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Growth hormone (GH) signaling plays a key role in mediating growth, development,
metabolism, and lifespan regulation. However, the mechanisms of longevity regulation at
the cellular and molecular level are still not well-understood. An important area in the field
of GH research is in the development of advanced transgenic systems for conditional
expression of GH signaling in a cell type- or tissue-specific manner. There have been many
recent studies conducted to examine the effects of tissue-specific GHR disruption. This
review updates our previous discussions on this topic and summarizes recent data on the
newly-made tissue-specific GHR-KO mice including intestinal epithelial cells, bone,
hematopoietic stem cells, cardiac myocytes, and specific brain regions. The data from
these new genetically-engineered mice have a significant impact on our understanding of
the local GH signaling function.
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INTRODUCTION

Growth hormone (GH) is a major regulator of growth and development of an organism and the
disruption of GH signaling (and subsequent IGF-1 disruption) has shown delay the aging process and
associated diseases in mice. Disruption of GH-IGF-1 axis is the one of most successful and effective
intervention which leads to increased lifespan in mice. In human patients with mutations in GHR
gene, there is evidence of protection against cancer and diabetes (1, 2). This highlights the importance
of studying GH’s actions in a tissue-specific manner in order to decipher the mechanism for increased
longevity in mice. The first whole body GHR-KO [GH receptor (GHR) knockout mice] was developed
in the Kopchick lab in 1997 (3) and since then numerous studies have been done using the mouse
model. Over the past decade, in order the better understand the direct effects of GH in tissues (other
than through IGF-1) numerous tissue-specific GHR-KO mouse models have been developed utilizing
the Cre-loxP system. We had summarized many of these in our last paper. Since then there have been
several reports on mutant mice with novel tissue-specific GH signaling. These studies have provided
new insights on GH’s effects in different tissues. Here in this updated review we provide a summary of
the major results from the most recent tissue-specific GHR knockout mouse studies.

GHR SIGNALING DISRUPTION IN INTESTINAL EPITHELIAL CELLS

GHR signaling in the intestines have been suggested to play an important role in the absorption of
nutrients from food and in glucose homeostasis and maintenance of the intestinal epithelial barrier (4).
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Recombinant GH has been prescribed as a treatment for
inflammatory bowel disease (IBD) and short bowel syndrome
(SBS) in patients (5, 6). However, the exact function of GH
signaling in intestines is unclear. Recently, Young et al. generated
the intestine epithelial cell-specific GHR (IntGHRKO) knockout
mice under the control of the villin promoter/enhancer (7). Male
IntGHRKO mice had decreased large intestine lengths at both 4
and 12 months of age when compared to the control mice even
though there was no difference in body length or weights. Male
IntGHRKO mice were found to have increased fat absorption in
the kidneys. Female IntGHRKO mice exhibited impaired glucose
metabolism. Intriguingly, when gut barrier function was analyzed,
sex differences was observed with occludin levels increased in males
and fecal albumin decreased in females.

GHR SIGNALING DISRUPTION IN
ADIPOCYTES

In our previous review, the characteristics of adipocyte-specific
GHRKO mice (FAaGHRKO) under the control of aP2-cre
promoter/enhancer was discussed (8). Here, two recent studies
conducted on the newer mouse model of GHR disruption in
adipocytes (AdGHRKO) using the adiponectin promoter/
enhancer Cre line. Previous ap2-cre Adipocyte GHR disruption
had been limited by a lack of specificity in the promoters used to
drive adipose knockouts. In the new study conducted from the
same group (9), AGHRKO mice (adiponectin cre) had
increased adipocyte size and mass along with increased adipose
depot size, but there was no change in the total body weight.
AdGHRKO mice showed increased insulin sensitivity with no
change in glucose tolerance. WAT fibrosis was reduced, and the
mice were also found to have reduced liver triglycerides and
adiponectin levels.

In a second study, Ran et al. (10) subjected the AAGHRKO to
a high fat (HF) diet (HFD) and cold stress to study the metabolic
adaptability of the mice. It was found that disruption of adipose
GH signaling attenuated hyperglycemia and the insulin
resistance accompanying diet-induced obesity by improving
glucose homeostasis. AAGHRKO proved to be resistant to HF-
induced hepatic steatosis as seen by the improvement of various
parameters of the liver. Improved FFA trapping was predicted to
protect the liver from HFD. AdGHRKO mice were found to have
impaired cold endurance and WAT browning as seen by their
defective thermogenic function.

GHR SIGNALING DISRUPTION IN
MACROPHAGES (KUPFFER CELLS)

It is well-known that GH signaling plays an important role in
regulating lipid metabolism in the liver. Non-alcoholic fatty liver
disease (NAFLD) is a widespread liver disorder and its risk
increases with GH deficiency (11). Previous studies have shown
that depleting the liver of Kupfter cells protects against HFD-

induced liver steatosis (12). To study the action of GH in
macrophages such as Kupffer cells in the liver, Zhang et al.
used the macrophage-specific GHRKO (macGHRKO) mice
under the control of LysM promoter/enhancer to drive Cre
expression, for their study (13). MacGHR KO mice were
subjected to a HFD to investigate how a lack of GH action in
Kupffer cells could affect lipid metabolism upon nutritional
stress. These mice were found to have increased lipid droplets
and also an increase in long chain free fatty acids (LCFA) and
polyunsaturated fatty acids (PUFA), when compared to controls.
CD36 mRNA levels and CD36 protein production were also
found to be increased. This provides further evidence that for
hepatic lipid homeostasis, GH action in macrophages like
Kupfter cells is critical.

HEPATIC GHR SIGNALING

Liver has an important part in how GH exerts its effects on the body
by being the major producer of circulating IGF-1. By disrupting
GHR in liver, we study the causal effects of direct GH action on the
body independent of IGF-1. Many different lines of mice have been
produced with GHR ablation in liver. Here we discuss the newest
studies published after our last review.

One study sought to study the gene expression of
mitochondrial biogenesis genes (Pgclo, Ampk, Sirtl, Nrf2, and
Mfn2) in LIGHRKO mice and found that gene expression was
altered with a sex differences being seen (14). Sadagurski et al.
showed that, LIGHRKO mice have no changes to hypothalamic
neuron projection density compared to whole body GHRKO
mice suggesting an factor independent of low circulating IGF-1
levels (15). Cordoba-Chacon et al. developed an adult-onset,
hepatocyte-specific, GHR knockdown (aLivGHRkd) mouse and
to model the effect of GH resistance in humans (16). These mice
were found to have an increase in hepatic de novo lipogenesis
(DNL) in both males and females, but with hepatosteatosis
developing only in males.

The liver plays an important role in maintaining blood glucose
levels during a period of fasting, so in order to elucidate the
significance of GH action in liver during this period, LIGHRKO
mice were subjected to Caloric restriction (CR) and then fasted for
23 h. There were many interesting findings in these KO mice such
as hypoglycemia, a fall in liver triglycerides and a reduction in liver
autophagic vacuoles. All of these observations further underline the
importance of GH action (17).

GHR SIGNALING IN CARDIAC MYOCYTES

GH signaling has shown to play an important role in proper
cardiac functioning as evidenced from human patients with GH
defects (18). On the one hand, acromegaly patients succumbed to
cardiac failure related to Biventricular hypertrophy (19). While
GHD and Laron’s syndrome patients were seen to have smaller
heart size, thin ventricular wall with decreased cardiac function
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(20). Genetically modified mice with disruptions in GH signaling
pathway were also shown to have similar characteristics (21). In
order to elucidate the direct role GH plays on the myocardium of
fully grown mice with normal development, an adult-inducible
cardiac specific GHRKO mouse line (iC-GHRKO) under the
control of the mouse cardiac-specific alpha-myosin heavy chain
promoter was developed (22) iC-GHRKO showed decreased fat
mass and improved insulin sensitivity in early adulthood (4.5 to
8.5 months of age). At about the age of one, the mice began to
exhibit glucose intolerance and insulin resistance.

GHR SIGNALING IN BONE

GH-IGF1 axis affects the risk of osteoporosis later in life by its
signaling early in life (pubertal stage). PTH (Parathyroid hormone)
has been found to have both anabolic and catabolic effects on bone
and it acts in conjunction with the GH/IGF-1 axis as IGF-1 is a
mediator of PTH’s anabolic actions. The goal of the study
conducted by Liu et al. was to see how osteocytes integrate signals
from GH/IGF-1 pathway with PTH stimuli during bone
acquisition. Liu et al. developed the DMP-GHRKO mouse line
under the control of the murine dentin matrix protein 1 (Dmp1)
promoter/enhancer elements (23). DMP-GHRKO mice had an
altered bone phenotype with no effect on overall body weight and
serum IGF-1 levels. Reduced serum inorganic phosphate (Pinorganic)
and Para Thyroid hormone levels were seen along with decreased
bone formation indices when treated with PTH. GHR signaling was
found to be required for proper bone growth, mineral acquisition
and it functioned in conjunction with PTH.

GHR SIGNALING IN HSC

Hematopoietic stem cells (HSCs) express GHR and the role of GH
signaling in its functioning combined with its relationship upon
aging is unknown. The regenerative potential of HSC has found to
be diminished during age. Stewart et al. generated and characterized
a hematopoietic stem cell-specific GHRKO mice under the control
of the mouse vav 1 oncogene (Vavl) promoter (24). It was found
that GHR is upregulated in aging but there were not any significant
changes in key parameters such as steady-state homeostasis,
reconstitution potential, or homeostatic recovery when challenged
with 5-fluorouracil in HSC-specific GHRKO mice. These results
show that GHR signaling is dispensable to HSC function.

GHR SIGNALING IN SKELETAL MUSCLE

List et al. generated and characterized the MuGHRKO mice using
the muscle creatinine kinase (MCK) promoter to drive Cre
expression (25). Data on GHR disruption in the muscle of female
mice and also longevity were unavailable in the previous study. In
this new report, the body weights of the MuGHRKO were found to
be altered in opposite directions in males (decrease) and females
(increase). Male KO mice exhibited improvement in glucose

tolerance and certain metabolic parameters (fasting blood glucose,
insulin, c-peptide) while the females did not show any change.
Negligible effect on grip strength and treadmill endurance on
MuGHRKO suggests that the direct role of GH in skeletal muscle
functionality may be minimal. Interestingly, the longevity of male
mice was found to be increased but not in the females which could
in part be due to the changes in metabolic function.

GHR SIGNALING IN BRAIN

GH and GHR are active in the central nervous system. GHR is
known to be expressed in neurons that express leptin receptor,
agouti-related protein, kisspeptin receptor, proopiomelanocortin
(POMC) prohormone and steroidogenic factor-1 (SF1). Agouti-
related protein neurons in the ARH (arcuate nucleus) are known to
be major regulators of energy homeostasis. One of the major known
functions of GH in the brain is that it promotes neuroendocrine
adaptations during food deprivation. GH has also been found to
signal the AgRP neurons under the same food deprived conditions.
Leptin receptor expressing neurons of hypothalamus which also
express GHR are known to be involved in metabolic adaptations
that conserve energy during food restriction (FR).

Cady et al. generated and characterized a mutant mouse line
LepRb GHRKO with gene ablation in cells expressing leptin
receptor (26). Furigo et al. generated 3 lines of mice, AgRP
GHRKO, LepR GHRKO, and brain GHRKO with GHR gene
ablation in AgRP neurons, leptin receptor neurons, and whole
brain respectively (27). LepRb GHRKO mice have impaired glucose
homeostasis under ad libitum diet and also when subjected to a
HED. In contrast, the AgRP GHRKO mice showed normal glucose
tolerance and insulin sensitivity when compared to controls. There
was also no evidence that GHR signaling in LepRb neurons
regulates food intake and body weight in LepRb GHRKO mice.
These mice also exhibited impaired hepatic insulin sensitivity and a
failure to suppress hepatic glucose production when placed under
hyper insulinemic-euglycemic clamps. The AgRP GHRKO mice
were found to have diminished hypothalamic and neuroendocrine
changes in AgRP neurons when subjected to 60% FR. Body weight
reduction was seen in AgRP GHRKO mice when subjected to 60%
FR for several days which implies a lack of adaptive response to
energy deficits. In contrast to AgRP GHR KO mice, both LepR
GHR KO and brain GHR KO mice exhibited increased body weight
and length. From these studies, we have evidence that GH acts as a
signal to Central Nervous System about energy deficiency and can
induce adaptive responses.

Bohlen et al. (28) developed kiss1-KO mice with GHR ablation in
the kisspeptin receptor neurons. There was a decrease in
hypothalamus expression of genes related to reproductive axis in
female pubertal mice. Sexual maturation was not affected in kiss1-KO
or brain-KO mice but a delay in sexual maturation was observed in
LepR GHRKO mice arising possibly due to phenotypic changes such
as reduced serum leptin levels and body weight.

Pregnancy is a time where a mammal experiences widespread
metabolic changes and adaptations for the development of the
offspring and the later birth. GH also plays some role in this
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process (29). A study was conducted recently to better elucidate
the effects of GHR disruption in pregnant mice of LepR GHRKO,
AgRP GHRKO, and brain GHRKO (30) LepR and brain
GHRKO showed that they had increased insulin sensitivity.
Brian GHRKO were found to have reduced adiposity and food
intake. LepR GHRKO mice showcased an increased sensitivity to
leptin particularly in the VMH neurons.

In order to study the effects of GH action in anorexigenic
neurons which express the proopiomelanocortin (POMC)
prohormone, POMC GHR KO mice (31) model was generated
using the POMC Cre line. GH action in POMC neurons was not
found to be required for maintenance of glucose homeostasis or
energy regulation. Onset of hyperphagia due to acute
administration of 2DG (2-deoxy-D-glucose) was nullified in
the absence of GH signaling in POMC neurons. And when
subjected to FR, male POMC GHRKO mice were found to
exhibit decreased glycemia.

The regulation of blood glucose levels is vital for maintaining
body homeostasis and GH has been known to play a role in the
counter regulatory response (CRR) (32). In order to understand
how GH regulates CRR via specific neuronal populations, SF1
GHRKO mice were generated with GHR ablation in the
ventromedial nucleus (VMH) neurons (33). In LepR GHRKO
mice subjected to Insulin Tolerance test (IIT), their recovery from
the hypoglycemic state was found to be impaired. Administration of
2DG also led to a blunted CRR in LepR GHRKO mice. SF1
GHRKO mice were not found to have any metabolic imbalances
during normal conditions nor were there any changes in regard to
metabolism during a food deprived state. But, it was found that
these mice had an impaired capability to recover from
hypoglycemia. GH disruption in also the SF1 cells was found to
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FIGURE 1 | Overview of tissue-specific GHRKO mouse models.
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impair CRR initiated in response to 2DG infusion, which might be
mediated through the parasympathetic nervous system. However,
many gaps still remain in the understanding of GH action in the
brain. For example, future studies should be to explore the GH
action and signaling the key cell populations at the critical brain
regions such as the hippocampus, which is essential for learning and
memory and glial cells including astrocytes or microglial cells, which
have emerged as active players in neurodegenerative diseases.

PERSPECTIVES

There have been numerous interesting studies on tissue-specific
GH effects published in last few years and have been briefly
summarized here. Of these some were tissues for which mouse
models were already developed (fat, liver, muscle, macrophage,
pancreatic 3 cells) while others were new such as heart, bone,
intestine, HSCs, and different brain regions (Figure 1).
Interestingly some of the tissue-specific mouse models have
different effects (Table 1). Insulin sensitivity has been found to
be increased in AAGHRKO mice while it’s reduced in ic-
GHRKO, IntGHRKO, MacGHRKO, and MuGHRKO mice.
While fat mass was found to be increased in both sexes of
AdGHRKO mice and females of MuGHRKO mice, a reduced
amount of fat mass was seen in male MuGHRKO, ic-GHRKO,
brain GHRKO, and LepR GHRKO mice. These data have given
us new insights into the action of GH in different regions of the
body. However, the exact molecular understanding for the
increased longevity of GHR disruption is not yet fully
elucidated and these tissue-specific models can provide us with
yet unknown information. In addition to the context of location,
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TABLE 1 | Major phenotypical and metabolic changes in mice with organ-specific disruption in GHR signaling.

Tissue Cre Lifespan Strain Obesity BloodGH/ Insulin Glucose Other metabolic changes
IGF-1 Sensitivity Tolerance
GHRKO Whole Body N/A 1 Ola-BALB/c 1 1/1 1 1 -
INtGHRKO Intestinal Epithelial Cells villin - C57BI/6J N.C NC/? -2 -2 Males had increase in occludin levels and
females showed changes in fecal
albumin
AJGHRKO Adipocytes adipoq - - 1 NC/NC 1 NC 1 adipocyte size, | adiponectin, Liver
TAG, and WAT fibrosis
AJGHRKO Adipocytes adipoq - - - | in HFD/ 1-HFD 1-HFD Hepatic steatosis under HFD alleviated by
NC AdGHRKO
MacGHRKO Macrophages LysM ? Mixed background- N.C /7 ? ? tlipid deposition OR Lipid droplets in Liver
(under HFD) C57BI6 +?77 under HFD
L-GHR -/- Hepatocytes Alb - C57Bl/6J N.C 1/? ? ? | Hepatic Triglycerides along with fall in
(under 12 day C.R.) glucose levels when subjected to C.R
ic-GHRKO Cardiac cells Myh6 ? C57BI/6J 1 (4.5- /- 1-125mo  |-12.5mo | IL-6, resistin
8.5mo) 12.5mo
DMP-GHRKO Osteocytes Dmp1 ? C57Bl/6J ? 1-9/7? ? ? | serum inorganic phosphate, PTH & bone
formation indices
HSC Hematopoietic Stem Cells Vav1 ? C57Bl/6J ? ?/? ? ? -
MuGHRKO Skeletal Muscles mck -3 C57BI/6J(62.5%) 3 NC/NC ? 1-8 Longevity increased in males.
C57BI/6N(37.5%) 12,14mo;
19
8,10,14mo
Brain GHRKO Whole Brain Nestin ? C57BI/6 | 12/? ? ? Tbody weight, length, and lean mass
Ifood intake and serum leptin levels sharp
decline in E.E when subjected to
F.R
LepR GHRKO Leptin Receptor Neurons LepR ? C57Bl/66 | NC/NC lchow and NC Tbody weight, length, increase in sensitivity to
HFD leptin, and Serum leptin
Delay in sexual maturation
AgRP GHRKO Agouti-related proteins expressing AgRPIRES ? C57B1/6 | FR lad libitum; NC NC -
neurons in ARH and hypothalamus 1 F.R/?
Kiss1 GHRKO Kisspeptin expressing neurons Kiss1 ? C57B1/6 NC NC/? ? ? |Expression of genes related to reproductive
axis
POMC GHRKO Proopiomelanocortin expressing neurons ~ POMC ? - NC /7 ? NC lglycemia for males under food restriction
SF1 Steroidogenic factor 1 (SF1) positive SF1 ? C57B1/6 NC ?/NC NC NC Ineffective CRR in response to 2DG infusion

neurons
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the timing of GH action are equal important in determining the
eventual output. Future studies to understand of how the
temporal GH signaling affects whole body physiology will be
essential to unraveling the mechanisms by which aging and
lifespan are regulated by the GH pathway.
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