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Diabetes is constantly increasing at a rate that outpaces genetic variation and

approaches to pandemic magnitude. Skin cells physiology and the cutaneous healing

response are progressively undermined in diabetes which predisposes to lower limb

ulceration, recidivism, and subsequent lower extremities amputation as a frightened

complication. The molecular operators whereby diabetes reduces tissues resilience

and hampers the repair mechanisms remain elusive. We have accrued the notion

that diabetic environment embraces preconditioning factors that definitively propel

premature cellular senescence, and that ulcer cells senescence impair the healing

response. Hyperglycemia/oxidative stress/mitochondrial and DNA damage may act as

major drivers sculpturing the senescent phenotype. We review here historical and recent

evidences that substantiate the hypothesis that diabetic foot ulcers healing trajectory, is

definitively impinged by a self-expanding and self-perpetuative senescent cells society

that drives wound chronicity. This society may be fostered by a diabetic archetypal

secretome that induces replicative senescence in dermal fibroblasts, endothelial cells,

and keratinocytes. Mesenchymal stem cells are also susceptible to major diabetic

senescence drivers, which accounts for the inability of these cells to appropriately assist

in diabetics wound healing. Thus, the use of autologous stem cells has not translated in

significant clinical outcomes. Novel andmultifaceted therapeutic approaches are required

to pharmacologically mitigate the diabetic cellular senescence operators and reduce the

secondary multi-organs complications. The senescent cells society and its adjunctive

secretome could be an ideal local target to manipulate diabetic ulcers and prevent wound

chronification and acute recidivism. This futuristic goal demands harnessing the diabetic

wound chronicity epigenomic signature.
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INTRODUCTION

Diabetes mellitus (DM) is a heterogeneous metabolic disease
characterized by chronic hyperglycemia resulting from defects in
insulin secretion, insulin action, or both (1). Despite the genetic
underpinnings of the diseases, the prevalence of both type 1 and
type 2 diabetes (T1DM and T2DM) is globally increasing at a
rate that outpaces genetic variation and approaches to pandemic
magnitude (2, 3). Like other age-related chronic diseases, diabetes
is essentially impinged by the convergence of basic aging
mechanisms that underlie age-related tissue dysfunction (4, 5).

Although more than 300 theories have emerged over the
years to explain the intrinsic molecular and evolutionary drivers
behind organismal aging (6); the onset of cellular senescence
seems to act as a foundational pillar for multi-organs and
organismal aging (6–9).

An intense debate has existed so far addressing whether
senescence precedes or follows the onset of perpetual
inflammation and insulin resistance (IR) (10). Irrespective
to “who-precedes-who,” diabetic patients experience an obvious
accelerated aging process that increases their susceptibility to
morbidity and earlier mortality (10). Hence, diabetes-affected
patients have a significantly shorter life expectancy than non-
diabetic individuals (11, 12), while this life expectancy reduction
is largely dependent on diabetes duration (2, 13).

Aside from the reduced number of fatalities caused by acute
diabetic complications, the major clinical challenge of diabetes is
the progressive and expansive morbidity and mortality resulting
from the long-term secondary complications (14–16). Within
the constellation of diabetic complications, the delayed and
poorness in triggering and progressing along a physiological
repair response is of major clinical significance (17, 18). As
in most chronic wounds, the diabetic wound is frequently
distinguished by its chronicity and by the asynchrony of the
healing phases within a specific wound niche (17, 19, 20).

Diabetes undermines skin cells physiology and progressively
intoxicates the dermal layer by the accumulation of advanced
glycation end products (AGEs) and free radicals derivatives (21–
23). Accordingly, most if not all of the events encompassed
within the cutaneous healing process including hemostasis,
inflammation, matrix deposition, angiogenesis, contraction,
remodeling, and re-epithelialization are somewhat buffeted by
diabetes (20, 24). Aside from the impaired healing response, a
parallel dark arista of diabetic ulcer pathology is the high rate
of ulcer recidivism after the primary wound closure (25, 26).
In line with this fact, a classic study reveals that roughly 40%
of patients have a recurrence within 1 year after ulcer healing.
Thus, the epithelized ulcers are considered as being in remission
rather than being healed (10). Additionally, an underappreciated
risk of diabetic foot ulcers (DFU) recidivism is its ability to recur
or “metastize” at anatomical locations distinct from the primary
occurrence, often involving the contralateral limb which entails
the risk of subsequent amputation within 5 years following a
primary amputation (25, 27).

The synergy between compromised healing machinery
and the predisposition to peripheral tissues infection nurture

the alarming figures of lower extremity amputations (28).
Thus, DFU has historically remained as the worldwide leading
factor for non-traumatic lower extremities amputations
(29, 30). These evidences support the David’s Armstrong
“cancer analogy” concept. The concept itself highlights
that the 5 year mortality rates associated to foot ulceration
and lower extremity amputation, surpasses those registered
for five common cancers (31). Subsequent studies have
further enriched the notion that lower extremity amputation
reduces life expectancy in diabetics (32); and that ulcer
severity is a more significant predictor of subsequent
mortality than coronary and peripheral arterial disease, or
stroke (33).

While healing diabetic wounds is instrumental for amputation
prevention, there exists the underlying need to identify the
molecular factors driving the secondary diabetic complication
of impaired healing (20, 34–36). Hyperglycemia is the
major systemic risk factor for the onset and progression
of diabetic complications (37, 38); and mechanistically
speaking, it is endowed with a proximal position in the
diabetic biochemical environment where numerous endogenous
stressors drive cellular senescence (7). Chronic low-grade
inflammation and an increased burden of senescent cells are
hallmarks of aging in diabetic subjects (10). Hyperglycemia
per se is known to act as a senescence-promoting factor
for cultured cells (39, 40), and steadily precipitates organs
complications and functional demise by different mechanistic
pathways (10, 41–44).

The notion that cellular senescence is an imperceptible
underlying force in the pathogenesis of wound chronicity
and ulcers recurrence has been accrued for years (45–48).
Consequently, we suggest that diabetes-associated wound
healing failure and reduced tissue resilience are clinical
translations of an “entrenched” wound senescent cells society,
with self-perpetuating and propagating abilities. Subsequent to
the enlightening opinion article by Sahin and DePinho (49),
which postulates a rational model depicting how mitochondria is
intersected by different pro-senescence pathways—We decided
to review the current knowledge on cellular senescence as a
putative founding pillar for diabetic wound healing impairment.
The search strategy involved Medline/Pubmed and other
reference data sources as Google Scholar, Scielo, Bioline
International (www.bioline.org.br), etc; introducing key words
as: chronic wounds+senescent cells, diabetes+senescence,
DFU, mitochondria, telomeres erosion, replicative
senescence+chronic wounds, fibroblasts+proliferative
arrest. In first instance, we delineated the major molecular
factors invoked as diabetes-associated senescence drivers in a
systemic level and attempted to extrapolate the impact of these
hallmarks for the wound microenvironment. The contemporary
evidences describing the participation of granulation tissue
senescent cells and the impact of diabetic-senescence drivers in
mesenchymal stem cells biology were reviewed. All the articles
reviewed were limited to English language and with no date
restriction. Thus, classic articles dated on the 70’s and 80’s
are referenced.
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DIABETES AND CELLULAR SENESCENCE.
BRIEF MECHANISTIC OVERVIEW

Conceptually, aging is defined as an evolutionary process
with a time-dependent functional decline that affects all
higher organisms. Since cellular senescence contributes to
organismal demise aging is associated to morbidity and
mortality. Aging therefore involves different interdependent
hallmarks on cellular, molecular, and organism levels (50, 51).
Senescence is a cellular program that induces proliferative
arrest accompanied by morphological modifications, metabolic
reprogramming, implementation of a complex proinflammatory
spreadable secretome, increased autophagy, apoptosis resistance,
and epigenetic reprograming (52–54).

Diabetic environment is overwhelmed of multiple cellular
senescence-contributing factors that ultimately translate in
organismal aging with well-known nosogenic consequences (7,
41, 55). Diabetes is therefore representative of the model that
“organisms accumulate modifiedmacromolecules” and that these
macromolecules increase over time and interacts with proteins
and tissues, inducing structural changes generating the so called
“damage accumulation” (56, 57). As elegantly described by
Palmer et al., the fundamental aging mechanisms broadly fall
into the following categories: (1) macromolecular dysfunction,
(2) sterile inflammation, (3) progenitor cell dysfunction, and (4)
cellular senescence (58). Of note, these four mechanisms are
represented in diabetes and reciprocally link aging and diabetes
(58, 59). Accordingly, many aging hallmarks appear earlier or
are overexpressed in T2DM, including the “inflammaging” as
other forms of cellular stress: oxidative stress, mitochondrial
dysfunction, and endoplasmic reticulum (ER) stress (10, 58, 60).

Hyperglycemia which also comprises the oscillation of the
“trivial” blood glucose levels, known as hyperglycemia transient
spikes, is a major risk factor for a variety of pathologies and
clinical and surgical complications (61, 62), including poor
wound healing and wound infections (63–65). Hyperglycemia
is also the proximal trigger for all the downstream molecular
derangements in diabetes including cellular senescence (66,
67). The excessive generation of ROS and the expansive
oxidative attack to multicellular targets including mitochondrial
structures, generate an interdependent and perpetuative loop.
Mitochondrial and genomic DNA damages including or not
telomeric regions trigger different effector pathways that provoke
cell senescence and proliferative arrest (Figure 1) (10, 68–72).

From the molecular point of view, two major basic
operators have been described for the onset of the cellular
senescence phenotype derived from the impact of a high
glucose burden: (1) p53-p21 and (2) pRb-p16INK4a-p21Waf1
(73–75). Moreover, convergent lines of evidence point to the
role played by p53 in the regulation of cell cycle arrest
and senescence (50, 76, 77). It has been recently shown
that telomeric damage activates a p53-dependent program
which leads to mitochondrial failure via the repression of
peroxisome proliferator-activated receptor gamma co-activator
1α (PGC-1α) gene expression (78). PGC-1α is a master
regulator of mitochondrial biogenesis and function, including

oxidative phosphorylation and (ROS) detoxification (79). Other
cognate proteins involved in mitochondrial biogenesis and
function are also impaired upon the orchestration of the DDR,
which ultimately amplifies mitochondrial functional impairment
(Figure 2).

Likewise, the retinoblastoma protein (pRb) plays a central
role toward the onset of senescence. The cell cycle inhibitors
p16INK4a and p21Waf1 cooperate to keep pRB in its active
hypophosphorylated/growth inhibitory state (80, 81). Of note,
nuclear overexpression of p53 phosphorylated on serine-15
and p21Cip have been detected in fibroblasts derived from
reluctant-to-heal DFU, supporting the notion that granulation
tissue fibroblasts-proliferative arrest, promote cellular senescence
and fibrovascular stagnancy (82). Similarly, cultured diabetic
cutaneous fibroblasts also exhibit an exaggerated activation of the
p53/p21-dependent pathways along with a significant increase
in senescence-associated β-galactosidase (SA-β-Gal) activity and
phospho-γ-histone H2AX (pH2AX) level, as indicative of
cellular senescence and impaired wound healing (83). Outspoken
morphological and biochemical alterations in diabetic ulcer and
diabetic intact skin-derived fibroblasts are described, which are
all suggestive of impaired proliferative capability (84–86). A
seminal study by Vande Berg et al. confirmed the existence of
senescent fibroblasts in pressure ulcers, which exhibit limited
proliferative capability (87). Finally, senescent cells are readily
distinguished in addition to their blunted proliferative activity
(88, 89), by their larger size and flattened morphology, and an
altered gene expression including upregulation of SA-β-Gal and
pro-inflammatory chemokines and cytokines (90, 91).

THE SENESCENCE MESSENGER ORGAN,
METABOLIC DERANGEMENTS, AND
OXIDATIVE STRESS ON WOUND CELLS
BIOLOGY

A singular and distinctive marker for senescent cells is the
onset of a pro-inflammatory program identified as senescence-
associated secretory phenotype (SASP) (92, 93). This “messenger
organ” is able to reinforce the cellular proliferative arrest,
and spread different types of senescence messages integrated
in the senescence-messaging secretome (SMS) (94). SASP
ingredients are mostly constituted by interleukins, chemokines,
growth factors, secreted proteases, and secreted insoluble
proteins/extracellular matrix (ECM) components (92, 95, 96).
Hyperglycemia-induced senescence is associated to a typical
diabetic SASP. Reciprocally, SASP further enhances insulin
resistance (97), amplifies diabetes-related endovascular and tissue
inflammation, and ultimately disseminate a senescence message
that impairs diabetic wound matrix accumulation (44). This
archetypical SASP transforms healthy cells into aged cells, and
perpetuates the residence and the turnover of the senescence cells
society and of inflammation- polarized macrophages (44, 98–
102) (Figure 3).

By the contrary, SASP attenuation prolongs health span and
lifespan of diabetic mice and slows diabetes progression and/or
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FIGURE 1 | General pathway of glucose-induced senescence. Multiple evidences converge to indicate that high glucose drives premature senescence acting as a

proximal trigger for a myriad of subsequent biochemical derangements. Hyperglycemia is ensued by an excessive mitochondrial production of reactive oxygen

species (ROS) which in turn generates the typical pro-oxidative environment of diabetes. Alike, mitochondrial dysfunction derives from the ROS-mediated attack to its

DNA, and the structural damage to respiratory chain proteins which generates a destructive vicious circuitry. Senescent burden can be multiplied in neighboring cells

via the local oxidative milieu. The DNA chemical damage (telomeric and non-telomeric) induced by the impact of ROS is followed by the activation of the DNA damage

responses (DDR) pathway; which in turn activates the p53 and/or the p16INK4A pathways. The later facilitates the accumulation of phosphorylated pRb eventually

accounting for cell senescence program orchestration.
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FIGURE 2 | DNA damage is linked to mitochondrial physiology. As described earlier, high glucose levels trigger a cascade of events leading to the activation of

professional inhibitors of cell cycle proliferation as p53-p21-pRB. The activation of p53 by DNA damage response (DDR) impacts on mitochondrial physiology and

energy metabolism. Telomeric shortening negatively influences mitochondrial homeostasis. This mitochondrial failure mostly derives from the p53-mediated repression

of peroxisome proliferator-activated receptor gamma co-activator 1α/β gene (PGC-1α/β) expression. Of note, PGC-1 is largely involved in mitochondrial biogenesis

and function, including oxidative phosphorylation and reactive oxygen species (ROS) detoxification. Along with PGC-1 activity abrogation, other mitochondrial

biogenesis regulators as nuclear respiratory factor (NRF) and SIRT-1 are also impaired. Here again, pathogenic vicious circles are established leading and amplification

of cells senescence as a final outcome.

the development of its different complications (44). Of relevance
for the tissue repair process, SASP cocktail contains growth
factors and extracellular matrix-remodeling proteases with
important functions across the different overlapping phases of
the healing process (103). Via the paracrine activity of its soluble
senescence messages, SASP may disrupt tissues homeostasis
provoking a variety of age-related pathologies and disabilities (95,

104). Surprisingly, two well-reputed growth factors implicated
in wound fibro-angiogenic response: transforming growth factor
β1 (TGF-β1) and vascular endothelial growth factor (VEGF), are
involved in the remote transformation of healthy to senescent
cells (105, 106).

Although there is relative scarcity of information regarding
the identification or quantification of senescent cells-extracellular
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FIGURE 3 | Chronic wounds and the society of senescent cells. A singular and distinctive marker for senescence cells is the onset of a pro-inflammatory program

identified as senescence-associated secretory phenotype (SASP). Diabetic senescent cells SASP are typically endowed with inflammatory effectors and matrix

degradative enzymes. The paracrine release of this secretome accounts for the diffusion of a progeroid message and ultimately engenders a threshold of senescent

cells within the wound via transformation of normal neighbor cells into senescent cells. SASP also spread the epigenetic signature ingredients of senescence which

further contributes to expand and perpetuate the so called “senescence cells society” Accordingly, irreversibility of senescence is largely dependent upon pRB

epigenetic events. It is therefore plausible that epigenetic mechanisms contribute to shape a long-lasting epigenetic memory for SASP, and the perdurability of the

senescent society. The society integrates within the wound bed to M1-polarized macrophages, as arrested fibroblasts, and endothelial cells that “contaminate”

keratinocytes leading edge, thus impairing wound closure and promoting wound chronicity. Given that the diabetic chronic wound is constant source of inflammatory

mediators and ROS, insulin resistance is amplified leading to more hyperglycemia. This is a major perpetuative pathogenic circuitry. These factors nurture the

existence and perdurability of the.

vesicles cargo (95); important findings have revealed the
link between extracellular miRNAs and the development and
progression of T2DM complications. About 40 circulating
miRNAs are significantly deregulated and implicated in diabetic
endothelial dysfunction, inflammation, cellular senescence (107),
and in the pathogenesis of diabetic impaired wound healing
(108, 109). Diabetic wounds are typically associated with a
persistent inflammatory infiltration that involves accumulation
of senescent macrophages. These cells are key effectors for the
clearance of senescent cells, and their absence or dormancy
may favor a SASP with sustained inflammatory message (48).
In line with this, it has been observed that aged and diabetic
wounds populated with senescent macrophages produce a
CXCR2-enriched SASP. Importantly, CXCR2 is an inflammatory
chemokine that drives primary human dermal fibroblasts toward
a pro-fibrotic and senescent phenotype, via the paracrine
induction of nuclear p21 (53). Furthermore, clinical samples
of diabetic wounds exhibit a protracted population of M1
phenotype polarized senescent macrophages, driven by the

expressions of NLRP3, caspase1, and IL-1 (110). Taken together
these evidences incite to reinforce that: (a) both diabetic and aged
wounds are chronically infiltrated by inflammatory mononuclear
cells, (b) that diabetes seems to disrupt the physiological
fine tuning for macrophages turnover and polarization, (c)
these population of inflammation-polarized macrophages (M1)
contribute to impaired healing, become senescent, and impose
senescence to other granulation tissue cells via an inflammation
loaded-SASP (111–114). Once again, the pathogenic synergistic
link between chronic inflammation and cellular senescence,
toward the implementation of a pathological wound repair is
further strengthened.

On the opposite extreme, an elegant study by Birgit Ritschka
et al. uncovered the benefits of a transient exposure to SASP
by inducing cell plasticity, stemness, and regeneration. Thus, it
was anticipated that transient induction of a senescent phenotype
produces a “wound healing-promoting SASP” (92). For the
scenario of an acute cutaneous healing in which ordinarily
senescent fibroblasts and endothelial cells appear few days after
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skin injury, the SASP-derived platelet growth factor (PDGF)-AA
stimulates wound closure via myofibroblast differentiation.
Accordingly, there are circumstances in which SASP may
exercise a positive role in normal wound repair (115). Likewise,
the acute exposure of human dermal fibroblast to hydrogen
peroxide successfully induced fibroblasts senescence and an
archetypal SASP, which stimulated keratinocytes migration and
myofibroblast transition via increased secretion of growth factors
including different isoforms of PDGF, TGF-β, and VEGF. Again,
this finding indicates that a population of senescent fibroblast
from acute wounds, may positively modulate the wound healing
process (116).

Chronic diabetic wounds show marked differences not only
compared to acute non-diabetic wounds, but also between
both chronic healing, and non-healing diabetic wounds (117–
119). Given that senescent cells may have diverse and context-
dependent effects on tissue, the existence of two different types
of SASP is predictable. One associated to acutely induced
and physiological healing wounds, and the concomitant to
chronic wounds—as diabetic foot ulcers in which the secretome
is basically inflammatory and anti-proliferative. Therefore,
SASP is a dynamic and malleable organ whose phenotype
appears to act in a tissue-specific manner, within a temporary
window, and vectoring particular chemical and epigenetic
signatures (120–122).

In the realm of cellular metabolism, it is known that
metabolic dysfunction is a powerful organismal driving
force for aging, and a senescence hallmark (123) with
meaningful repercussion in diabetes (59, 124). Diabetes
per se is a metabolic disease in its basic origin, but that
progress along with a continuous deterioration of proximal
metabolic regulators such as PGC-1α, SIRT 1, and mTOR
(78, 79, 125–132). PGC-1 plays an essential role as a master
metabolic regulator as mitochondrial biogenesis and function,
oxidative phosphorylation, and ROS detoxification (79).
PGC-1α axis failure contributes to glucose intolerance,
mitochondrial bankruptcy, systemic chronic inflammation,
amplified pro-oxidative environment, and ultimately to
organismal aging (133, 134). SIRT1 is a prominent member
of a family of NAD-dependent enzymes that inhibits
transcriptional factors, such as p300, NF-κB, P38MAPK,
Histone 3, MMP-9, FOXO3a, and most importantly to p53
(135). SIRT1 exhibit numerous and diverse biological functions
including the regulation of energy homeostasis, cell cycle,
inflammation, oxidative stress threshold, ER stress-related
apoptosis, and ultimately a senescence-preventive factor
(136, 137). Conclusively, both PGC-1 and SIRT1 alone or
in physiological synergy are key modulators of molecules
and pathways involved in cellular senescence. This anti-
senescence guardian role is played by different interconnected
mechanisms, that protect and generates mitochondria, reduce
tissue inflammation, and combat oxidative and nitrosilative
stress (138–142).

Recent evidences document that SIRT1 activation accelerates
and improves the wound healing response in diabetic mice by
promoting angiogenesis, via an angio-protective effect against

oxidative stress injury (143). In line with this, the SIRT 1
agonist Resveratrol has shown to reduce the hyperglycemia-
triggered endothelial dysfunction, to stimulate angiogenesis and
consequently wound closure in db/db mice. Again SIRT 1
axis activation reduces oxidative stress and favors downstream
pro-angiogenic pathways (144). Furthermore, two anti-aging
proxies like metformin and resveratrol have proved to stimulate
wound healing in aged animals, by preventing age-related
AMPK deactivation, and attenuating age-associated angiogenic
inhibition (145). These experiments confirm the pro-senescent
driving effect of ROS-oxidative stress and their negative impact
for wound healing biology, especially in diabetic organisms (143,
146–149).

Mitochondria, routinely identified as the powerhouse of
the cell are the major generator of members of the ROS
family such as superoxide anion, hydroxyl and peroxyl radicals,
and hydrogen peroxide (150–153). Furthermore, ROS/oxidative
stress/mitochondrial dysfunction and inflammation behave as
an indissoluble, interconnected nosogenic unit that links
organismal aging, T2DM, and poor wound healing (73, 154–
158). Converging evidences demonstrate that high levels of ROS
disrupt the normal healing process (159–161) and constitute a
hallmark in chronic wounds including recalcitrant DFU (147,
159, 162). In this scenario ROS overproduction is associated to
the upregulation of cell cycle inhibitors as to positivity for the
SA-β gal marker. The two most studied cell cycle proliferation
inhibitors the p53-p21 and the p16-Rb pathways are responsive
to ROS-induced telomere erosion, and to non-telomeric DNA
damage (SIPS) via oxidative stress (7, 163). Accordingly,
oxidative stress-influenced events translate in a collection
of wound cells senescence attributes as proliferative arrest,
fibroblasts reduced migration, imperfect and poor angiogenesis,
amplified apoptosis of granulation tissue productive cells,
extended inflammatory polarization, and ultimately wound
chronicity (164–166).

Glycolysis is enhanced as cells undergo replicative senescence.
Glycolytic enzymes are a major target of oxidation and
modification by AGEs, and ROS products during replicative
senescence (167). This accounts for a fall of ATP and GTP
intracellular levels (167). Mechanistically, enhanced glycolysis
contributes to the development of a senescent phenotype (168,
169); as it is the case for the diabetic abnormal increase in
glycolysis which seems to drive vascular aging (170). Experiments
from two decades ago illustrated that normal cutaneous
fibroblasts became arrested and reluctant to proliferate, when
they were exposed T2DM-wound fibroblasts conditioned media.
This proliferative arrest was associated to decreased DNA
content, and was proportional to L-lactate production and
incorporation of D-glucose in the media (171, 172).

Conclusively, diabetic metabolic and biochemical
derangements as glycolysis are drivers for the onset of cellular
senescence and organismal aging. Metabolic dysfunctions trigger
a wave of molecular derangements where glucooxidative and
nitrosilative stress, inflammatory, and cellular senescence,
intersect and cooperate for the implementation of a wound
chronicity profile.

Frontiers in Endocrinology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 573032

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Berlanga-Acosta et al. Cellular Senescence in Diabetic Wound Chronification

CELLULAR SENESCENCE IN DIABETIC
SWEET ENVIRONMENT

The role of cellular senescence within the complex pathogenic
realm of T2DM dates back to the 70’s and 80’s of last century.
The inspiring theory stated the existence of a kind of a pre-
senescent state in fibroblast from pre-diabetic subjects which
appear to predetermine the wound healing failure (45). This
“pre-senescent state” notion has remained effective and validated
nowadays (173), and has been expanded to extracutaneous cells
(60). Aside from the impact generated by the exposure to glucose
spikes which enforce pro-senescent and apoptogenic signatures
in most skin cells (45), and even cerebral cells populations
(174); these germane studies allow to infer that a persistent
heritable abnormality, related to a precocious cellular senescence
is present in mesenchymal tissues of genetically predisposed
subjects to suffer of diabetes (45). The forces that “erase” from
the core of the cell the intrinsic mechanisms to migrate and
proliferate within a physiological repair response remain unclear
(175–177). Nevertheless, local fibroblasts senescence has been
invoked as a major wound healing deterrent factor (53, 178, 179);
particularly when a senescent cells threshold is reached per tissue
area (180, 181).

The skin is the preferential target organ for extrinsic and
intrinsic aging driving forces which account for keratinocytes
and fibroblasts to precocious decline (182). Skin fibroblast
is a mesenchymal-derived cell with a pivotal role in wound
repair. It is difficult to conceive granulation tissue creation,
contraction, and basement membrane elaboration in a mammal
devoid of this type of cells (183, 184). Cutaneous fibroblasts
are sensitive cells, impacted by a variety of stressors which
may modify their biological behavior and ultimately the wound
healing course (185, 186). High glucose levels and their adjacent
biochemical derangements act as a major skin cells pro-
senescent factor (7, 187, 188). Even in non-diabetic subjects,
high glucose levels are associated to an apparent cutaneous
advanced age (189). Proliferative refractoriness, torpid migration
capabilities, susceptibility to apoptosis, and limited secretion
of extracellular matrix constituents, are hallmarks of diabetics’
cutaneous fibroblasts (165, 190). These hallmarks have been
historically reproduced in vitrowhen healthy donor-derived cells,
are exposed to high glucose burden stress (63, 171, 191, 192).
These fibroblasts adverse behavior is over-represented in DFU,
and represent active pieces within the pathogenic puzzle of
wound chronicity (17, 193, 194). Classic studies by Miriam Loots
and co-workers illustrated that fibroblasts isolated from the ulcer
bed of T2DM-donor patients, exhibit a diminished proliferative
capacity and an abnormal morphology (84). This observation
became paradigmatic when converging studies reproducibly
showed that human cutaneous, renal, and periodontal fibroblasts
cultured under “hyperglycemic” conditions, expressed a variety
of premature cellular senescence markers including inhibition
of spontaneous and growth factors-stimulated proliferation (20,
195–198).

Influential studies of late 70’s indicated that high glucose
concentrations directly or indirectly damage cell’s DNA,
induce telomeric attrition and other forms of DNA damage

in cultured cells (199), These findings have been recently
substantiated including the toxic effects of AGEs (200, 201).
The early in vitro models founded the classic thesis of a
“point-of-no-return,” beyond which hyperglycemia resulted in
irreversible progression to premature senescence (202). Form
those years it was also known that cutaneous fibroblasts
derived from insulin-dependent or insulin-independent diabetic
patients, exhibit abnormal replicative capacity in vitro and
that senescence, was far more precocious than in non-
diabetic control subjects (203). Another sequence of enlightening
in vitro experiments documented that diabetic’ cutaneous
fibroblasts exhibited impoverished synthetic and secreting
capabilities (192, 204). By the contrary, glucose restriction
to cultured human diploid fibroblasts inhibited the onset of
premature senescence, and extended mean survival days and
lifespan (205). It was later shown that when normal subjects-
derived fibroblasts were challenged with the conditioned media
from T2DM counterparts, proliferation was inhibited in a
dose-dependent manner. Accordingly, this proliferative arrest
turned a “reproducible and transmissible trait” which nurtured
our hypothesis on the existence of a “senescence memory-
transmissible factor” (88).

Premature cellular senescence has also been observed in
endothelial cells exposed to a “diabetic environment” recreated
by exposure to glycated collagen I. Although these cells did not
show telomeric dysfunction, the process appeared presided by an
increased expression of p14 and p53 consequent to an excessive
oxidative stress (39, 206). Similarly, adipocytes subjected to
glucose oscillations elicit an oxidative environment that damaged
telomeres, and increased the presence of p53, p21, as pro-
inflammatory cytokines (207). High glucose also impairs cell
migration. Fibroblasts from diabetic mice migrate 75% less than
those from normoglycemic controls, and display a defective
response to hypoxia, a condition commonly present in chronic
wounds (208, 209). Furthermore, skin keratinocytes exposed
to high glucose also exhibit abnormal cellular morphology,
insulin resistance, and decreased proliferation (66, 210). Taken
together these experimental data support the clinical statement
that abnormal levels of glycated hemoglobin and fasting glucose,
are associated to poor ulcers healing and higher figures of lower
extremity amputation in diabetics (211). Conclusively, fibroblast,
endothelial cells, and keratinocytes –the most important cells for
skin injury repair– are sensitive to hyperglycemia and oxidative
stress, which act as the main steering factors toward senescence
(202, 212).

WOUND CELLS-SENESCENCE
INDUCTION AND MAINTENANCE

Acute senescence seems to be a programmed process that is
triggered in response to discrete stressors. It is established with
fast kinetics and normally contributes to tissue homeostasis
and repair (115). As described earlier, this type of acute
injury-induced senescent response is endowed with its own
SASP/secretome with wound healing promoting activity (115,
213). In contrast, chronic senescence may result from long-term
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unscheduled damage, and it is often associated with detrimental
processes such as the creation of a stable society of senescent cells
(90, 214).

Senescence maintenance poises as a relevant and futuristic
target given its clinical implications for novel diagnostic
procedures and therapeutic approaches. As most biological
process, the acquisition of a senescent phenotype may be a
progressively escalating, multistep event (215), what suggests that
the molecular operators eliciting senescence are not necessarily
those involved in its perpetuation. Accordingly, the chronic
senescent phenotype is dictated by epigenetic mechanisms
that ensure its long survival within the wound bed. The
existence of a clinical correlation between a quantitative in
vitro senescent cells population and a time-to-healing, support
the notion of a perpetuated senescence society (216, 217).
Mathematical simulation models have in silico predicted the
dynamics of a senescent cells society. It is concluded that
within a week time period a cell has an 83.22% possibility of
entering a pre-senescent state if senescence soluble instructions
are received from a neighbor senescent cell (218). This suggests
the existence of a continuous population turnover with a stable
senescent phenotype.

Diabetic ulcer cells are chronically exposed to major
stressors that sculpt wound cells phenotype. In this respect,
the local impact of a metabolically active SASP is likely to
be pathogenically crucial via its SMS. A living, active SASP
secretome would guarantee a constant pro-senescent cells
threshold toward the establishment of a chronicity phenotype.
In support to this observation is the fact that cells isolated
from chronic wounds, become incompetent to upregulate those
chemokines and cytokines involved in chronic inflammation
resolution (219). Of note, cultured senescent fibroblasts in
addition to be proliferative incompetent, decrease the synthesis
and drive the degradation of matrix components through
the expression of SASP ingredients (196, 220). This behavior
suggests the persistence and dominance of the senescent
imprint even after separated from the donor organism. These
elements together again emphasize on the hypothesis of an
existing “senescence phenotype memory.” This alleged memory
may justify why wound bed cells subjected to “ideal” tissue
culture conditions recreate the same behavioral traits as when
in the donor’s organism (165). In line with this we and
other groups, have accumulated evidences supporting that
wound senescent cells are able to reproduce and transmit
their original morphological and functional phenotypic traits
to their progeny.

1) Young granulation tissue of neuropathic diabetic ulcers
reproduces a collection of senescent vascular defects observed
in distant, intact, dermal vessel that take years-long for
evolvement. The driving forces behind the “inheritance” of
these progeroid morphological traits are likely associated to
an epigenetic senescence signature (221).

2) Similarly, diabetic granulation tissue although being a “de
novo” and short-lived “welding tissue,” its cells exhibit a
sort of genetic or epigenetic imprinting for the deranged
expression of glucose metabolism-related genes, which are

implicated in insulin resistance, cellular senescence, and
T2DM pathophysiology (221).

3) The in vivo proliferative arrest shown by ischemic ulcers
fibroblasts is maintained even when cultured under “ideal
physiological” conditions. This in vitro proliferative arrest
coincides with the transcriptional upregulation of p53mRNA,
and its nuclear translocation with phosphorylation on serine
15. Ultimately these cells exhibited a conspicuous expression
of p21Cip along with amarked under-expression of cyclin D1.
Taken together, these findings describe molecular ingredients
of senescence (82).

4) Classic studies by other groups also document the
involvement of senescent phenotype fibroblasts derived from
pressure ulcers in the mechanism of wound chronification.
Accordingly, although these cells are cultured under standard
conditions and remain viable, still they exhibit proliferative
arrest as in vivo, being unable to complete DNA synthesis
(87). Remarkably, elimination of pressure/ischemia stressors
does not guarantee the resumption of a physiological healing
trajectory (178).

5) Paradigmatic evidence on the existence of a senescent
perpetuation program within the ulcer is the need for
frequent sharp debridement (178). This procedure is
ultimately addressed to remove proliferative senescent cells
which hamper wound closure (178, 222). In this scenario
Stojadinovic and co-workers demonstrated that c-myc
overexpression is implicated in keratinocytes proliferative
and migration arrest (223).

In conclusion, senescent phenotypic traits are transmitted and
reproduced to descendent cells within the diabetic ulcer bed, and
do not seem to fade away along successive generations’ of in
vitro passages.

DIABETICS’ STEM CELLS ARE NOT
EXEMPTED FROM SENESCENCE

Mesenchymal stem cells (MSCs) are multipotent cells with a
fibroblast-like morphology that are considered a lifelong cellular
reservoir to ensure the continuous generation, replacement,
and restitution of multiple tissue lineages (224–226). MSCs
regenerative properties are mediated by their ability to infiltrate
and engraft injured areas, where they reduce inflammation,
promote angiogenesis, prevent apoptosis, improve scar
formation, and mediate tissue remodeling via the paracrine
secretion of chemokines and growth factors (227, 228). These
pluripotent stem cells are capable of reprogramming into
differentiated phenotypes participating in regenerative and
reparative programs of most tissues and organs (229–234).

Within the realm of impaired diabetic wound healing,
MSCs allogenic transplantation has demonstrated significant
healing improvement at both experimental (235–237), and
clinical scenarios (238–240). It is controversial however whether
autologous MSCs regenerative and pro-survival capabilities,
are conserved within diabetic organisms given the complex,
invasive, and “metastazing” pathophysiology of this disease (241,
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242). Diabetic animals show a lower number of circulating
MSCs with deteriorated proliferation and survival capabilities.
Furthermore, these cells also exhibit an impaired recruitment
and insufficient engraftment response within diabetic wounds
(241, 243). Similarly, diabetic-associatedMSCs dysfunctionalities
are described in humans. Diabetic individuals show lower
levels of CD34–/CD133+/KDR+ endothelial progenitor cells
(EPC) counts along with higher apoptotic rates of circulating
EPC (244). Ultimately, MSCs population is affected at every
physiological respect by the cytotoxic diabetic environment (245,
246), which turns it prone to replicative senescence and limits its
multipotency expansion ability (69, 247, 248).

Converging evidences conclusively demonstrate how toxic
high glucose burden may be for survival, differentiation
plasticity, and regenerative competence for different stem
cells lineages (249–253). MSCs are markedly susceptible
to hyperglycemia-induced ROS/oxidative stress-mediated

senescence (245, 254). The perpetuative vicious circle integrated
by hyperglycemia/mitochondrial dysfunction/oxidative stress
appears again as a master driver to MSCs senescence (255, 256).
In this scenario, ROS/oxidative stress activate a p53 program
with the ensued cells proliferative arrest as described for
mitotic differentiated stem cells (257). Thus, as for other
cells stirpes, redox imbalance is a key factor in imposing a
premature senescence program (249, 256). Accordingly, the
diabetic pro-oxidative environment is a major contributing
factor for premature MSCs senescence and functional demise
(246). Ultimately, MSCs are victims like other somatic cells
of the hyperglycemia-determined oxidative stress with the
ensued mitochondrial and genomic DNA damage, the onset of
a pathogenic SASP, and the paracrine inflammatory reaction
(256, 258, 259). The continuous surge of cytotoxic and
pro-inflammatory mediators of the diabetic environment,
render MSCs numerical and functionally deficitary for the

FIGURE 4 | Impact of diabetes on stem cells physiology. Mesenchymal stem cells (MSC) are also targeted by the molecular gluco-oxidative hostile environment of

diabetes. The mechanisms and pathways whereby MSC become senescent are the same senescent stressors buffeting differentiated somatic cells. Senescence of

MSC impairs stem cells physiology and indirectly that of somatic cells in both mitotic and post-mitotic populations. Upon senescence, stem cells circulating pool is

reduced and their ability to engraft injured tissues is also compromised. Concurrently, the capabilities of these cells to assist in wound repair as to participate in

epithelial cells populations turnover is also impaired. Globally speaking, with diabetes MSC senescence the tissue’s resilience based on the self-renewal potential are

undermined.
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repair process of diabetic ulcers (260). As summarized in
Figure 4, MSCs do not escape from the entangled and
interconnected mechanisms that drive cellular senescence
in diabetes.

CONCLUDING REMARKS

Diabetes is a pre-conditioning and powerful driver of
organismal aging. The biological foundations of aging
primarily involve cellular senescence and diabetes is plethoric
in senescence-driving factors. Definitively, high glucose
concentrations are the proximal trigger for all the subsequent
and long lasting molecular by-products, which turn diabetes an
archetypal disease of “aging hallmarks.”

Cellular senescence is considered today as intimately related
to diabetes complications progression, which are a major
cause for poor health span and decreased lifespan. Cellular
senescence is also a major steering factor for diabetic poor
wound healing response. Pathogenically speaking, fibroblasts,
endothelial cells, and keratinocytes are targeted by a broad range
of diabetes-related pro-senescence factors. Most interestingly,
these cells become and remain stubbornly refractory to migrate,
proliferate, and secrete matrix ingredients both in vivo and in
vitro—For the later, suggesting the existence of a sculptured
epigenomic memory that along with the wound local senescence
secretome creates the long-lasting senescent cells society within
the wound. This society with its active pro-aging secretome
contributes to wound chronicity perpetuation. Diabetic wounds
chronicity phenotype is also impinged by two major integrated
and cooperative forces: “metabolic memory” and “senescence
memory” —both endowed with the ability to manipulate cells
behavior. A frightened stamp of diabetic foot wounds is their
recurrences short time after re-epithelialization. We deem that
the episode of this in situ re-ulceration is an illustrative
reflection of the consequence of a long-subsisting senescence
society with imprinted “memories” and an active diabetic
SASP secretome.

Both bone marrow and tissue niches of MSCs become
prematurely senescent under the pressure of the diabetes
biochemical environment. These cells are extremely sensitive
to glycoxidation products as to oxidative stress, which reduces
the population of biological competent cells for epithelial
organs self-renewal, for tissue maintenance, and ultimately to
actively participate in tissue injury repair, especially in post-
mitotic organs.

All together these molecular and cellular senescence
traits underlie the diabetic’s organismal illnesses and tissues
vulnerabilities. Although this has been a long-sought goal
we deem that diabetes still waits for a pharmacological re-
interpretation. It is likely that establishing “lines of treatments”
beyond glucose-lowering medications and improving insulin
sensitivity, will translate in great therapeutic value for reducing,
and even preventing diabetic complications including the

torpid healing phenotype. These “lines of treatments” may
represent a cluster of tactics addressed to control cellular
senescence and ultimately organismal aging. Alluring
targets could be:

1. The molecular basis of diabetic metabolic and senescence
memories and their epigenetic signatures for selective
pharmacological manipulation.

2. Pharmacological compounds with the ability to selectively
modify the histone landscape in a complication and tissue-
specific manner.

3. Mitochondria are a sensitive, appealing, and unexplored
therapeutic target field. Pharmacological tools aimed
to preserve the axis telomeres-mitochondrial function
and accordingly to regulate its biogenesis could be
promising. “Mitochondrio-therapy” could not only
revolutionize diabetes, but expand to cancer and
neurodegenerative diseases.

4. Finally, the identification of therapeutic interventions acting
as selective senolytics is justified.

Harnessing and tempering diabetic cellular senescence in
an appropriate therapeutic opportunity window, will be of
paramount clinical and societal significance.
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