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Glycogen storage disease subtypes | and Ill (GSD | and GSD Ill) are monogenic inherited
disorders of metabolism that disrupt glycogen metabolism. Unavailability of glucose in
GSD | and induction of gluconeogenesis in GSD Il modify energy sources and possibly,
mitochondrial function. Abnormal mitochondrial structure and function were described in
mice with GSD la, yet significantly less research is available in human cells and ketotic
forms of the disease. We hypothesized that impaired glycogen storage results in distinct
metabolic phenotypes in the extra- and intracellular compartments that may contribute to
pathogenesis. Herein, we examined mitochondrial organization in live cells by spinning-
disk confocal microscopy and profiled extra- and intracellular metabolites by targeted LC-
MS/MS in cultured fibroblasts from healthy controls and from patients with GSD la, GSD
Ib, and GSD llI. Results from live imaging revealed that mitochondrial content and network
morphology of GSD cells are comparable to that of healthy controls. Likewise, healthy
controls and GSD cells exhibited comparable basal oxygen consumption rates. Targeted
metabolomics followed by principal component analysis (PCA) and hierarchical clustering
(HC) uncovered metabolically distinct poises of healthy controls and GSD subtypes.
Assessment of individual metabolites recapitulated dysfunctional energy production
(glycolysis, Krebs cycle, succinate), reduced creatinine export in GSD la and GSD Il
and reduced antioxidant defense of the cysteine and glutathione systems. Our study
serves as proof-of-concept that extra- and intracellular metabolite profiles distinguish
glycogen storage disease subtypes from healthy controls. We posit that metabolite
profiles provide hints to disease mechanisms as well as to nutritional and
pharmacological elements that may optimize current treatment strategies.

Keywords: inborn error of metabolism, metabolism, metabolomics, mitochondria, glycogen storage disease,
energy deficiency, redox homeostasis
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INTRODUCTION

Glycogen storage diseases (GSDs) are a group of inborn errors of
metabolism that result from defects in any of the enzymes involved
either in glycogen synthesis or glycogen degradation (1, 2). GSDs
can be divided in two major entities: GSDs with hepatic
involvement that usually present with hypoglycemia and often
hepatomegaly, and muscular GSDs with predominantly
neuromuscular symptoms such as muscle weakness and/or
hypotonia (3). The classical liver GSDs comprise type I, III, VI,
IX, and 0. While all other subtypes are characterised by hepatic
glycogen storage due to either impaired glycogen breakdown, or the
hydrolysis (GSD Ia) or transport of glucose-6-phosphate (GSD Ib),
in GSD 0 the synthesis of glycogen within the hepatocyte is
impaired. Several cellular mechanisms that contribute to the
pathogenesis of these diseases have been investigated, however,
little is known about the function of different organelles in these
disorders, with only one comprehensive study performed in mice
with GSD Ia examining mitochondria in hepatocytes (4) and one
study assessing mitochondrial complexes activities in human
lymphocytes (5).

We herein investigate GSDs types Ia, Ib and III. Glycogen
storage disease type Ia, also known as von Gierke disease (6) is
caused by mutations in the G6PC gene (OMIM 613742) (7)
encoding glucose-6-phosphatase. The disease manifests early in
life with severe hypoglycemia and hepatomegaly due to excessive
storage of glycogen in the liver (7, 8). Glycogen storage disease type
Ib is a second subtype of von Gierke disease caused by mutations in
the G6PT1 gene (SLC374A, OMIM 602671) (9), which encodes the
glucose-6-phosphate transporter. In GSD Ib, the enzyme glucose-6-
phosphatase is active but the transporter defect results in a
functional deficiency of glucose-6-phosphate that impedes the
liberation of glucose (10). The major clinical manifestations of
GSD Ia and Ib include recurrent hypoglycaemia, lactic acidosis,
hyperlipidemia, and hepatomegaly. Patients with GSDIb are prone
to infections due to neutropenia and neutrophil dysfunction and
often present with inflammatory bowel disease (11, 12). Glycogen
storage disease type III is caused by mutations in the AGL gene
(OMIM 610860) (13, 14) that encodes a glycogen debranching
enzyme that possesses two catalytic activities, namely, amylo-1,6-
glucosidase, and 4-alpha-glucanotransferase. Patients with GSD III
present clinical manifestations in infancy that include
hypoglycaemia, hepatomegaly and growth delay (13). The
disorder has been classified in subtypes according to the organ-
specific enzyme deficiency (15, 16). Patients with both liver and
muscle involvement belong to GSD Illa (17), the most common
subtype, whereas patients having exclusive liver involvement belong
to GSD IIIb.

Glycogen storage diseases impair glycogen synthesis, breakdown,
and transport of products thereby disturbing carbohydrate
homeostasis in the cell (3). Because carbohydrates are major fuels
for cellular energy, previous studies aimed to identify the role of
mitochondria and other energy producing pathways in the
pathogenesis of GSD. Studies with animal models revealed reduced
mitochondrial content, abnormal ultrastructure of cristae and overall
morphology, and altered mitophagy in the liver of GSD Ia (4, 18).

Analysis of Krebs cycle metabolites in animal liver showed a
reduction of succinate in GSD Ia but no other remarkable findings
in this pathway of energy production compared to healthy controls
(4). Another study in mice identified downregulation of sirtuin 1
signaling in GSD Ia as a possible mediator of mitochondrial function
(19). The authors proposed that this impairment in sirtuin 1 signaling
contributes to the development of hepatocellular adenoma/
carcinoma in GSD Ia (19). Investigation of metabolic stress
induced by diet in a liver-specific knock-out mouse model of GSD
Ia showed that diseased livers reprogram metabolism to a phenotype
that resembles cancer cells (20). This included upregulation of
glycolysis and de novo lipogenesis and a reduction in fatty acid
oxidation (20). Further, these metabolic changes were associated with
reduced autophagy, antioxidant enzymes and apoptosis, and
impaired endoplasmic reticulum stress response (20).

A study by Rossi examined plasma and urine markers of
metabolism in patients with GSD Ia versus a cohort of age- and
gender-matched controls (21 GSD I patients, 14 GSD Ia and 7 GSD
Ib) (21). The study identified greater levels of plasma short-chain
acylcarnitines and increased excretion of organic acids in urine in
GSD Ia (and to a lesser extent in GSD Ib patients) compared to
healthy controls (21). The greater levels of short-chain acylcarnitines
were speculated as to possibly represent mitochondrial impairment,
but no further testing was performed (21). In another study,
associations between reduced bone mineral density and insulin
resistance in GSD III were hypothesized to implicate mitochondrial
impairment as one of the contributors to the observed osteopenia/
osteoporosis, but no studies were performed to corroborate this
hypothesis (18).

Evidence of mitochondrial impairment was also provided in a
study that measured enzymatic activities in lymphocytes of
patients with GSD I, GSD III, GSD VI, and GSD IX (5).
Results from this study identified reduced activity of succinate
dehydrogenase (complex II of the respiratory chain) and
glycerol-3-phosphate dehydrogenase (glycolysis), and increased
enzymatic activity of NADH dehydrogenase and lactate
dehydrogenase (LDH) in all GSD types, with most pronounced
changes in enzymatic activity found in GSD I (5).

While previous studies point to a role of mitochondria in the
pathogenesis of GSD Ia in mice, no studies have been performed
in the other subtypes of hepatic GSDs or with human cells. This
has prompted us to investigate mitochondrial morphology and
function in skin fibroblasts from healthy controls, patients with
GSD subtypes Ia and GSD Ib (both non-ketotic), and patients
with GSD III, representing the most severe of the ketotic liver
GSDs. Herein, we employ targeted metabolomics to gather
information about energy producing pathways in GSD and to
gain insights into underlying pathomechanisms.

Our studies with human skin fibroblasts reveal that: a)
Mitochondrial networks, volume and oxygen consumption rates
are comparable in healthy controls and GSD types Ia, Ib, and III; b)
Principal Component Analysis (PCA) and Hierarchical Clustering
(HC) analysis of extracellular and intracellular metabolites permits
the clustering of healthy controls versus GSD subtypes suggesting
distinct metabolic poise in health and disease; and c) The
concentration of metabolites of energy producing pathways
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(lactate, Krebs cycle intermediates) and antioxidant defense
(cysteine, glutathione) suggest dysfunctional electron transfer in
the respiratory chain, consistent with impaired mitochondrial
function in GSD compared to healthy controls.

MATERIALS AND METHODS

Reagents and Solvents

Culture media, antibiotics, fetal bovine serum (FBS), reagents,
solvents and buffers were used as directed by the respective
manufacturers without further processing. Water (product Nr.
39253) and methanol (product Nr. 34966) for mass spectrometry
were purchased from Honeywell (Riedel-de Haen, Germany).
Stable isotopes for metabolomic analysis were purchased from
Sigma-Millipore (Merck Group, Germany).

Primary Skin Fibroblasts

Skin fibroblasts from healthy subjects were used and
characterized in two previous studies (22, 23). Healthy control
fibroblasts were from donors in the neonatal stage as well as from
an 8-year-old male subject (22, 23). Skin fibroblasts from patients
with GSD were obtained from the Coriell Institute Repository,
New Jersey, USA. The description of the GSD cells utilized in this
study and references to previous genetic and/or enzymatic
activity characterizations by others are described in Table 1.

Cell Culture

Skin fibroblasts from healthy subjects and from patients with GSD
(passages 4 to 15) were cultured in DMEM low glucose
supplemented with GlutaMax (Gibco, product Nr. 21885108;
culture medium composition provided in Supporting
Information, Table S1), 10% FBS, and antibiotic and
antimycotics. Cells were fed with fresh medium every 2-3 days,
and passaged at a 1:3 ratio by trypsinization and centrifugation. All
cells were grown in a humidified 5% CO, incubator at 37°C.
Although dermal fibroblasts possess high metabolic activity even
in their quiescent state (25) and their suitability as a model to study
human metabolism has been assessed in-depth (26), to ensure
comparability of mitochondrial turnover and metabolite
homeostasis all cell cultures were synchronized by adjusting their
seeding density and/or total growing time between passages such
that end-point harvesting was carried out at comparable cell
density. Cells from patient with GSD Ia grew slightly slower than

all other cells, therefore, these cultures were given 2-3 extra days to
grow or were seeded at an initially higher cell density. This
permitted reproducible pacing of the cell cultures, which were
grown in parallel for all experiments described in this work. At
time of harvesting, cell cultures from healthy controls and GSD
patients exhibited comparable morphology and total cell number.

Confocal Microscopy

Analysis of mitochondrial organization and volume was
performed by spinning-disk confocal microscopy (Axio
Observer Z1 with Yokogawa CSUXI1FW, camera Photometrics
sCMOS PRIME; Carl Zeiss Microscopy GmbH, Germany). Cells
were grown under standard conditions (humidified 5% CO,
incubator at 37°C) for 3-5 days, trypsinized and 1000 cells were
seeded in glass bottom cell culture dishes (Ibidi, Munich,
Germany, p-dish 35 mm diameter, order No. 81218-200). Cells
were grown overnight under standard conditions. Live cell
staining was applied using MitoView' " 650 (product Nr. 70075-
T, Biotium, CA, USA) for mitochondria and Calcein™ AM
(product Nr. C1430, Invitrogen, CA, USA) for cell body. Three
independent batches of cells at three independent locations were
imaged on three different days (one batch per day), for three
healthy controls and the five GSD fibroblasts described in Table 1.
In order to maintain consistency in terms of cell culture age, all
cells were seeded 24 h prior to the imaging experiment.

Images from live cells were recorded using the ZEISS ZEN blue
software (Version 2.6, Carl Zeiss Microscopy GmbH, Germany) with
the following conditions: incubation at 37°C with 5% CO,, objective
C-Apochromat 63x/1.2 water immersion, pixel size x/y 0.1 um,
excitation 561 nm, emission filter BP 629/62 nm, exposure time
150 ms for MitoView, excitation 488 nm, emission filter BP 525/50
nm, exposure time 50 ms for Calcein. At each location a z-stack image
consisting of 9 overlapping tiles (area 314 x 472 pm) and 60 z-planes
(distance 0.31 pm) was recorded. Tile images were stitched together
and deconvolved with Huygens software (Vers. 19.04, Scientific
Volume Imaging, Netherland). The volume of mitochondria was
estimated using the surface and statistics module of the software
Imaris (V9.5.1 Bitplane AG, Switzerland).

Determination of Oxygen Consumption
Rates

Oxygen consumption rates were determined with a cell-
impermeable phosphorescent oxygen probe (product Nr. 600800,
Cayman, Michigan, USA). 96-well plates were seeded at a density of

TABLE 1 | Glycogen storage disease dermal fibroblasts employed in this study”.

Cell ID Disease Phenotype Gender Race/Ethnicity Age at References
type collection
GM00574 GSDla Liver biopsy shows absent glucose-6-phosphatase Male White 25 years old (24)
GM03719 GSDIb Liver biopsy shows G6P transport defect Male Panama Indian 5 years old (10, 11, 24)
GM02523 GSDIIl Decreased activity of amylo-alpha-1,6-glucosidase (debrancher Male Black/African 1 year old (14)
enzyme) in fibroblasts American

GMO03390 GSDIll Deficient amylo-1-6-glucosidase activity in fibroblasts Male White/Arab 1 year old (14)
GM03388 GSDIll Deficient amylo-1-6-glucosidase activity in fibroblasts Male White/Iranian 1 year old Coriell Institute Repository

(online)

TInformation obtained from Coriell Institute Repository and published manuscripts.
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50,000 cells per well. The cells were grown for 18 h in standard
DMEM supplemented with 10% FBS. Measurement of fluorescence
was performed with excitation set at 380 nm and emission at 650
nm, a delay time of 30 us and a read time of 100 ps on a Tecan
Infinite Pro plate reader set at 37°C. All samples were run in
triplicates. Results from this measurement are shown in Figure S1.

Determination of Lactate Using the

LDH Reaction

Lactate is a marker metabolite of glycolytic activity that undergoes
export into the extracellular medium. Production of lactate was
monitored by two separate methods. Firstly, a colorimetric
detection of lactate was carried out enzymatically via de reaction of
lactate dehydrogenase (LDH) in a sample of conditioned culture
medium (product Nr. 600450, Cayman, Michigan, USA). Cells were
seeded at a density of 30,000 cells per well. The cells were grown for
4 h in standard DMEM supplemented with 10% FBS (to enable
cell attachment), and the medium was then replaced with DMEM
supplemented with 1% FBS (reduction of FBS concentration
minimizes the contribution of LDH in FBS). The assay was
performed as directed by the manufacturer. Quantification was
performed with a calibration curve with pure lactate 0-10 mM. All
samples were run in triplicates. Secondly, lactate was identified and
quantified by liquid chromatography mass spectrometry using a
targeted metabolomic method for organic acids (please, see section
Targeted Analysis of Metabolites by Liquid Chromatography Tandem
Mass Spectrometry below). Results of lactate concentration
determined from colorimetric and LC-MS/MS methods are shown
in Figure S2A (colorimetric) and Figure S2B, LC-MS/MS).

Preparation of Cell Pellets and Collection
of Conditioned Culture Medium for
Metabolomics

Cells were cultured in T25 flasks (three flasks for each of healthy
control and GSD fibroblasts) for 5 days without medium exchange,
harvested by trypsinization, and washed once with PBS by
centrifugation. Dry cell pellets were frozen in dry ice and stored at
-80°C for further processing, as described (22). On the day of cell
harvesting (on day 5 after no media exchange), conditioned culture
medium was collected and centrifuged at 9847 x g for 10 min to
remove dead cells and debris. Cleared conditioned medium was
transferred into a clean 1.5 ml Eppendorf microcentrifuge tube and
stored at -80°C for further processing, as described (22).

Targeted Analysis of Metabolites by

Liquid Chromatography Tandem

Mass Spectrometry

Metabolites of the methionine cycle, trans-sulfuration and
glutathione pathway in their thioether, oxidized and reduced forms,
creatinine, S-adenosylmethionine, and S-adenosylhomocysteine
were determined according to a published procedure (22). In brief,
analiquot of celllysate or conditioned medium (20 pl) was mixed with
20 pl of H,O (non-reducing conditions) or 20 l DTT 0.5 M (reducing
conditions), vortexed, and incubated at room temperature for 10
minutes. An aliquot of internal standard was added (20 pl) and
metabolites were extracted by addition of 100 pl of 0.1% formic acid in
MeOH (22). Metabolites of the Krebs cycle and organic acids of

special relevance for cell metabolism (lactate, glycolysis) and
mitochondrial respiration (malonate, itaconate, methylmalonate)
were determined by isotopic dilution, based on the same published
procedure (22) with modifications. Briefly, chromatographic
conditions were adjusted to an isocratic run of 50% solvent A (0.1%
formic acid in water) and 50% solvent B (0.1% formic acid in water).
Calibration curves of Krebs cycle intermediates were created in the
range 0-500 pM. Internal standards consisted of isotopically labeled
analytes, that included the following: D,-succinate, Dj-
methylmalonate, 13Cs-itaconate, >C;-lactate, and Ds;-malonate.
Analytes for which isotopically labeled variants were not available
were normalized with respect to D;-methylmalonate.

Data Analysis
Mass spectrometry data was analyzed with the Analyst® software
version 1.6 (AB Sciex).

We first examined the data by applying PCA, a multivariate
statistical method that captures not only changes in individual
metabolites between different groups, but it also assesses
dependency between single metabolites (27, 28). PCA is a linear
projection of the original data into lower dimension orthogonal
axes. The direction of these new axes is optimized to maximize the
variance of the projected data points (i.e., spread of the data points).
In so doing, PCA guides the identification of metabolite
contributions to disease phenotypes. Herein, PCA was performed
on metabolite data to reduce data dimensionality and differentiate
metabolite profiles across samples. Ellipses were drawn at 95%
confidence around the mean of the data points within disease groups.

Samples were also clustered accordingly to their metabolic
profiles using HC. HC was also performed to cluster metabolites
accordingly to their sample profiles.

Oxygen consumption rates were estimated by fitting a double
exponential curve to the measures of oxygen consumption
over time.

PCA and HC were carried out in R 3.6.3 (R Core Team, New
Zealand). Curve fitting and boxplots were created using
MATLAB version R2019b (MathWorks, Natick, USA).

Individual comparisons of absolute metabolite concentrations
between healthy controls and GSD disease groups were performed
with one-way ANOVA. The significance level was set to o = 0.05.

RESULTS
Growth Characteristics of GSD Fibroblasts

Inherited diseases of glycogen metabolism are complex disorders
characterized by systemic energy deficiency. In certain GSDs,
specific organs such as liver and kidney exhibit structural
abnormalities due to excessive glycogen deposition. While human
hepatocytes and renal cells from patients with GSD are unavailable
for research purposes, a few research laboratories and the Coriell
Institute for Medical Research (New Jersey, USA) have possession
of dermal fibroblasts from patients with GSD. This precious source
of primary cells from patients derives from an era prior to molecular
genetic diagnostics, whereby performing skin biopsies was a routine
procedure to diagnose patients (29). Herein, we investigated
mitochondrial organization and distribution, and energy
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metabolism in human primary fibroblasts. Cultured cells from
healthy subjects and from GSD patients (passages 4 to 15, all
from donors < 25 years old at time of skin biopsy) exhibited
normal fibroblast morphology (Figure 1), in agreement with the
literature for the specific GSD cell lines utilized in this study (10, 11,
14, 24). Patient fibroblasts with GSD Ia grew slightly slower
compared to healthy controls or the other GSD types, which was
paced with the other experimental cell cultures by allowing 2-3
extra days in culture or by seeding cultures of GSD Ia at a greater cell
density. Overall, the distribution of mitochondria across the cell
body was comparable for healthy controls and all GSD subtypes
(Figure 1, red staining). Oxygen consumption rates (OCR) were
measured under standard cell culture conditions, using a
phosphorescent oxygen probe. No differences were observed in
basal oxygen consumption rates between healthy control and GSD
fibroblasts under our experimental conditions (Figure S1).

Mitochondrial Organization and Volume in
GSD Fibroblasts

The organization of mitochondria in cultured fibroblasts was
examined by spinning-disk confocal microscopy using a live-cell
staining protocol that retained the fluorescent dyes for up to 72 h as
described in methods. Under our culture conditions, mitochondrial
network morphology was comparable between healthy controls and
GSD cells (Figure 2A), suggesting no marked alterations in organelle
turnover by fission and fusion under our experimental conditions.
Cloned images showing mitochondrial volume in a tridimensional
perspective and also in greyscale are provided in supporting
information (Figure S3). Results from quantification of relative
mitochondrial volume normalized by cell surface showed
comparable content of the organelle in healthy controls and GSD
groups (Figure 2B). A tendency toward slightly lower mitochondrial
volumes was seen in all GSD cells, however, these differences did not
reach statistical significance (Kruskal-Wallis, o = 0.05).

Metabolic Profiling of GSD Fibroblasts by
Targeted Metabolomics

In order to examine whether disruption of glycogen storage in
GSD fibroblasts results in a distinct metabolic poise compared to
healthy control fibroblast we performed a targeted metabolomic
analysis of cell lysates (intracellular metabolites) and conditioned
culture medium (extracellular metabolites). Carbohydrate
metabolism fuels major pathways of energy production in cells,
so we examined glycolysis end product lactate, Krebs cycle
intermediates, the methionine cycle and folate metabolites, the
transsulfuration pathway and glutathione metabolism. Previous
studies performed with animal models of GSD suggested
increased oxidative stress in GSD. Therefore, we herein
examined the two major low-molecular antioxidants in cells,
namely, cysteine and glutathione in their oxidized and reduced
forms, as well as their corresponding precursor metabolites that
derive from the methionine cycle and the trans-sulfuration
pathway. Because renal injury is a clinical feature of GSD I, we
also determined creatinine. A total of 20 extracellular metabolites
and 31 intracellular metabolites were measured by LC-MS/MS in
a fully quantitative manner.

The results of PCA for extracellular and intracellular metabolites
are shown in Figures 3 and 4, respectively. The PCA score and
loading plots for extracellular metabolites are shown in Figures 3A-
D. The PCA score and loading plots for intracellular metabolites are
shown in Figures 4A-D. As can be seen from both extracellular and
intracellular samples, metabolite correlations determined distinct
clustering of healthy controls versus GSD subtypes. A list of the
individual contribution of metabolites to PC 1, PC 2, and PC 3 is
provided in Table 2. Lactate, cysteine and cystathionine are common
top contributors both in the intra- and extracellular compartments.

To further identify common and distinct features between
healthy controls and GSD disease groups, we carried out
hierarchical clustering on the metabolite data. GSD metabolites
grouped together to a common cluster that is mostly separated from
the healthy control group (Figure 3E: extracellular metabolites,
Figure 4E: intracellular metabolites). Partial metabolite overlap was
seen between healthy controls and GSDIII patient 3 (c2, ¢3), both
for intracellular and extracellular components.

Glycolysis and Krebs Cycle in

GSD Fibroblasts

Analysis of intracellular and extracellular lactate showed significant
downregulation of glycolysis in all GSD subtypes compared to
healthy controls (Figure 5). With this finding and the result of
normal OCR in GSD fibroblasts, we reasoned that GSD cells may rely
on oxidative phosphorylation more than glycolysis to sustain cellular
energy demands under our experimental conditions. We therefore
examined Krebs cycle intermediates citrate, alpha-ketoglutarate,
succinate and malate (Figure 6). The concentration of citrate and
alpha-ketoglutarate did not differ markedly between healthy controls
and GSD fibroblasts, which indicates normal supply of precursor
carbons into the Krebs cycle. Succinate, a substrate of complex II of
the respiratory chain, was lower in all GSD fibroblasts in comparison
to healthy controls, suggesting increased expenditure of this substrate
into oxidative phosphorylation in the presence of disturbed glycogen
storage. Lower concentration of malate was found in GSD Ia and
GSD Ib and a greater concentration of this metabolite was present in
GSD III with respect to healthy controls. This result suggests distinct
demand of succinate into the respiratory chain to furnish
mitochondrial respiration in these disease subtypes.

Intracellular and Extracellular Creatinine in
GSD Fibroblasts

Besides liver pathology, one of the physiological consequences of
abnormal glycogen storage in GSD types I is renal injury (30-32).
Analysis of extracellular creatinine (Figure 7) showed lower
creatinine concentration in GSD Ia and GSD III compared to
healthy controls, but statistically significance was only found for
GSD III compared to healthy controls. The concentration of
intracellular creatinine was comparable between healthy controls
and all GSD subtypes (Figure 7). Noteworthy, within groups, mean
extracellular creatinine mirrored the pattern of the respective
intracellular concentrations, suggesting that maintenance of
intracellular creatinine is partly controlled by export into the
extracellular medium.
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GSDIIl, patient 2 GSDIIl, patient 3

FIGURE 1 | Microscopy of live human skin fibroblasts from healthy controls and GSD patients. Spinning-disk live imaging of cells (green and red overlay) and their
mitochondria (right panels, red). The images of three independent healthy controls and the different GSD subtypes revealed high similarity both in cellular morphology
and mitochondrial distribution. Cell bodies were stained with Calcein™ AM (Invitrogen) and mitochondria were stained with MitoViewTM 650 (Biotium). Scale shows

30 um.
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FIGURE 2 | Visualization and quantification of mitochondria in human skin fibroblasts from healthy controls and from GSD patients. Panel (A) Spinning-disk live
imaging of mitochondria (red, MitoViewTM 650, Biotium). Scale bars show 10 pm. Panel (B) Boxplots of relative mitochondrial volume measurements in healthy
controls and in patients with GSD la, GSD Ib and GSD |ll. Each data point represents a ratio of mitochondrial volume by the respective cellular surface. This ratio is
herein expressed as relative units (RU). A minimum of three regions were examined per sample. In the boxplots, the red lines indicate the median and the box hinges
describe the 1st and 3rd quartiles. The box whiskers represent the most extreme data value that is not larger (or smaller) than 1.5 times the interquartile range.
Boxplots show a similar median in all the groups with less variability observed in the GSD Ib group. Statistical analysis by Kruskal-Wallis retrieved no significant
differences between the controls and GSD subtypes (o = 0.05).
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FIGURE 3 | Principal component analysis (PCA) of extracellular metabolites. Panel (A) Score plots of PC1-PC2. Panel (B) Loading plots of PC1-PC2. Panel (C) Score plots of PC1-PC3. Panel (D) Loading plots of PC1-
PC3. Control: n=3; GSDla n =1; GSDIb n=1; GSDIIl n=3, each by triplicate. A total of 19 metabolites were included in the analysis. Ellipses shown at 95% confidence centered around the mean of data points. The small
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TABLE 2 | Individual contribution of metabolites to variance in principal component analysis.

Intracellular metabolites Individual contribution to variance (%)

PC 1 PC 2 PC3
GSH 6.17 0.03 0.12
tGSH 6.17 0.03 0.12
Malonate 5.92 2.25 0.92
Lactate 5.72 0.00 2.12
GSH free 5.26 1.13 0.05
Cys free 5.17 2.30 0.22
Cys 5.09 0.04 8.33
tCys 5.09 0.04 8.33
Cystathionine 4.58 4.40 0.00
Met 4.23 4.26 3.34
5,10-methylene-THF 4.07 2.97 2.32
5-methyl-THF 3.97 0.08 0.15
SAH 3.89 0.21 2.44
SAM 3.84 0.74 0.24
THF 3.72 3.01 1.43
Malate 3.66 2.30 0.71
Citrate 3.20 0.09 0.00
MSO 2.80 2.24 1.23
Creatinine 2.54 1.46 7.63
Succinate 2.33 7.16 4.75
MMA 2.01 3.06 0.21
Hey 1.80 4.54 15.48
tHey 1.80 4.54 15.48
Itaconate 1.79 8.61 1.83
CSSC 1.44 4.50 0.55
DHF 1.35 0.04 0.26
alpha-ketoglutarate 1.33 0.00 12.09
Hcy free 0.91 14.68 1.29
HSSH 0.03 10.49 1.59
GSSG 0.00 14.64 6.64
Cummulative variance 100 100 100

Extracellular metabolites Individual contribution to variance (%)

PC 1 PC 2 PC 3
Malate 8.54 0.33 0.26
Citrate 8.28 0.52 0.11
MSO 8.02 2.30 117
Met 7.82 2.39 4.76
DHF 7.58 0.57 0.13
Succinate 7.25 0.47 1.85
Cystathionine 719 1.30 4.44
Lactate 7.09 0.00 4.78
tCys 6.41 4.64 4.79
5-methyl-THF 5.90 3.61 0.01
Creatinine 5.10 0.02 156.73
tHey 4.82 4.02 4.42
tGSH 4.65 0.04 8.43
SAH 3.91 3.90 16.05
MMA 3.80 5.64 5.72
alpha-ketoglutarate 2.08 2412 3.71
SAM 0.58 31.45 0.33
ltaconate 0.58 14.50 23.21
Malonate 0.32 0.09 0.02
Cummulative variance 100 100 100

Data are given for PC 1, PC 2, and PC 3, which are the major determinants of healthy control and disease subtype clustering.

GSH, glutathione; GSSG, oxidized glutathione; tGSH, total glutathione; Hcy, homocysteine; HSSH, homocystine; tHcy, total homocysteine; Cys, cysteine; CSSC, cystine; tCys, total
cysteine; THF, tetrahydrofolate; DHF: dihydrofolate; MMA, methylmalonic acid; MSO, methionine sulfoxide; Met, methionine.

Metabolites marked in bold are the top 10 contributors’ variance on PC 1. Lactate, cysteine and cystathionine are common top contributors both in the intra- and extracellular

compartments.

Redox Homeostasis in GSD Fibroblasts:
Cysteine and Glutathione Metabolism
Insufficient control of glucose metabolism, with chronic hypo- and
hyperglycemia as well as intermittent spikes of these extremes cause
oxidative stress (33, 34). Because hypoglycemia is a characteristic of
GSDIaand GSDIII (35), we examined thiol pools that represent the
major low molecular weight redox buffers of the cell, reduced and
oxidized glutathione (GSH/GSSG) and reduced and oxidized
cysteine (Cys/CSSC). The Cys and GSH redox pairs act at the
forefront of the cellular antioxidant defense. Figure 8 shows the
results of GSH and Cys pools in the intracellular compartment.
Individual comparisons of healthy controls versus GSD Ia, GSD Ib
and GSD III showed that all GSD cell lines exhibited significantly
lower concentration of total Cys and GSH compared to healthy
controls (p < 0.05, one-way ANOVA). In line with these findings,
PCA also identified cystathionine, an element of the trans-
sulfuration pathway that supports biosynthesis of cysteine and
glutathione, as a major contributor to distinct metabolic
phenotypes of healthy controls and GSD subtypes.

DISCUSSION

The objective of this study was to examine mitochondrial
structure and function and metabolic profiles in human skin
fibroblasts from GSD I.and GSD III patients compared to healthy
controls. The cohort of GSD fibroblasts selected in this study has
been characterized by previous groups via genetic and enzymatic
methods that confirmed impaired glycogen metabolism (Table
1) (10, 11, 14, 24). The cohort of GSD fibroblasts utilized is
commercially available for research purposes thus permitting
comparisons across methods and laboratories.

Herein, we sought out to investigate GSD in human cultured
cells under conditions that do not pose metabolic stress. Cells were
grown in low-glucose DMEM medium supplemented with 10%
FBS, a composition that supports cellular proliferation by providing
complete sources of carbohydrates, fatty acids and amino acids. Our
qualitative examination of mitochondrial network in live human
skin fibroblasts by confocal microscopy did not identify alterations
in GSD cells versus healthy controls. Likewise, measurement of total
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FIGURE 5 | Lactate concentration in conditioned culture medium
(extracellular) and cell lysates (intracellular). Lactate concentration determined
in conditioned culture medium and cell lysates after 5 days in culture. Lactate
concentration was determined by LC-MS/MS and normalized by total protein
concentration. Control: n=2; GSDla n =1; GSDIb n=1; GSDIIl n=3, each by
triplicate. Data are shown as mean + standard deviation. Intracellular lactate
was significantly reduced in GSDla and GSDIb compared to healthy controls,
in contrast to GSDIII that exhibited lactate concentration comparable to
controls (individual comparisons, one-way ANOVA, p < 0.05). A comparison
of extracellular lactate from healthy control cells versus all GSD cells did not
result in statistically significant differences.

mitochondrial volume and oxygen consumption rates retrieved no
statistically significant differences between healthy control and GSD
fibroblasts. We reasoned that GSD cells may operate at a metabolic
poise that enables cell function at the expense of shifts in
homeostatic metabolite concentrations that support energy
metabolism. We therefore examined metabolites that are relevant
to GSD phenotypes (lactate, creatinine), energy production (Krebs
cycle), and redox homeostasis (Cys, GSH and related sulfur-
containing metabolites) among others. A total of 20 extracellular
and 31 intracellular metabolites were measured in this study. PCA
of metabolites enabled the clustering of control and GSD groups,
which was further observed after HC of these datasets. Intracellular
metabolite profiles provided a clearer grouping between healthy
controls and GSD subtypes compared to extracellular metabolites.
These findings reveal for the first time, that the cellular and
extracellular metabolic compartments of GSD subtypes differ
from that of healthy controls in humans.

Analysis of metabolites that were ranked as major contributors
to the first three principal components of PCA showed that the
major elements impacted by GSD-causing mutations are glycolysis,
Krebs cycle at the point of succinate, the entry substrate of
mitochondrial respiratory complex II, and the status of the major
intracellular antioxidant thiols cysteine and glutathione. This
metabolic combination suggests increased demands for energy
production with concomitant generation of reactive species that
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FIGURE 6 | Concentration of Krebs cycle intermediates in cells. Panels (A-D) show citrate, alpha-ketoglutarate, succinate, and malate concentration, respectively,
determined in cell lysates after 5 days in culture. Metabolite concentrations were determined by LC-MS/MS and normalized by total protein concentration. No
statistically significant differences were found between healthy control and GSD cells for citrate or alpha-ketoglutarate, suggesting no impairments in incoming
precursors of the Krebs cycle. The concentration of succinate was reduced in all GSD cells with respect to healthy control cells. The concentration of malate was
lower in GSDla and GSDIb compared to healthy controls, but no differences were found between healthy controls and GSDIIl. Panel (E) summary of GSD enzymatic
impairment highlighting routes of carbon unit flow into the Krebs cycle (TCA) and respiratory chain. All individual comparisons were performed with one-way ANOVA,
p<0.05. Control: n=2; GSDIa n =1; GSDIb n=1; GSDIIl n=3, each by triplicate. Data are shown as mean + standard error of the mean.
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FIGURE 7 | Concentration of creatinine in conditioned medium and cells.
Creatinine concentration was determined in cell lysates after 5 days in culture.
Metabolite concentrations were determined by LC-MS/MS and normalized by
total protein concentration. Control: n=2; GSDla n =1; GSDIb n=1; GSDIIl n=3,
each by triplicate. Data are shown as mean + standard error of the mean.

exhaust the antioxidant Cys and GSH systems, a scenario that
reminisces futile redox cycling, i.e. electron leakage from the
respiratory chain (Figure 6E). Thus, while the overall network
and content of mitochondria in GSD appeared to be intact under
our experimental conditions and there were no changes in basal
oxygen consumption rates, our metabolite patterns recapitulate
functional changes that are in line with mitochondrial dysfunction.

Isotopic tracing of key metabolites of glycolysis (glucose-6-
phosphate, glucose-1-phosphate), fatty acid oxidation, and amino
acid catabolism together with the determination of cellular energy
reserve in the form of AMP, ADP and ATP are essential to elucidate
the precise adjustments in energy metabolism that occur in patients
with glycogen storage disease.

Measurements of creatinine revealed reduced export in GSD Ia
and GSD III fibroblasts compared to healthy controls. This suggests
that impaired glycogen storage (deriving from a breakdown
impairment) reduces the transport of creatinine out of the cell.
Besides its previous identification in fibroblasts (36) and its
housekeeping role in cellular energy metabolism, the consequences
of reduced creatinine export on the onset and progression of renal
disease in GSD patients remains to be investigated in an organ-
relevant cell type, such as renal proximal tubular epithelial cells.

In sum, our study serves as proof-of-concept to further profile
metabolism in GSD patients in cells, tissue and biological fluids.
Gaining insights into the metabolic adjustments that occur upon
disrupted glycogen metabolism may permit the dissection of
profound consequences of pathogenic mutations that manifest
essentially in all cell types, such is seen in fibroblasts, versus
derangements that are specific to and modifiable in disease-
relevant organs only, which could therefore be targeted for
therapeutic purposes. Furthermore, access to quantitative
metabolomics tools to investigate the response of cells and
biological fluids to dietary management and current therapies
opens new opportunities for personalized and optimized
treatment of the complex and heterogeneous manifestations
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FIGURE 8 | Status of cysteine and glutathione. Panel (A) shows the total concentration of reduced cysteine in cells after 5 days in culture. Panel (B) shows the total
concentration of reduced glutathione in cells after 5 days in culture. Panel (C) Concentration of oxidized cysteine in cells after 5 days in culture. Panel (D) Concentration
of oxidized glutathione in cells after 5 days in culture. Metabolite concentrations were determined by LC-MS/MS and normalized by total protein concentration.
Individual comparisons of healthy controls versus GSDIla, GSDIb, and GSDIIl showed significantly reduced concentration of Cys and GSH in all GSD cells compared to
healthy controls. A reduced concentration of CSSC was found in all GSD cell lines compared to healthy controls. In contrast, GSSG concentration was comparable to
healthy controls in GSDla and GSDIb, and significantly reduced in GSDIIl. Control: n=2; GSDla n =1; GSDIb n=1; GSDIIl n=3, each by triplicate. Data are shown as
mean + standard error of the mean. Statistical significance for individual comparisons was assessed with one-way ANOVA, p <0.05.
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observed in GSD patients. In addition, this tool may be of great
value to distinguish milder and severe disease phenotypes.

Limitations of Study

Use of fibroblasts as cell type. While the usefulness of fibroblasts
to study metabolic disorders is substantiated by the wide
conservation of all pathways of energy metabolism in this cell
type, and more specifically, of preserved glycogen storage
phenotypes in early studies performed with human fibroblasts
from GSD patients (14), further studies in cells representing
the major affected organs (liver, muscle, kidney) are desirable
and necessary. The human version of organ-specific cells are
less accessibly for research purposes, which is highlighted by
the existence of very few such studies, with the majority of
findings deriving from animal models.

Size of cohort. This study examined one patient with GSD Ia, one
patient with GSD Ib and three patients with GSD III. The small
sample size of the study serves only as proof-of-concept to
examine the metabolic behavior of the different impairments of
glycogen storage metabolism in humans. Further studies with
greater number of cells per clinical condition are necessary to
validate our findings and extend conclusions at the population
level.

Cell culture conditions. Experimental cell culture conditions do not
perfectly represent dietary exposure and glycemic control of
GSD patients. Further analysis of metabolomic features in
cultured cells that more closely mimic nutritional and
physiologically relevant glycemic control in GSD are currently
underway, using our herein established experimental conditions
as a starting point.

Targeted versus discovery “omics”. Our targeted metabolic
profiling focused on known and predicted alterations of
disrupted glycogen storage. It is possible that other metabolic
pathways not covered in this study also contribute to
pathogenesis for which untargeted “omics” approaches are
desirable.

CONCLUSION

The investigation of defective glycogen storage in human skin
fibroblasts recapitulated features consistent with, albeit not
identical to, mitochondrial dysfunction identified in animal
models of the disease. The lack of structural defects in the
mitochondria of GSD human skin fibroblasts may be related to
organ specificity: previous studies performed in animal models
examined the organelle in hepatocytes, representing the major
organ affected by hepatic GSDs. Our findings together with results
from the literature imply that systemic consequences of monogenic
diseases of metabolism may have distinct impact on different cell
types and organs, a proposal that is substantiated by the clinical
manifestations of the disorders. Our studies identified metabolite
features consistent with dysfunctional electron transport through

the respiratory chain and dampened concentrations of cysteine and
glutathione, the major low molecular weight antioxidants of the cell
suggestive of increased oxidative stress. This proof-of-concept
study opens opportunities for larger cohort studies with GSD
patients where cells, tissue biopsies and biological fluids could be
examined jointly to reconstruct the metabolic landscape of the
disease and to possibly refine dietary and pharmacological
treatment of the patients.
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