiting ERK and JNK
and activating p38 (56). Singirin, a glucoside found in broccoli,
Brussels sprouts and black mustard seeds, has the opposite effect,
inhibiting the early stage adipogenesis of 3T3-L1 adipocytes by
activating AMPK, MAPKs, and acetyl-CoA carboxylase (57).
Cryptotanshione, found in Salvia miltiorrhiza, stimulates brown
adipogenesis and inhibits WAT-specific markers through AMPKa,
p38a, and SMAD signaling (58).

Adipocyte Plasticity and Transdifferentiation
Adipocyte-like cells canalsobegeneratedby the transdifferentiation
of muscle satellite cells (59, 60), and this complex reprograming
Frontiers in Endocrinology | www.frontiersin.org 4
process is reversible (61). p38 kinases are candidate negative
regulators of the broad molecular network involved. The p38
pathway is activated in early and late stages of transdifferentiation,
and pharmacological inhibition of p38a/b by SB203580 stimulates
adipogenic metabolism, increases lipid production, and promotes
expression of adipogenic regulators (62). In addition, dominant-
negativeMKK3 stimulates transdifferentiation of C2C12myogenic
cells into adipocytes via upregulation of PPARg and the
phosphoinositide-3 kinase pathway (59). Furthermore, during
pregnancy and lactation subcutaneous white adipocytes can also
transdifferentiate into mammary glands and so-called pink
adipocytes, responsible for milk production (63, 64) and this
process is reversible after lactation (65). As discussed in this
review, p38 protein kinase family has an important role in
adipose tissue plasticity, and it would be interesting to examine
the role of p38s in development and function of pink adipocytes.

Until recently, most evidence implicating p38 kinases in
adipogenesis came from experiments with pharmacological
inhibitors. However, kinase inhibitors have important
limitations due to their lack of specificity and possible side
effects. Using adipose p38a knock out mice, we recently
showed that lack of p38a results in reduced weight of several
fat depots, suggesting a possible positive role of p38a in
adipogenesis in vivo (10). These results were subsequently
confirmed by another study (66). We also demonstrated that
deletion of p38a in adipose tissue leads to a reduced content of
BAT and several types of WAT, whereas the lack of p38d has
opposing effects (10). Moreover, in vitro-differentiated brown
preadipocytes lacking p38a have higher expression of brown
adipocyte markers and mitochondrial genes, whereas lack of
p38d downregulates BAT signature genes in differentiated brown
adipocytes (10). These data highlight a novel role of p38d as a
FIGURE 2 | The p38 kinase family controls BAT adipogenesis. Brown adipocytes originate from Myf5+ MSC cells. BMP7 and Wnt3 activate p38 protein kinases,
which phosphorylate and activate CREB and ATF2, leading to increased gene expression of brown adipocyte signature markers and mitochondrial biogenesis. p38d
has been suggested as the main kinase promoting BAT activation, whereas p38a has opposing effects. Black arrows represent the direct effects of molecular
players involved in the indicated signaling pathways or effects. ATF2, activating transcription factor 2; BAT, brown adipose tissue; BMP, bone morphogenetic protein;
C/ebp, CCAAT/enhancer-binding protein; CREB, cAMP response element-binding; MSC, mesenchymal stem cell; Ppargc1a, peroxisome proliferator-activated
receptor gamma coactivator 1a; Prdm16, PR domain containing 16; Pparg, peroxisome proliferator-activated receptor; Ucp1, uncoupling protein 1. Yellow circled
‘P’ indicates phosphorylation.
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positive inducer of brown adipogenesis. The opposite roles of
p38a and p38d in brown adipogenesis underline the need for
further research using genetically modified mice to define the
actions of individual p38 family members in adipogenesis, both
in early and late stages.
P38 IN BAT ACTIVATION

BAT is an important organ involved in fat burning and body-
temperature maintenance through non-shivering thermogenesis
(67). Although the presence of BAT in small mammals and
human newborns was well established, it was believed to lose its
function in adult humans. A decade ago, positron emission
computed tomography studies revealed certain areas of the
adult human body with a very active uptake of fluorodeoxy-
glucose (68). These regions were identified as BAT depots, and
are mainly located in cervical, supraclavicular, axillary, and
paravertebral regions (69). The amount and the activity of
BAT are dependent on several factors, such as age, leanness,
and environmental temperature, and obese individuals have
deficiencies in BAT activation and browning (68).

Mice with increased BAT activity are resistant to metabolic
diseases, not only because they expend more energy on
thermogenesis, but also because of improvements in systemic
metabolism resulting from BAT actively removing glucose and
lipids from the bloodstream and thereby increasing glucose
tolerance and insulin sensitivity (69). This evidence suggests
that modulation of BAT activity offers a possible therapeutic
strategy for increasing energy expenditure and to achieving a
negative energy balance, as well as an improved metabolic status.
p38 Signaling During BAT Activation
Whereas white adipocytes store lipids in a single large
triglyceride-filled droplet and contain few mitochondria, brown
adipocytes store lipids in multiple small droplets and contain a
large number of mitochondria (67). In BAT, thermogenesis is
mainly controlled by UCP1, a mitochondrial protein that
uncouples the respiratory chain from ATP synthesis, so that
the energy generated is dissipated as heat (13). BAT is activated
by a variety of stimuli, including cold, hormones, and certain
food components, all of which trigger an increase in proton flux
through UCP1, resulting in heat production (70). BAT activation
triggers a cell signal transduction that causes not only acute
effects such as enhanced lipolysis and UCP1 activity, but also
chronic effects that include increased expression of thermogenic
genes, mitochondrial biogenesis, and neoplastic and hyperplasic
growth of brown adipocytes (67, 71).

One of the key signaling proteins involved in BAT activation is
protein kinase A (PKA). Activated PKA phosphorylates hormone
sensitive lipase (HSL), stimulating its activity and in turn
promoting lipolysis. The resulting free fatty acids (FFA) undergo
b-oxidation, and the increase in FFA levels also promotes UCP1
activity (72–74).Additionally, PKAparticipates in the activationof
the p38 pathway (15), which contributes to BAT thermogenesis
Frontiers in Endocrinology | www.frontiersin.org 5
through the phosphorylation of key transcription factors driving
UCP1 expression (12–14, 17, 18). Three well-recognized
transcription factors within this group are PGC1a, ATF2 and
CREB. PGC1a is an important regulator of mitochondrial
biogenesis and oxidative phosphorylation (75, 76) and is also
required for enhanced UCP1 expression. p38 promotes PGC1a
transcription by phosphorylating ATF2 and CREB, which bind as
homodimers to cAMP response elements (CREs) in the PGC1a
promoter (13, 77). CREB activation was thought to be p38
independent because PKA can promote its activation by direct
phosphorylation at Ser133 (13, 15). However, CREB can be also an
indirect target of p38 through activation of the p38 substrate
MSK1 (78). Moreover, p38 also directly phosphorylates
PGC1a, enhancing its stability and activity (79). Phosphorylated
PGC1a acts as a co-activator by interacting with different dimer
combinations of PPARa, PPARg, retinoidX receptor, retinoic acid
receptor, and thyroid receptor transcription factors (19, 71, 80).
These complexes bind to PPAR response elements present in both
the PGC1a and theUCP1 promoter, and PGC1a thus acts as a co-
activator not only for its own transcription in an autoregulatory
loop, but also for UCP1 transcription (81). p38-mediated
phosphorylation of ATF2 and CREB also allows these
transcription factors to bind to CRE sites in the UCP1 promoter,
increasing UCP1 expression (13). In light of this accumulated
evidence, it seems undeniable that the p38 pathway plays a central
role in the coordinated thermogenic response (Figure 3).

Recent research has identified another mechanism of p38-
mediated UCP1 regulation. p38-mediated phosphorylation of
the transcription factor Zc3h10 at S126 induces its binding to the
UCP1 promoter at a ~4.6 kb upstream region, increasing UCP1
expression and thermogenesis (82).

Signaling Triggering BAT Thermogenesis
Through p38
Cold-induced BAT activation and thermogenesis mainly relies
on sympathetic nervous system (SNS) innervation. Upon cold
exposure, catecholamines released by the SNS activate the
thermogenic program in brown adipocytes by stimulating b3-
adrenergic receptors (b3AR) (68), which are abundantly
expressed in this cell type. b3AR stimulation is followed by an
adenylate cyclase (AC)-mediated increase in intracellular cAMP.
The resulting activation of PKA is associated with increased
expression of thermogenic genes via p38 activation (Figure 3).

BAT activity is also promoted by other factors, secreted either
BAT or other organs. Thyroid hormones (TH) activate BAT by
bothTH-mediated SNS stimulation and peripheral actions (83). In
brown adipocytes, T4 is converted by 5-deiodinase type 2 (Dio2) to
T3, which binds to TH receptors located in TH response elements
(TREs) present in the promoters of thermogenic genes such as
UCP1 (84). T3 thus acts synergistically with b3-agonists to induce
BAT activity. T3 also promotes fatty acid-oxidation, lipogenesis,
and mitochondrial biogenesis in BAT (83), enhancing its
thermogenic capacity. Although the main effects of T3 on BAT
activation do not seem to rely on p38 signaling, our group
demonstrated that p38 pathway mediates T3-induced browning
in WAT (see below) (12).
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In addition to their role in BAT differentiation, BMPs also
regulate BAT activation. The canonical BMP signaling pathway
depends on BMP binding to type I and II BMP receptors, which
triggers activation of the SMADpathway.However, non-canonical
BMP signaling also activates theERK, JNK, and p38pathways (85).
BMP8B is particularly important in the context of BAT activation.
Whittle et al. demonstrated that BMP8B expression is upregulated
in BAT after cold exposure or HFD, enhancing the response to
adrenergic stimulationby increasingp38–CREBsignaling andHSL
activity. In that study, the authors showed that Bmp8b−/− mice
exhibit impaired thermogenesis and have a higher susceptibility to
diet-induced obesity, together with decreased activation of p38–
CREB signaling. However, phosphorylation of the p38 upstream
kinases MKK3 and MKK6 is increased, suggesting that BMP8B
Frontiers in Endocrinology | www.frontiersin.org 6
deletion leads to a blockade at this point in the signaling
cascade (18).

A parallel pathway that seems to operate in synergy with b3-
adrenergic activation is mediated by natriuretic peptides (NPs).
NPs are hormones secreted by the heart that bind to NP receptor
A (NPRA), leading to an increase in cGMP and subsequent PKG
activation, which in turn enhances UCP1 expression in BAT and
other mitochondrial markers via p38 (86). However, the vast
majority of studies related to the role of NPs in thermogenesis
have been carried out in the context of browning.

Since BAT activation has emerged as a potential therapeutic
approach for the treatment of obesity and other related diseases,
immense efforts are currently directed towards finding new
compounds able to activate BAT thermogenesis and browning.
FIGURE 3 | Simplified scheme of the signaling cascade for BAT activation in response to cold. Cold-induced release of catecholamines by the SNS activates
thermogenesis in brown adipocytes by stimulating b3-adrenergic receptors, which trigger PKA activation through an increase in intracellular cAMP. PKA participates
in the activation of several transcription factors involved in the BAT thermogenic response. p38-mediated phosphorylation of several of these transcription factors is
necessary for the expression of BAT signature genes. Solid arrows represent the direct effects of molecular players involved in the indicated signaling pathways,
dotted arrows represent indirect effects, meaning that other unknown molecules might be involved, while red arrows represent translocation between cell
compartments. AC, adenylyl cyclase; ATF2, activating transcription factor 2; cAMP, cyclic AMP; CREB, cAMP response element-binding; HSL, hormone sensitive
lipase; PGC1a/Ppargc1a, peroxisome proliferator-activated receptor gamma coactivator 1a; PKA, protein kinase A; PPAR, peroxisome proliferator-activated
receptor; RXR, retinoid X receptor; SNS, sympathetic nervous system; TAG, triglycerides; UCP1, uncoupling protein 1. Yellow circled ‘P’ indicates phosphorylation.
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A number of compounds have been already identified, including
menthol, capsaicin, and resveratrol (87–89). Ravaud et al.
showed that the p38 pathway is required for resveratrol-
induced UCP1 expression, whereas the HIV-protease inhibitor
lopinavir has an opposing action associated with reduced p38
phosphorylation (90). Sinapic acid, a natural alkaloidal amine
found in black mustard seeds, wine, and vinegar, was recently
shown to promote thermogenesis and lipolysis in BAT via PKA–
p38 signaling (91). However, further studies are needed to
provide greater insight into the potential involvement of the
p38 pathway in the induction of BAT thermogenesis via
these compounds.

Function of p38s in BAT Thermogenesis
Despite the many studies exploring the role of p38 pathway in
BAT thermogenesis, few of them have assessed the specific roles
of the individual p38 family members in BAT activation. In 2005,
Robidoux and colleagues (92) reported that p38a is the main p38
responsible for BAT activation. However, this study was based
on in vitro approaches and in vivo experiments with small
interfering RNAs (siRNA) and non-specific chemical compounds
that inhibit not onlyp38a, but alsop38b. Analysis byour groupand
others using geneticallymodifiedmousemodels demonstrated that
p38a deletion results in the upregulation of BAT signature genes in
brown adipocytes in a cell-autonomous manner (10, 66). We also
found that lack of p38a induces p38d activation, resulting in
increased BAT thermogenesis and energy expenditure. Thus,
p38d, and not p38a, seems to be the main p38 kinase implicated
in the induction of BAT thermogenesis in mouse models
(Figure 3).
P38 AND WHITE ADIPOSE TISSUE
BROWNING

In addition to the established classification of fat depots as WAT
and BAT, a third type of fat cell—called brite, beige, or brown-
like adipocytes—has been described in recent years (19, 93).
Beige adipocytes are characterized by multilocular lipid droplets,
high mitochondrial content and metabolic rate, elevated UCP1
expression, and a thermogenic ability similar to BAT. Beige
adipocytes arise in WAT depots through a process called
browning (70, 94), and the induction of WAT browning is a
promising therapeutic strategy for increasing total energy
expenditure in metabolic disease (95, 96), in which the
capacity for browning is reduced (97, 98). Browning was first
described by Young et al. (99) in cold-exposed parametrial fat
pads. Since then, the presence of beige adipocytes has been
reported in other white fat depots, including epididymal and
peri-renal fat (100–102) and especially subcutaneous fat, the fat
depot most susceptible to generating brown-like cells in mice (19,
103). In adult humans, most BAT is in fact composed of beige
adipocytes (94, 104), and a recent report found browning
markers to be more highly expressed in visceral than in
subcutaneous WAT, opposite to the situation in mice,
suggesting that visceral adipose tissue is the brownest depot in
humans (105). Since visceral fat is the main fat linked to
Frontiers in Endocrinology | www.frontiersin.org 7
metabolic diseases (106), these results enhance the importance
of WAT browning as a potential therapeutic strategy.
Interestingly, WAT browning seems to differ between the sexes
and to change with the seasons (107–110).

It is still unclear what specific mechanisms drive browning:
differentiation of pre-existing brown adipocyte precursors within
WAT, differentiation from white adipocyte precursors, or
transdifferentiation from mature white adipocytes (111–114). A
non-BAT origin is supported by the fact that BAT arises from
Myf5-positive progenitors, whereas the progenitors of beige
adipocytes are Myf5-negative (19). In addition to brown
signature markers, beige adipocytes also express beige-specific
markers, thus defining a beige fat phenotype different from BAT
(94, 111, 115, 116).

WAT browning is an adaptive mechanism activated by a
range of stress situations. Aside from cold, other stimuli include
exercise, hormones, pharmacological activation, and numerous
natural compounds (1, 117–121). All these stimuli, despite
activating browning via distinct internal mediators, converge
on the expression of UCP1, mitochondrial biogenesis, and FFA
oxidation, similar to the transformation occurring in BAT
activation (74, 117). p38 signaling has been shown to be an
important pathway controlling UCP1 expression in browning
(Figure 4).

b3AR activation in WAT was thought to be primarily related
to lipolysis, activating HSL and inhibiting perilipin to provide
FFA during fasting (122). However, recent work has shown that
WAT, like BAT, is highly innervated by the SNS and that
adrenergic stimulation (by cold, nutrients, or drugs) is also
involved in WAT browning in mice (70, 94, 123–127) and
humans (128). The SNS induces the release of cathecolamines
like norepinephrine, which, through binding to b3AR, trigger
PKA and p38 activation and promote UCP1 transcription partly
via p38-mediated modulation of ATF2 and PGC1a
transcriptional activity (129) (Figure 4). UCP1 expression is
also activated via b3AR-stimulated p38 activation by a series of
naturally occurring compounds, such as thymol (130),
cinnamaldehyde (131), L-rhamnose (132), grape pomace
extract (133), and mangiferin (134). Along with b3AR pathway
induction, cold-induced WAT browning is also mediated by
stimulation of the histamine H4 receptor, which acts through
intracellular calcium mobilization and p38 and ERK activation,
promoting PGC1a and UCP1 expression (135).

Besides, the b3AR–PKA–p38 pathway, a parallel browning
system also converging on p38 was described by Bordicchia et al.
(86). Cardiac NPs, known as controllers of hemodynamic
homeostasis (136), are increased by cold stimulation and
activate NPRA, which triggers cGMP synthesis and subsequent
PKG activation, leading to p38 phosphorylation and activation of
the WAT thermogenic program via ATF2 (86, 136). Mice with
high NP signaling in adipose tissue are thus protected against
diet-induced obesity and insulin resistance (137), revealing an
important heart–adipose connection in the regulation of energy
metabolism (136). In this way, catecholamines and NPs are able
to act synergistically to promote WAT browning, not only
through p38, but also through mTORC1 in an Akt-independent
manner (138, 139).
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WAT browning can also be activated by TH, either indirectly
through enhanced adrenergic induction of UCP1 (140–142) or
by direct action on white adipocytes (12, 143, 144). Recent work
by our group revealed a new regulation of T3 activity-induced
browning in white adipocytes in which p38 plays a prominent
Frontiers in Endocrinology | www.frontiersin.org 8
role (12). Mice lacking the p38-upstream activator MKK6 are
resistant to obesity and show elevated browning; these effects are
reversed by propylthiouracil (PTU)-mediated inhibition of TH
production and restored by treatment with exogenous T3,
showing that the phenotype is due to increased T3 sensitivity.
FIGURE 4 | p38-signaling in white adipose tissue browning. WAT browning can be triggered by a variety of stimuli that converge on p38 signaling. In response to
cold, hormones, drugs, or naturally occurring compounds, the SNS releases catecholamines to induce WAT browning by stimulating b3-adrenergic receptors. The
ensuing PKA activation in turn activates p38. p38 phosphorylation and activation can alternatively be triggered by other molecules, such as cardiac NP acting via
PKG, T3 hormone via an alternative pathway, or irisin released by skeletal muscle. Solid arrows represent the direct effects of molecular players involved in the
indicated signaling pathways, while dotted arrows represent indirect effects, meaning that other unknown molecules might be involved. Active p38 phosphorylates
the transcription factor ATF2, which translocates to the nucleus and upregulates the transcription of UCP1 and other key genes essential for transforming white
adipocytes into beige adipocytes. AC, adenylate cyclase; AMPK, AMP-activated protein kinase; ATF2, activating transcription factor 2; cAMP, cyclic AMP; GC,
guanylate cyclase; cGMP, cyclic GMP; CREB, cAMP response element-binding; MKK6, mitogen-activated protein kinase kinase 6; NP, natriuretic peptides; PGC1a/
Ppargc1a, peroxisome proliferator-activated receptor gamma coactivator 1a; PKA, protein kinase A; PKG, protein kinase G; PPAR, peroxisome proliferator-activated
receptor; RXR, retinoid X receptor; SNS, sympathetic nervous system; TAB1, TAK1 binding protein 1; TAK1, transforming growth factor beta-activated kinase 1;
Ucp1, uncoupling protein 1. Yellow circled ‘P’ indicates phosphorylation.
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Furthermore, Mkk6 deletion increases T3-stimulated UCP1
expression in white adipocytes through the activation of p38
via an alternative pathway involving AMPK, TAK, and TAK1
binding protein 1 (TAB1). In obese patients, MKK6 expression is
increased and blocks T3-mediated UCP1 induction, preventing
WAT browning in the overfed state (12).

WAT browning in mice is also linked to exercise, although
human studies have failed to show an effect after endurance
training (145). Browning involves several endocrine mediators
released from skeletal muscle, the most notable being irisin,
despite controversy about its physiological relevance in humans
(146–148). Increased irisin levels in exercised mice (12) enhance
total body energy expenditure, activate the thermogenic program
in vitro, increase lipolysis, and induce a browning phenotype in
obesity (80, 149, 150). Irisin-stimulated browning in mice was
reported to require p38 signaling (80, 151) (Figure 4). In
addition, carnosine, a dipeptide abundant in muscle, brain and
other tissues, might induce browning and thermogenesis in
obese rats through the stimulation of irisin, which up-regulates
UCP1, PGC1a, and CD137 via p38 in inguinal WAT (152).

WAT browning is also promoted by BMPs. BMP7 induces
UCP1 inmouse subcutaneousWAT and in human adipocytes (153,
154), hinting that the BMP7–p38 signaling mechanism operating
during BAT adipogenesis might also operate inWAT (17). BMP4 is
expressed in human subcutaneous and visceral fat, and its
expression correlates inversely with BMI (155), suggesting that
hypertrophic obesity is a condition of pre-adipocyte resistance to
BMP4 (156). BMP4 stimulates browning in mouse and human
white pre-adipocytes, and its overexpression in mice increases
inguinal WAT browning (153, 155, 157). This induction was
reported to be mediated by p38–ATF2 signaling and activation of
PGC1a (155). Growth differentiation factor 5 (GDF5), another
TGF-b superfamily member, promotes thermogenic gene
expression and subcutaneous WAT browning in mice, in part
through p38 activation (158).

A number of other molecules have been reported to induce
browning in a p38-dependent manner. Fibroblast growth factor
21 (FGF21) is induced in BAT by cold, in liver by nutrients and
hormones, and in muscle by exercise (121) and acts as an inducer
of WAT browning (159–162). FGF21 contributes to browning in
three ways: by regulating the SNS through its action in the brain,
by enhancing adrenergic stimulation of UCP1 (163), or by acting
directly on white adipocytes to activate PGC1a (164). Another
browning factor is the lipid sensor GPR120, which promotes
browning in mice and adipocytes through p38-mediated FGF21
release (165). UCP1 and PGC1a are also induced by retinoic acid
treatment in mice (166), apparently through p38 (167). The gut-
restricted FXR agonist fexaramine (Fex) protects against diet-
induced weight gain by promoting thermogenesis through the
expression of UCP1 and PGC1a in WAT, also possibly via p38
(168). Browning is also promoted by the autocrine glycoprotein
follistatin, which acts via p38 to increase the expression of beige
adipocyte-specific markers and genes involved in thermogenesis,
FA oxidation, and mitochondrial biogenesis in epididymal WAT
and subcutaneous WAT (102). WAT browning in mice is
stimulated by overexpression of zinc alpha 2 glycoprotein
Frontiers in Endocrinology | www.frontiersin.org 9
(ZAG) (169), and in 3T3-L1 white adipocytes ZAG increases
the expression of brown fat markers and induces mitochondrial
biogenesis via PKA and p38 signaling (170). The naturally
occurring compound cryptotanshinone promotes brown-tissue
and beige-cell markers by activating AMPK, p38, and Smad1/5
(58), whereas sinapic acid achieves the same effect via AMPK,
p38, and PGC1a (171). Treatment with the non-steroidal anti-
inflammatory drug ketoprofen induces browning in 3T3-L1 cells
and inguinal WAT, increasing mitochondrial biogenesis through
an intricate signaling pathway involving p38, mTORC1, and
COX activation (172).

Until now, p38a was considered the family member
implicated in browning, inducing UCP1 expression (13, 92).
This assumption based largely on data from cell culture studies
using p38a inhibitors, which blunt stimulation of the
thermogenic program. However, non-specific effects of these
inhibitors cannot be excluded, and several studies have shown
that these inhibitors reduce p38 phosphorylation, revealing
inhibition of upstream kinases, which in some cases might
result in hyperactivation of other p38 isoforms (86, 102, 130,
132, 133, 151, 170). Despite these concerns about inhibitor
specificity, studies with p38a genetic mutant mice were not
reported until recently. Two parallel studies, one from our
group, recently showed that ablation of p38a in mouse adipose
tissue surprisingly activates the thermogenic program (10, 66).
Mice with adipocyte p38a deficiency are lean, have improved
metabolism, and are resistant to diet-induced obesity due to
increased BAT thermogenesis and browning in inguinal WAT
associated with enhanced CREB transcription activity (10, 66).
However, we showed that in epididymal adipose tissue adipocyte
p38a deficiency results in reduced browning (12). These studies
show that the mechanisms controlling the thermogenic program,
thought to be similar in brown and beige adipocytes, may differ
between each fat depot. Distinct p38 family members may be
implicated in these processes; thus, while p38a would block
thermogenesis in BAT by inhibiting p38d, in inguinal WAT it
might abolish UCP1 expression by inhibiting p38g, and in
epidydimal WAT it could induce browning (10, 12).
ROLE OF P38 IN ADIPOSE TISSUE
SECRETION

Adipose tissue is not only an energy reservoir, but also a
secretory organ. The endocrine function of adipose tissue was
discovered in the 1994 with the description of leptin (173). Since
then, research has identified several other bioactive molecules
secreted by adipocytes, called adipokines. Adipokines are
released to the circulation and modulate metabolic processes in
the body through actions on metabolic organs such as the liver
and brain (174, 175). Adipokines are implicated in metabolic
disorders such as obesity and are important targets in the
treatment of obesity-related diseases. Adipokines with well-
known regulatory functions include leptin, adiponectin, tumor
necrosis factor a (TNFa), and interleukin-6 (IL6) (173, 176,
177). Adipokine secretion was initially thought to be limited to
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WAT, but lately it has become clear that BAT is also a source of
adipokines with specific functions and produced in a distinct
repertoire from that of WAT (74, 178).

The secretion of many of these adipokines likely involves
SAPKs, which trigger the inflammatory response in many cells
and control the secretion of pro-inflammatory mediators such as
TNFa or IL6 (177, 179). Activation of adipocyte JNK1 is partially
responsible for the increased levels of IL6 in obesity (8), and
palmitate- or insulin resistance-stimulated JNK is also critical for
adipocyte production of the chemokine MCP1. Chemical
inhibition of JNK activity suppresses MCP1 release (180, 181).
JNK also mediates the secretion of adipokines with non-
inflammatory properties. Our group recently demonstrated
that adipocyte JNK1 controls adiponectin levels in mice (182).
Testosterone activates JNK in adipose tissue, and ablation of
adipose JNK1 results in increased serum adiponectin, whereas
activation of JNK in male adipose tissue correlates with reduced
adiponectin levels (182).

There arepromising data suggesting that p38might regulate the
adipose tissue secretome. In 2002, Finck and Johnson showed that
chemical inhibition of p38 almost completely blocks TNFa-
induced leptin expression in mice (183). Interestingly however,
TNFa might have an opposite role in the regulation of leptin
secretion. In the absence of corticosteroid medication with
dexamethasone, TNFa inhibits leptin secretion, but in the
presence of glucocorticoid treatment TNFa has the opposite
effect. In cultured omental adipose tissue from dexamethasone-
treatedpatients, the synergistic effect ofTNFaon leptin secretion is
blocked byp38 chemical inhibition, indicating that the effect of p38
on leptin secretion might be mediated by glucocorticoid receptor
activation (184).More recently, Uchiyama et al. found, using a p38
chemical inhibitor in cultured adipocytes, that alamandin-
decreased leptin expression was also mediated by p38 (185).
Moreover, leptin expression is increased in in vitro differentiated
p38a-deficient adipocytes (10). These studies thus suggest that p38
could be involved in leptin secretion by WAT; however, given the
lack of specificity of the inhibitors used in these studies and their
potential p38-independent effects, additional studies with genetic
mouse models will be needed to fully define the role of p38 in the
regulation of leptin secretion. p38 has also been suggested to
regulate the secretion of adiponectin in obese human adipose
tissue (186).

There are also recent studies implicating the p38 pathway in the
secretion of adipokines by brown adipocytes (187). The metabolic
regulator FGF21 is secreted by BATafter thermogenic stimulation.
Brown adipocyte expression of FGF21 requires p38 activation, and
p38a/b inhibition impairs FGF21 transcriptional induction upon
exposure to norepinephrine, the free-fatty acid receptor selective
agonist GW9508, or eicosapentanoic acid (14, 165). Moreover,
transfection of a brown adipocyte cell line with a constitutively
active form of the p38 upstream kinase MKK6 increases FGF21
expression,while adominant-negative formabolishes its induction
by cAMP and PKA (14). Also during BAT thermogenesis, the
cAMP-dependent chemokine CXCL14 recruits and polarizes
macrophages to the M2 phenotype (188), and induction of
Cxcl14 mRNA in brown adipocytes is blunted by chemical
Frontiers in Endocrinology | www.frontiersin.org 10
inhibition of p38a/b (188). Nevertheless, further experiments are
needed in mice lacking p38a/b or their upstream kinases to
confirm the role of p38 signaling in CXCL14 secretion (Figure 5).

Role of p38 in Adipose Tissue
Inflammation
The p38 pathway was originally described as a master regulator
of pro-inflammatory cytokine secretion in myeloid cells. In
macrophages, different p38 family members are involved in the
production of pro-inflammatory mediators (188, 189) and
promote monocytes recruitment exacerbating the adipocyte
pro-inflammatory response (189). Adipocytes are a major
source of TNFa and IL6, and p38 inhibition partially blocks
adipocyte TNFa-induced IL6 secretion, suggesting that the
regulatory actions of p38s observed in macrophages might also
operate in adipose tissue (184). Moreover, siRNA or chemical
p38 inhibition impairs IL6 secretion by amlexanox-treated 3T3-
L1 adipocytes, and this inhibitory effect is also observed in WAT
from mice treated with p38 inhibitors (190). In this study,
inhibition of IKKe/TBK1 by amlexanox led to an increase in
cAMP levels that triggered p38 activation in adipocytes and
subcutaneousWAT (190). This is interesting because the cAMP–
p38 pathway is crucial for the thermogenic process in BAT (13).
Given that IKKe/TBK1 inhibition does not increase IL6
expression in BAT, this mechanism might be specific to
subcutaneous WAT depots, which are enriched in browning-
susceptible beige adipocytes. IL6 has been shown to be required
for the induction of browning in subcutaneous depots after cold
exposure (191).

TNFa is chronically elevated in adipose tissue from obese mice
and humans and is a main activator of the p38 pathway in several
cell types (5). These abnormal levels of TNFa lead to the activation
of stress signaling cascades that stimulate lipolysis in adipocytes
impairing lipid handling capacity (192). The involvement of JNK
in TNF-a stimulation of lipolysis in human adipocytes have been
demonstrated (193), however a possible role of p38 family
members in TNF-induced lipolysis need to be clarified. TNFa
has been proposed to induce plasminogen activator inhibitor-1
(PAI-1) in adipocytes, an adipokine that contributes to the
cardiovascular and metabolic complications associated with
obesity (194). p38 inhibition impairs TNFa-induced PAI-1
expression in 3T3-L1 adipocytes, suggesting that this PAI-1
expression is p38 dependent (195). Similar results were found in
a later study, in which p38 chemical inhibition partially decreased
PAI-1 expression induced by b3AR activation in 3T3-L1
adipocytes (196). Nevertheless, chemical inhibition of p38 did
not have the same effect in epididymal WAT from mice treated
with a b3AR agonist (196). p38 inhibition also blocks TNFa
induction of Wdnm1-like adipokine in 3T3-L1 adipocytes (197).
These data are consistent with p38 mediation of TNFa-regulated
adipokine expression (Figure 5). However, additional studies with
animal models will be needed to confirm the role of p38 in the
secretion of these adipokines.

Pro-inflammatory signals are important players of the BAT and
beige adipocytes thermogenesis. Many inflammatory cells and pro-
inflammatory cytokines secreted by both immune cells and
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adipocytes can negatively affect the thermogenic activation and
browning of WAT (198). As it has been commented above, p38
controls the expression of many pro-inflammatory cytokines by
macrophages (199) and also controls the secretion of the M2
chemokine CXCL14 (188). In addition, upon cold exposure,
mice lacking adipose p38a have an increased mRNA expression
of M2-related genes, a reduction in mRNA levels of pro-
inflammatory cytokines, and an elevated macrophage infiltration
in inguinal WAT (66). These results are in agreement with the
increased browning in this mouse model, given that pro-
inflammatory M1 macrophages infiltration in BAT impairs its
ability to respond to thermogenic stimuli (200–202), while M2
macrophages are proposed to be directly involved in promoting
BAT thermogenesis (203).
FUTURE PERSPECTIVES

Adipose tissue is an important organ in metabolic regulation.
Much more than a simple fuel reservoir, adipose tissue has
endocrine functions and is able to massively expand or retract
according to the nutrient supply. This unique, almost unlimited
capacity of adipose tissue is critical for maintaining homeostasis,
and its disturbance is directly linked to obesity and related
disorders and comorbidities. Increasing knowledge about
adipose tissue biology has led to a better understanding of its
role in health and disease. p38 stress kinases are one of a major
regulators of cell adaptation to external and internal changes and
play important roles in adipose tissue. In recent years, significant
advances have defined the roles of p38 kinases in different
Frontiers in Endocrinology | www.frontiersin.org 11
adipocyte cell types. However, the use of pharmacological
inhibitors in most studies and the limited data from genetically
modified animals show the need for caution in interpreting these
findings while further research is undertaken. The use of chemical
inhibitors has important limitations because of their non-
specificity and side effects. Additionally, inhibitors with selective
activity against p38a and p38b might affect p38g and p38d
activation due to the negative feedback exerted by p38a on the
upstream activators of the pathway, MKK3/MKK6. Other hurdles
to progress are the lack of antibodies recognizing the
phosphorylated form of each family member and the small
number of substrates identified for the less studied family
members. Research in the coming years, using appropriate
genetically modified animal models and evaluating the
phosphorylation of specific substrates of each family member, is
expected to better define the role of the all p38s in adipose tissue.
For example, research in adipogenesis would need to assess the
role of each p38 in the differentiation of adipose tissue in steady-
state and in obesity. More importantly, research is needed to
identify the main p38 family member involved in human adipose
tissue browning and BAT activation in order to define the
potential of this pathway as a target for obesity treatment.

BAT activation and browning have emerged as therapeutic
targets for the treatment of obesity and its associated diseases.
We recently demonstrated that inhibition of p38a leads to the
hyperactivation of p38d and that active p38d increases
thermogenesis. This finding has important clinical implications
because p38a inhibition or p38d activation might be feasible
therapeutic approaches to the treatment of obesity-related
disorders. What is required now is the design of selective
FIGURE 5 | The p38-mediated adipose tissue secretome. The p38 pathway controls the expression or secretion of distinct adipokines in WAT and BAT. In white
adipocytes, p38 activation is required for the production of IL6, PAI-1, and Wdnm1-like after TNFa stimulation. p38 signaling also controls leptin secretion in
response to TNFa, playing a positive role in the presence of dexamethasone, but an inhibitory role in response to alamandin. p38 is also involved in the secretion of
IL6 in response to amlexanox and in the induction of PAI-1 after b3AR stimulation. In brown adipocytes, p38 controls the secretion of FGF21 induced by NE,
GW9805, or EPA and directs the secretion of CXCL14 after cAMP stimulation. cAMP, cyclic AMP; EPA, eicosapentanoic acid; FGF21, fibroblast growth factor 21;
IL6, interleukin-6; NE, norepinephrine; PAI-1, plasminogen activator inhibitor-1; TNFa, tumor necrosis factor a.
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inhibitors or activators targeting the appropriate p38 family
member. These specific molecules might allow prevent the
progression of obesity and treat clinical obese patients.

Another important goal is the identification of p38-
dependent cytokines, adipokines or batokines susceptible to
modulation by manipulation of the p38 pathway. The existing
evidence of an association between some adipokines and
batokines and the p38 pathway will need to be confirmed
using appropriate genetic tools.

From the evidence explored in this review, it is clear that
targeting the p38 pathway in adipose tissue can provide a firm
and timely understanding of obesity and its associated
pathologies in the era of the global obesity pandemic.
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