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Jing Ouyang1,2,3†, Stéphane Isnard2,3,4†, John Lin2,3, Brandon Fombuena2,3,5,
Xiaorong Peng2,3,6, Yaokai Chen1* and Jean-Pierre Routy2,3,7*

1 Chongqing Public Health Medical Center, Chongqing, China, 2 Infectious Diseases and Immunity in Global Health Program,
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Weight gain and obesity are global health concerns contributing to morbidity
with increased risks of cardiovascular disease, diabetes, liver steatohepatitis and
cancer. Pharmacological therapies or bariatric surgery are often required for those who
fail to adhere to diet and lifestyle modifications. Metformin, a widely used antidiabetic
agent, seems to have a health benefit beyond its anti-hyperglycemic properties, with few
side effects. Emerging evidence shows weight loss to be associated with metformin in
both diabetic and non-diabetic individuals. Recently, the growth differentiation factor 15
(GDF-15), a member of the transforming growth factor beta superfamily, has been
identified as a key mediator of metformin-induced weight loss. Metformin increases the
secretion of GDF-15, which binds exclusively to glial cell-derived neurotrophic factor family
receptor alpha-like (GFRAL). This gut-brain cytokine works as a prominent player in
reducing food intake and body weight in health and disease, like anorexia nervosa and
cancer. Herein, we critically review advances in the understanding of the weight-reducing
effects of metformin via the GDF-15 pathway.
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INTRODUCTION

Weight gain and obesity represent the second most common causes of preventable mortalities
worldwide, and promote the development of cardiovascular disease, hypertension,
stroke, dyslipidemia, metabolic syndrome, liver steatohepatitis, and cancer (1, 2). Diet and
lifestyle modifications are the first line interventions for the management of body weight,
however long-term adherence remains difficult. As such, pharmacological interventions are
needed. However, due to the cost and the risk of side effects, few drugs are currently available.

Isolated from French lilac in 1920s, metformin (dimethylbiguanide) has been widely used as a
first-line treatment for type 2 diabetes mellitus (DM2), owing to its excellent tolerability, safety
profile, and lack of hypoglycemic effect (3–6). Aside from its anti-hyperglycemic effects, metformin
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has an additional benefit for conditions like polycystic ovary
syndrome, atherosclerosis, cancer, coronavirus disease 2019
(COVID-19), and obesity (7–14). Metformin was also reported
to extend lifespan in some animal models, acting as a diet
mimetic agent (15–17). In contrast to other antidiabetic drugs
including insulin, metformin can lead independently to glycemic
control and weight loss by decreasing food intake in both
diabetic and non-diabetic individuals (18–20). Thus, these
observations have driven metformin’s emergence as a research
priority to counteract diseases associated with obesity and aging,
evocating an immune-metabolic effect.

Bodyweight is usually maintained through central nervous
system (CNS) circuitry integrating peripheral metabolic feedback
signals of either energy surplus or deficit (21, 22). Studies have
shown converging evidence that growth differentiation factor 15
(GDF-15) mediates metformin’s effect on the gut-nervous system
axis to decrease body weight (23–26). GDF-15, a member of the
transforming growth factor beta (TGF-b) superfamily, has
many names indicating its multiple functions, including
macrophage inhibitory cytokine (MIC)-1, non-steroidal anti-
inflammatory drug-inducible gene (NAG)-1, placental TGF-b
(PTGF), prostate-derived factor (PDF), and placental bone
morphogenetic protein (PLAB) (27). GDF-15 is a stress-
induced protein, produced by a variety of cells under stress
conditions including tissue injury, anoxia, and inflammation
(28). Elevated circulating GDF-15 levels have been associated
with more severe disease or higher mortality in people with
DM2, insulin resistance, hemodialysis, cachexia, cardiovascular
diseases, chronic obstructive pulmonary disease (COPD), venous
thromboembolism (VTE), cancer, or obesity (28–34). Husebø
et al. reported that high levels of GDF15 were independently
associated with a higher rate of COPD exacerbations, and
impaired respiratory function (34). From a prospective cohort
of 27,158 adults followed over 13 years, among 12 tested
biomarkers, GDF-15 and D-dimer were independently
associated with the occurrence of VTE in multivariable
analyses. Importantly, the association between GDF-15 levels
and VTE was independent of D-dimer and von Willebrand
factor, which are well-established biomarkers for thrombosis
(35). Therefore, the elevation of GDF-15 levels during those
conditions are believed to be a compensatory mechanism, as
numerous evidences proposed GDF-15 as a biomarker rather
than an inducer of these diseases. GDF-15 has also been shown
to inhibit apoptosis and inflammation, and protects the heart
from injury (36–38). In addition to these functions, GDF-15 and
its tissue-specific brainstem receptor, the glial cell-derived
neurotrophic factor (GDNF) family receptor alpha-like
(GFRAL), have emerged as regulators of energy balance and
body weight (39–41). Higher circulating GDF-15 levels have
been proven to be significantly associated with weight loss in
cancer patients (42, 43). To review the influence of the GDF-15
pathway on weight loss induced by metformin, we searched for
the keywords “GDF-15”, “metformin”, “weight”, “diabetes
drugs” alone, or in combination in the public databases of
PubMed, Google Scholar, and ClinicalTrials.gov. As the
relationship between GDF-15 and anti-diabetic drugs is new,
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we were able to discuss all English publications. In this review, we
critically discuss advances in the understanding of the weight-
reducing effects of metformin through modulation of GDF-15
levels in diabetic and non-diabetic individuals.
Metformin Decreases Body Weight in
Diabetic and Non-Diabetic Individuals
Dysglycemia is strongly associated with the development
of overweight status or obesity, as most DM2 patients are
overweight or obese (44–46). For diabetic patients, managing
overweight or obesity is a crucial facet of diabetes management.
However, the majority of antidiabetic agents, including insulin,
thiazolidinediones, (TZDs) and insulin secretagogues, lead to
body weight gain while controlling glycemia (47–49).
Conversely, the first-line antidiabetic agent, metformin, has
been shown to be able to decrease body weight (18, 19, 49–52).
Kahn et al. (49) reported in a large randomized clinical trial
(RCT) involving 4360 DM2 patients that participants lost a mean
of 2.9 kg with metformin over a period of 5 years, while
rosiglitazone and glyburide both induced weight gains of
4.8 and 1.6 kg, respectively. The Diabetes Prevention Program
Research Group reported that metformin users had significantly
reduced body weight and waist circumference compared with
placebo in a 2-year RCT followed by a 8-year open-label
extension. The magnitude of weight loss during the 2-year
double-blind period was directly related to drug adherence,
indicating a potential dose-effect (19). In 2016, a meta-analysis
by Maruthur et al. showed that metformin decreased body
weight more than dipeptidyl peptidase-4 (DPP-4) inhibitors
which were expected to decrease body weight (18). Due to the
effects of weight loss, metformin was recommended for obesity
management in patients with evidence of prediabetes or insulin
intolerance by AACE/ACE guidelines (53).

Aside from diabetic patients, metformin was also associated
with a decrease of bodyweight in non-diabetic subjects (20, 54–
57). Ejtahed et al. (20) demonstrated in a RCT that metformin
induced significant weight loss compared with placebo, and this
effect was associated with gut microbiota alteration in non-diabetic
obese women. Furthermore, metformin has been used in obese
children to promote weight loss in absence of DM2 (58–61). For
adults and children with schizophrenia, metformin has been used
to manage weight gain associated with anti-psychotic drugs,
reducing risks of metabolic syndrome, diabetes and
cardiovascular disorders (62–66). Moreover, obesity and insulin
resistance are associated with pathogenesis of polycystic ovarian
syndrome (PCOS), a condition characterized by a reduced
frequency of ovulation, infertility, and hyperandrogenism in
premenopausal women (67, 68). Metformin’s effect on weight in
women with PCOS is not as well defined, depending on the
population and study design (69–74). However, a meta-analysis
showed that metformin contributed to a decrease of body mass
index (BMI) and waist to hip ratio (WHR) in 11 and 7 RCTs of
PCOS women respectively, compared to placebo (75). Finally, a
12-week metformin treatment decreased the weight of non-
diabetic people living with HIV under antiretroviral therapy (25).
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Metformin use has been associated with weight loss and it is
noteworthy that metformin-associated weight loss was of a lesser
extent in non-diabetic people. As such obese people may benefit
from bariatric surgery more readily than from metformin (76).
Although most studies have confirmed that metformin could
decrease body weight in diabetic and non-diabetic subjects, the
mechanism still remains unclear. Aside from the mechanisms
summarized in two reviews (77, 78), recent study findings
indicate that GDF-15 plays an independent role in body
weight change in people taking metformin.

Metformin Induces GDF-15 Via ATF4 and
CHOP
Converging findings showed that metformin induced gdf-15 gene
expression and elevated the circulating GDF-15 level in animal and
human models (Table 1). Metformin-induced expression was
Frontiers in Endocrinology | www.frontiersin.org 3
notably detected in gut and kidney epithelial cells (23).
Metformin and other biguanides such as phenformin were shown
to induce GDF-15 expression in murine and human hepatocytes
(23), while the direct effect of other anti-diabetes drugs has not been
studied yet. In vitro, 1mM of metformin upregulated GDF-15 gene
expression in breast cancer cells to 26-fold compared with control
(79). Higher concentrations of metformin (10-100 mM) in
mesenchymal stem cells (MSCs) increased GDF-15 expression in
a dose-dependent manner under normoglycemic conditions.
Interestingly, this effect was hindered in hyperglycemic conditions
(80). In vivo, Gerstein et al. assayed 237 biomarkers in baseline
serum from 8,401 participants with dysglycemia of whom 2,317
received metformin and found that GDF-15 was linked to
metformin treatment, in a dose dependent manner (1 per mg of
metformin treatment led to 8.7 pg/ml of GDF-15 increased in
plasma). Moreover, Coll et al. (23) reported in two independent
TABLE 1 | Reports of metformin’s effects on GDF-15 in different models.

Study, year Models Number Dose of metformin Change of GDF-15 by metformin

Animal studies
Day et al., 2019 (24) Mice fed with chow diet

and high fat diet
n = 6-7 per group A single oral gavage of

metformin (250 mg/ kg) or an
equal volume of saline

Metformin significantly increased serum GDF-15 in
both chow diet and high fat diet groups

Coll et al., 2020 (23) Obese mice Three groups: Vehicle,
Metformin (300 mg/kg)
Metformin (600 mg/kg),
n = 7 per group,

Single oral dose of 300 or
600 mg/kg

300 mg/kg of metformin increased GDF-15 levels
for at least 8 h. 600 mg/kg of metformin resulted
in a six-fold increase in serum GDF-15 levels at 4
h and 8 h after the dose.

Cellular studies
Williams et al., 2013 (79) MDA-MB-468 breast

cancer cells
n = 3 per group Cells were cultured for 48 h in

the absence or presence of 1
mM metformin

GDF-15 gene expression was increased 25.61
fold in metformin group compared with control.

Zafarvahedian et al., 2017
(80)

Mesenchymal stem cells
(MSCs)

n = 3 per group MSCs were treated with 10,
50, and 100 mM metformin
for 17 h

GDF-15 production was increased in a dose
dependent manner. GDF-15 levels increased by
dose up to 2-fold control group levels at 100 mM.

Day et al., 2019 (24) Primary mouse
hepatocytes

(1) n = 4 per group

(2) n = 3-6 per group

(1) Cells were treated with
0.5 mM metformin for 24 h

(2) 0-1,000 mM for 24 h

(1) Metformin treatment significantly increased
GDF-15 mRNA levels.

(2) Metformin increased GDF-15 release in a
dose-dependent manner

Clinical trials
Gerstein et al., 2017 (81) People with diabetes,

impaired glucose
tolerance, or impaired
fasting glucose levels

8,401 participants (2,317
receiving metformin)

Various doses Mean GDF-15 concentrations rose with metformin
dose. GDF-15 was strongly linked to metformin,
such that the odds of metformin use per standard
deviation value increase in level varied from 3.73
(95% CI 3.40, 4.09) to 3.94 (95% CI 3.59, 4.33)
depending on included variables.

Natali et al., 2018 (82) Diabetic patients 644 (Metformin) vs 299
(Non-metformin)

Not mentioned Metformin treatment was associated with a 40%
rise in GDF-15 level, which was independent of
the other major factors.

Coll et al., 2020-2 (23) Overweight individuals 9 (placebo-controlled,
double-blind crossover
design)

Week 1: 500 mg twice daily;
week 2: 1,000 mg twice daily.

After two weeks of metformin treatment, there
was an increase of about 2.5-fold in mean
circulating GDF-15.

Coll et al., 2020-3 (23) Overweight or obese non-
diabetic participants

86 (Metformin) vs 85
(placebo)

850 mg daily for 18 months Metformin treatment was associated with
significantly increased levels of circulating GDF-15
at all three time points (6, 12 and 18 months)

Isnard et al., 2020 (25) Non-diabetic People living
with HIV

Metformin 850 mg twice daily for 12
weeks.

Metformin treatment was associated with
significantly increased levels of circulating GDF-15
at 12 weeks. Plasma GDF-15 levels went back to
baseline levels 12 weeks after metformin
discontinuation.
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RCT that metformin reduced food intake and lowered body weight
in association with increasing levels of GDF-15. However, the same
group showed that metformin retained its ability to lower
circulating glucose and fasting insulin levels in GDF-15 knock-
out mice. These findings suggest that GDF-15 mediates the
beneficial effects of metformin on energy balance and weight loss,
independently of insulin pathways. However, based on the negative
effect of weight on insulin sensitivity, it was speculated that GDF-
15-dependent weight loss contributed to enhance insulin sensitivity.
We conducted a prospective study to examine the effect of
metformin on body weight in non-diabetic, non-obese people
living with HIV and receiving effective antiretroviral therapy
(ART). We showed that metformin, independent of its glucose-
lowering effect, increased plasma levels of GDF-15 and decreased
weight, and its effects vanished upon discontinuation, establishing a
direct cause-effect relationship between GDF-15 plasma level change
and weight change during and after metformin discontinuation (25).

Although the mechanism responsible for metformin-induced
GDF-15 expression is not yet deciphered, several pathways have
been described to induce GDF-15 expression. In diabetic patients,
hyperglycemia causes a stress condition leading to reactive oxygen
species (ROS) overproduction, which further induces cellular
apoptosis, cellular injury and cell death by inhibiting the PI3K/
AKT/eNOS/NO pathway and activating the NF-kB/JNK/caspase-
3 pathway (83–85). In vitro, Li et al. revealed that high glucose
could induce GDF-15 expression and secretion in cultured human
umbilical vein endothelial cells in a ROS- and p53-dependent
manner (86). The transcriptional factor p53 regulates GDF-15
expression and was shown to link GDF-15 with obesity and
insulin resistance (87). Obesity promotes p53 activation in
adipose tissue and leads to increased production of
proinflammatory cytokines and increased insulin resistance.
When p53 was inhibited by RNA silencing, the effect of GDF-15
induction by high glucose vanished (86). In humans, high levels of
plasma GDF-15 have been associated with type 2 diabetes and
cardiovascular events (88–90). However, GDF-15 was shown to
protect human islet cells from apoptosis and was suggested to have
a protective role in diabetic mice (91). Metformin is also suggested
to prevent cardiovascular diseases and to have anti-aging effects
(15, 92–94), although these results need to be confirmed (95). As
such, the clinical implication of metformin-induced GDF-15
increase will have to be assessed in future RCTs.

Aside from p53, several other factors have been implicated in
the transcriptional regulation of GDF-15, including p63, Sp1, early
growth response-1 (EGR-1), activating the integrated stress
response transcription factor 4 (ATF4), C/EBP homologous
protein (CHOP), and SMAD2/3 (96–103). Patel et al. reported
that GDF-15 levels increased following sustained high-fat feeding
or dietary amino acid imbalance in mice, and that GDF-15
expression is regulated by the integrated stress response, in
which key transcriptional regulators like ATF4 and CHOP are
involved (102, 104). Induced GDF-15 expression by the stressor
tunicamycin was abolished in ATF4 knockout mouse embryonic
fibroblasts and significantly reduced in CHOP-knockdown cells
(102). Similarly, Chung et al. (100) showed that induction of
GDF-15 upon mitochondrial unfolded protein response
Frontiers in Endocrinology | www.frontiersin.org 4
(UPRmt) activation was CHOP-dependent. Interestingly,
metformin was reported to increase the expression of ATF4 and
CHOP, further stimulating the secretion of GDF-15 in mouse and
human hepatocytes (24). Therefore, current evidence indicates
that metformin increases GDF-15 gene expression and stimulate
GDF-15 secretion by direct induction of integrated stress response
regulators ATF4 and CHOP.

GDF-15 and Weight Loss: Evidences
and Mechanism
A direct association between weight and GDF-15 was studied in
animal and humans. Altered GDF-15 levels in comparison to
matched lean controls have been frequently reported in obese mice,
rats, and humans (32, 105). In addition, elevated GDF-15
expression and circulating levels correlate with further weight
loss, reduce food intake and appetite (42, 43, 106). Patients with
metastatic lung cancer who reported >5% weight loss were found
to exhibit a twofold increase in GDF-15 plasma levels compared to
those without weight loss (42). Tsai et al. (107) reported that GDF-
15 gene knockout mice (Gdf-15 (-/-)) weighed more and had
increased adiposity, which was associated with increased food
intake, and that infusion of human recombinant GDF-15 was
sufficient to raise serum levels in Gdf-15 (-/-) mice to within the
normal human range, reducing body weight and food intake. On
the contrary, overexpressing GDF-15 led to decreased body weight,
fat mass and food intake, improving the glucose tolerance in mouse
models (83, 108–110). GDF-15 has thus become an attractive
target for reducing obesity. In line with these studies, exogenous
administration of recombinant murine or human GDF-15 induced
weight loss in different animal models (26, 32, 40, 41, 107). Xiong
et al. (32) showed that Fc fusion GDF-15 molecules with extended
half-life and increased efficacy in obese mice, rats, and cynomolgus
monkeys was able to delay gastric emptying, change food
preference, and activate area postrema neurons, confirming a
role for GDF-15 in the gut-brain axis responsible for the
regulation of body energy intake. Moreover, pharmacological
recombinant human GDF-15 administration to mice can trigger
conditioned-taste aversion, suggesting that GDF-15 may induce an
aversive response to nutritional stimulation and may be associated
with nausea in pregnancy (102). These results were further
confirmed by Coll et al. as metformin did not induce weight loss
when administered to gdf-15 knock out mice (23).

Mechanistically, the weight-related effect of GDF-15 is
dependent on its receptor GFRAL and coreceptor tyrosine kinase
RET (Figure 1). UnlikeGdf-15which is expressed in diverse tissues,
including kidney, liver, gut, muscle, adipose, and placenta, GFRAL
expression is limited to the brainstem and Gfral mRNA is highly
expressed in the area postrema of mouse, rat, monkey and human
(39–41). GFRAL was previously considered as an orphan receptor
with no endogenous ligand (111, 112). Recently, GDF-15 was
validated as the only GFRAL ligand with a high-affinity. Flow
cytometry analyses showed that GFRAL solely bound to GDF-15,
but not to GDNF and its homologs neurturin, artemin, and
persephin (26). Interestingly, GDF-15 also exclusively binds to
GFRAL, and not to any other TGF-b receptors nor to other
members of the GDNF family of receptors (39–41). In the brain,
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activation of the GFRAL receptor leads to a complex activation of a
neuronal network involving the nucleus of the solitary tract, the
hypothalamus, and the central amygdala, reducing food intake and
appetite (Figure 1) (96). Gfral knockout mice are hyperphagic
under stressed conditions and are resistant to chemotherapy-
induced anorexia and body weight loss. Moreover, the effect of
GDF-15 on body weight and food intake reduction in wild-type
mice was completely lost in Gfral knockout mice (39). GFRAL
antibody blocked GDF-15-induced body weight and food-intake
suppression in rats (39). Additionally, GDF-15-induced cell
signaling requires the interaction of GFRAL with the coreceptor
RET (39). GDF-15 forms a complex with GFRAL and RET on the
cell surface, then triggers an intracellular signaling cascade through
the extracellular signal-related kinase (ERK) pathway (40, 113).
Blocking RET by inhibitor or mRNA depletion could also prevent
GDF-15-mediated signaling in neuroblastoma cells (41).
CONCLUSION

Metformin has emerged as an effective weight-reducing medication
in different animal and human models by increasing GDF-15
levels, which works as a “weight watcher” to maintain
homeostasis. Metformin induces the expression of integrated
stress response regulators ATF4 and CHOP, which stimulates the
secretion of circulating GDF-15, which then binds to its exclusive
Frontiers in Endocrinology | www.frontiersin.org 5
receptor GFRAL and coreceptor RET in the brainstem.
Intracellular signaling of the GDF-15/GFRAL/RET leads to
feelings of satiety and control of appetite, resulting in decreased
body weight (Figure 1). However, more evidence is needed to
verify the role of GDF-15 as a biomarker of metformin’s weight-
reducing effects in diabetic and non-diabetic individuals. In the
future, metformin dose and duration should be well-defined, and
use GDF-15 as a biomarker of metformin-induced weight loss will
have to be confirmed. Moreover, the clinical implication and use of
GDF-15 as a biomarker should be studied in large RCTs.
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