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Evidence of Oligogenic Inheritance
Lele Li , Fenqi Gao, Lijun Fan, Chang Su, Xuejun Liang and ChunXiu Gong*

Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, The Capital
Medical University, National Center for Children’s Health, Beijing, China

Mastermind-like domain-containing 1 (MAMLD1) has been shown to play an important
role in the process of sexual development and is associated with 46,XY disorders of sex
development (DSDs). However, the causative role ofMAMLD1 variations in DSDs remains
disputable. In this study, we have described a clinical series on children from unrelated
families with 46,XY DSD harbouring MAMLD1 variants. Whole exome sequencing (WES)
was performed for each patient. WES data were filtered using common tools and disease
customisation algorithms, including comparison against lists of known and candidate
MAMLD1-related and DSD-related genes. Lastly, we investigated the hypothesis that
MAMLD1-related DSD may follow an oligogenic mode of inheritance. Forty-three
potentially deleterious/candidate variants of 18 genes (RET, CDH23, MYO7A, NOTCH2,
MAML1, MAML2, CYP1A1, WNT9B, GLI2, GLI3, MAML3, WNT9A, FRAS1, PIK3R3,
FREM2, PTPN11, EVC, and FLNA) were identified, which may have contributed to the
patient phenotypes. MYO7A was the most commonly identified gene. Specific gene
combinations were also identified. In the interactome analysis, MAMLD1 exhibited direct
connection with MAML1/2/3 and NOTCH1/2. Through NOTCH1/2, the following eight
genes were shown to be associated with MAMLD1:WNT9A/9B, GLI2/3, RET, FLNA,
PTPN11, and EYA1. Our findings provide further evidence that individuals with MAMLD1-
related 46,XY DSD could carry two or more variants of known DSD-related genes, and the
phenotypic outcome of affected individuals might be determined by multiple genes.

Keywords: disorders of sexual development, MAMLD1, oligogenic inheritance, hypospadias, whole exome sequencing
INTRODUCTION

Disorders of sex development (DSDs) comprise a group of congenital diseases associated with the
atypical development of internal and external genital structures. These conditions may be related
to genetic variation, developmental programming, and hormone expression (1). Our
understanding of DSDs has evolved significantly over the past several decades owing to the
extensive research conducted on mammalian sex development and the genetic mechanisms
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underlying DSDs (2–5). Various underlying causes, such as
mutations in the genes encoding proteins associated with sex
determination and development as well as genital development,
have been described (5). However, genotype-phenotype
correlations are difficult to evaluate owing to the high phenotypic
and genotypic diversity among individuals.

Mastermind-like domain-containing 1 gene (MAMLD1), also
known as chromosome X open reading frame 6 (CXorf6) or F18
(onlineMendelian inheritance inman(OMIM)#300120),wasfirst
reported in two cases of myotubular myopathy and male
hypogenitalism (6, 7). It was identified as a suitable candidate
gene in patientswith 46,XYDSDandwas shown to be expressed in
foetal Leydig cells at a time point close to the critical period for sex
development (8, 9). In mouse Leydig tumour cells, the transient
knockdown of Mamld1 mRNA expression led to a significant
reduction in testosterone (T) production (10). MAMLD1
contains the target sequence of steroidogenic factor (SF-1),
which is a modulator of gene transcription involved in testicular
differentiation (11, 12). MAMLD1 transactivates the non-
canonical Notch-targeted Hes 3 promoter (8, 12). Hes3 regulates
cell differentiation and proliferation during embryonic
development (13). Therefore, MAMLD1 appears to play an
important role during sex development and is associated with 46,
XY DSD.

To date, approximately 30 MAMLD1 sequence variations
have been identified in 46,XY DSD patients and recorded in
the human gene mutation database (14). Disease-causing
MAMLD1 variants can carry nonsense, missense, or
frameshift mutations; insertions; or deletions, and these may
even include complex variants (14). They are found to be
scattered throughout the gene sequence and are not restricted
to significant hotspots, owing to which the genotype-
phenotype correlations remain obscure (14). Patients with
46,XY DSDs share a wide variety of phenotypic features (8, 9).
The most significant phenotypic feature observed is
hypospadias. Other phenotypes include cryptorchidism,
micropenis, complete female external genitalia, and primary
amenorrhea (14–17).

However, even after investigation of the condition, the
causative role of MAMLD1 variations in DSDs remains
disputable for several reasons. First, some MAMLD1 variants
(P359S, V505A, and N662S) have also been identified in normal
individuals (9, 15, 16), while others (P359S and Q580R) have not
been detected in all affected patients from a single family (9).
Second, several MAMLD1 variations have been confirmed to be
associated with wild-type activity in functional studies (15, 18),
and the animal experiments have shown that Mamld1-KO male
mice present with normal genitalia and reproduction (19).
Therefore, the role of MAMLD1 in sex development requires
further elucidation; the broad spectrum of phenotypes indicates
the presence of various modifying factors, such that a single
pathogenic variant may neither be necessary nor sufficient
for pathogenesis.

Our understanding of the genetic architecture of sex
development-related inherited disorders has increased
considerably over the past few years. Initial discoveries pertained
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to the identification of genes encoding proteins associated with
disorderswithMendelian (monogenic) inheritance. In recent years,
gene discovery efforts have evolved to consider more complex
inheritance patterns, such as oligogenic inheritance, in which the
accumulation of inherited low-penetrance variants in multiple
genes contributes to the disorder (20). Oligogenic inheritance
has been noted in several disorders, such as in congenital
hypogonadotropic hypogonadism (21), inherited cardiac disorders
(20), and NR5A1-related DSDs (22), using high-throughput
sequencing (HTS).

In the present study, we investigated the hypothesis that
MAMLD1-related DSDs may follow an oligogenic mode of
inheritance. Whole exome sequencing (WES) was performed
for ten subjects with 46,XY DSD harbouring MAMLD1 variants.
WES data were filtered using common tools and a disease-
tailored algorithm including lists of MAMLD1-related and
DSD-related known and candidate genes designed by Fluck
et al. (23). Using this method, we attempted to provide
evidence that phenotypic outcomes may be determined by
multiple genes.
MATERIALS AND METHODS

Subjects
Patients ranged in age from 2 months to 14 years and had been
admitted to Beijing Children’s Hospital in the past 5 years. Ten
patients (1–10) fromunrelated families, themembers ofwhichwere
confirmed toharbourmutations inMAMLD1, were recruited in the
study. Each of the patientswere assigned the same number as in our
previously reported study (14). Patients with abnormal liver or
kidney function, or those with systemic diseases that affect physical
development, were excluded.

Clinical information was obtained from the medical record of
each patient. Two experienced paediatric endocrinologists
performed physical examinations and assessments. The
information included, but was not limited to, age at visit, social
gender, chief complaint, family history, bone age, birth length, birth
weight, gestational age, history of gestation, penile length, testis size,
testis position, urethral meatus, scrotal appearance, electrolyte levels,
and liver and kidney function. Hormone investigations involved
measurement of the levels of luteinizing hormone, follicle-
stimulating hormone, anti-Müllerian hormone, inhibin-B,
testosterone, adrenocorticotropic hormone, cortisol, 17-
hydroxyprogesterone, and dehydroepiandrosterone sulphate. A
flow chart of the study design is presented in Figure 1. The
clinical evaluation algorithm of patients with DSD is presented in
Figure 2.
Molecular Analysis
WES was performed for all patients. Genomic DNA was
extracted from the peripheral blood samples of probands and
their parents, and was sent to Chigene Translational Medicine
Research Center Co., Ltd (Beijing Kangso Medical Laboratory
Zhongguancun Huakang Gene Institute) for commercial
December 2020 | Volume 11 | Article 582516
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FIGURE 2 | The clinical evaluation algorithm of DSD patients. * abnormal puberty indicating that a girl with primary amenorrhoea with or without breast
development, a girl who virilizes at puberty or a boy with pubertal delay; DSD, Disorders of Sex Development; FSH, Follicle Stimulating Hormone; LH, Luteinizing
Hormone; T, Testosterone; DHEA, Dehydroepiandrosterone; E2, Estradiol; AMH, Anti-Mullerian Hormone; DHT, Dihydrotestosterone; 17-OHP, 17-OH-Progesterone;
ACTH, Adrenocorticotrophic Hormone; FBG, Fast Blood Glucose; HCG, Human Chorionic Gonadotropin; HMG, Human Menopausal Gonadotropin; CHH,
Congenital Hypogonadotropic Hypogonadism; Dysg, Gonadal Dysgenesis.
FIGURE 1 | Flow chart of the study design.
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sequencing. Putative candidate variants were confirmed using
Sanger sequencing.

Bioinformatics Analysis
WES data were filtered using a disease-tailored list of
MAMLD1-related and DSD-related known and candidate
genes (N=606), similar to the algorithm previously designed
by Camats et al. (22, 23). A project-specific filter for DSD-
related and MAMLD1-related genes was generated by
conducting a search in published literature and databases.
The DSD-related gene list included genes with (potentially)
deleterious variants reported in patients with 46,XY and 46,
XX DSDs; genes with (potentially) disease-causing variants
reported in syndromic patients with involvement of sex
development; genes “related” to DSD in KO/mutant animal
models (mice and rats); and overexpressed, upregulated, or
downregulated genes in rodent embryonic gonadal cells. The
following bioinformatics software tools were used for the
interpretation and classification of variants: InterVar (http://
wintervar.wglab.org/; clinical interpretation of genetic
variants using the ACMG/AMP 2015 guideline), VarSome
(The Human Genomics Search Engine; https://varsome.com/
), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and
Alamut Visual 2.11 (https://www.interactive-biosoftware.
com/es/alamut-visual/).

After annotation, variant analysis was performed according to
the following steps. A) WES data of each patient were first filtered
using the MAMLD1- and DSD-related known and candidate gene
lists; B) Variants with minor allele frequency (MAF) <0.05, or those
undetected in gnomAD, 1000 Genomes (China), and ExAC (East
Asia), were retained; C) Variants that were considered irrelevant for
our study, including 1) variants detected in more than two patients,
2) variants in repeat regions, 3) variants in genes or gene regions
with high variability (MAF >0.05), and 4) variants with low
coverage and/or low quality, were discarded.

A search was performed for reported (potentially) disease-
causing variants using the Human Gene Mutation Database
(HGMD® Professional 2018.2 , http ://www.biobase-
international.com/product/hgmd; Biobase) and dbSNP (http://
www.ncbi.nlm.nih.gov/snp/). The search tool for the retrieval of
interacting genes/proteins (STRING, http://string-db.org/) was
used to analyse interactions within gene carriers of notable
variants (DSD-related and/or MAMLD1-related). A medium
confidence of 0.400 was noted. STRING data were extracted
from known interactions (curated databases, experimentally
determined interactions), predicted interactions (gene
neighbourhood, gene fusions, gene co-occurrence), and other
inferred evidences such as text mining, co-expression, and
protein homology.

Ethics Approval
The project was approved by the Institutional Medical Ethics
Review Board of Beijing Children’s Hospital (ID: 2019-k-156).
Written informed consent was obtained from all patients or their
legal guardians. This study was conducted in accordance with the
principles of the Declaration of Helsinki.
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RESULTS

Clinical Features
The clinical features, hormone profiles, and molecular results of
the ten Chinese patients harbouring MAMLD1 mutations are
summarised in a previously published article (14). The age at
visit of each subjected was under 3 years. The salient phenotypic
feature was hypospadias (8/10); other phenotypic features
included cryptorchidism (3/10) and micropenis (7/10). Serum
T, luteinizing hormone, and follicle-stimulating hormone levels
were sufficiently high in patients #3 and #6, who were in the
mini-puberty period. An adequate response of T levels to human
chorionic gonadotropin (hCG) stimulation was observed in
patients #1–3, #6, and #8. Overall, nine genetic variants were
identified, including six missense variations (p.P334S, p.S662R,
p.A421P, p.T992I, p.P542S, and p.R927L) and three nonsense
variations (p.R356X, p.Q152X, and p.Q124X). All patients had
inherited the variants from their mothers. Detailed information
on the functional domains is presented in Figure 3.

Identification of an Oligogenic DSD
Aetiology in Individuals With 46,XY
DSD Harbouring MAMLD1 Variants
Forty-three potentially deleterious/candidate variants of 18 genes
(RET, CDH23, MYO7A, NOTCH2, MAML1, MAML2, CYP1A1,
WNT9B, GLI2, GLI3, MAML3, WNT9A, FRAS1, PIK3R3,
FREM2, PTPN11, EVC, and FLNA) were identified in the ten
hemizygous MAMLD1 patients (Table 1). These variants may
have contributed to the phenotype of each patient.

Among the eighteen genes, four have been previously
identified in patients with hypospadias (CYP1A1, FLNA, GLI3,
and GLI2), three have been reported to be associated with
cryptorchidism (FLNA, RET, and PTPN11), and one has been
identified in patients with micropenis (EVC). In addition, eight
genes were identified in patients with DSDs (FRAS1, FREM2, and
NOTCH2) and/or were reported to be associated with other
syndromes combined with DSDs (CYP1A1, EVC, FRAS1,
PTPN11, and RET). Fourteen genes were previously shown to
be associated with sexual or gonadal development (CDH23, EVC,
FLNA, FRAS1, FREM2, GLI2, GLI3, MAML3, MYO7A,
NOTCH2, PIK3R3, RET, WNT9A, and WNT9B). Based on
information from OMIM, all patients, except patient #7,
presented at least one variant in a gene with autosomal
dominant (AD) inheritance (GLI2, FLNA, GLI3, NOTCH2,
PTPN11, and RET); the other genes (CDH23 and MYO7A)
exhibited either AD or autosomal recessive (AR) inheritance.
FLNA undergoes X-linked recessive inheritance, while CYP1A1,
FRAS1, FREM2, and EVC are known to undergo AR inheritance.

MYO7A was the most commonly identified gene. Seven
MYO7A variants were identified in five patients (patients 1, 3,
6, 8, and 10); five CDH23 variants were identified in five patients
(patient 1, 8, 9, and 10); five FRAS1 variants were identified in
four patients (patient 6, 8, 9, and 10); four GLI3 variants were
identified in three patients (patient 2, 4, and 6); NOTCH2
variants were identified in three patients (patient 2, 5, and 10).
Variants of the following genes were detected in any two patients:
December 2020 | Volume 11 | Article 582516

http://wintervar.wglab.org/
http://wintervar.wglab.org/
https://varsome.com/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.interactive-biosoftware.com/es/alamut-visual/
https://www.interactive-biosoftware.com/es/alamut-visual/
http://www.biobase-international.com/product/hgmd
http://www.biobase-international.com/product/hgmd
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
http://string-db.org/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. MAMLD1 and Sex Development Disorder
CYP1A1 variants in patients 6 and 7, PIK3R3 variants in patients
7 and 10, RET variants in patients 1 and 5, MAML3 variants in
patients 4 and 9, WNT9B variants in patients 2 and 9, and GLI2
variants in patients 2 and 5.

Patient 1 carried four variants among four genes: RET,
CDH23, MYO7A, and MAML1. Patient 2 carried four variants
among four genes:WNT9B, NOTCH2, GLI2, and GLI3. Patient 3
carried two variants of MYO7A. Patient 4 carried three variants
in MAML3 and GLI3. Patient 5 carried three variants among
three genes: RET, NOTCH2, and GLI2. Patient 6 carried five
variants among five genes: MYO7A, CYP1A1, WNT9A, FRAS1,
and GLI3. Patient 7 carried two variants among two genes:
CYP1A1 and PIK3R3. Patient 8 carried six variants among four
genes: CDH23, MYO7A, FREM2, and FRAS1. Patient 9 carried
four variants among four genes: CDH23, WNT9B, MAML3, and
FRAS1. Patient 10 carried 11 variants among nine genes: CDH23,
MYO7A, MAML2, PTPN11, NOTCH2, PIK3R3, EVC, FRAS1,
and FLNA. The details of these variants are summarised in
Table 1.

In addition, patients 1, 8, and 10 presented combination
variants of two genes: MYO7A-CDH23. Patients 2 and 5 both
presented combination variants of two genes: NOTCH2-GLI2;
patients 6 and 8 both presented combination variants of two
genes: MYO7A-FRAS1.
Frontiers in Endocrinology | www.frontiersin.org 5
Interactome Analysis of the Identified
DSD- and MAMLD1-Related Genes
Interactome analysis was performed for the identification of
DSD-related genes using bioinformatics software to assess
possible gene–protein interactions. The network including all
genes identified is presented in Figure 4A. The core network
constructed using the Cytoscape Molecular COmplex DEtection
(MCODE) software is shown in Figure 4B. Overall, a connection
was detected among the 18 genes and we report thatMAMLD1 is
directly connected to MAML1/2/3 and NOTCH1/2. Through
NOTCH, eight genes (WNT9A/9B, GLI2/3, RET, FLNA, PTPN11,
and EYA1) were associated with MAMLD1. Some of these genes
also acted as central nodes for further connections; for example,
GLI3 for EVC, FGF10, GLI2, NOTCH1/2, and EYA1; RET for
ZBTB16, FGF10, PIK3R3, PTPN11, and NOTCH1; EYA1 for
FRAS1, MYO7A, FGF10, NOTCH1, WNT9B, and GLI3; and
FGF10 for EYA1, GLI2/3, NOTCH1, PTPN11, and RET. In
addition, the isolated gene couple that was revealed in our
analysis was CYP1A1-HSD3B2.

The specific interactome of the genes identified in the patients
is shown in Figure 5. In patients 2, 5, and 10, MAMLD1 and
MAMLD1-related genes (MAML1, MAML2, and MAML3) were
directly related to NOTCH2 (Figures 5B, E, J). There were two
networks each for patients 1 and 8: CHD23-MYO7A and
FIGURE 3 | Detailed variation information of functional domains of the nine MAMLD1 variants.
December 2020 | Volume 11 | Article 582516
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TABLE 1 | Identified genes and variants per patient after specific filtering.

ACMG classification

) ExAC (East Asian)

VUS[(PM2,BP1)]
VUS(PM2,BP7)

0.0003 VUS(PM2)
0.017 VUS(BS1)

VUS(PM2,BP7)
0 P(PVS1,PM2,PP3)

VUS(PM2,PP5)
0.027 VUS(BS)
0.0005 VUS
0.017 LB(BS1,BP6)
0 P(PVS1,PM2,PP3)

VUS(PM2,BP4)
VUS(PM1,PM2,PP3)
VUS(PM2,PP3,BP1)

0.0078 LB (PP3,BS1)
0.0005 VUS (PP3,BP6)
0.001 VUS (PM2,PP3)

P(PVS1,PM2,PP3)
0.028 LB (BS1,BP6,BP4)
0.027 VUS (BS1)

VUS (PM2,BP7)
0.021 LB (BS1,BP1)

VUS (BS4)
0.0094 VUS (BP4)
0.028 B (BA1,BS1,BS2)
0.0022 LB (BS4,BP7)
0.019 LB (BS1,BP6,BP7)
0.0002 LP(PM1,PM2,PM5,PP3)
0.0032 VUS (PM2,BP7,BP4)

VUS (PM1,PM2)
P(PVS1,PM2)

0.0066 VUS (PP5,PP3,BS4)
LP (PM2,PM5,PP3,BS4)
VUS (PM2,BS4)

0.022 VUS (BS1)
0.019 B (BS1,BS2,BS4)
– VUS (BS4)

VUS(PM2,BP1,BP4)
0.018 LB (BS1,BP6)
0 VUS (BP7)

0.0011 VUS
VUS (PM2,BS4)
LB (PM2,BP1,BP4)
VUS (PM2)

0.018 LB (BS1,BP6)
0.021 LB (BS1,BP6,BP7)
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Patient Gene Locus Type HGVSc,HGVSp dbSNP ID Mutation source MAF Value

GnomAD 1000Genomes (Chin

1 MAMLD1 Xq28 miss c.1986C>G, p.S662R mother
1 RET 10q11.2 syn c.3120G>C, p.L1040L mother
1 CDH23 10q22.1 c.6712+37C>T rs750966744 father 0.000032
1 MYO7A 11q13.5 c.3504-39T>C rs192929996 mother 0.0013 0.019
1 MAML1 5q35 syn c.1893G>A, p.Q631Q Denove
2 MAMLD1 Xq28 non c.1066C>T, p.R356X rs782347827 mother
2 WNT9B 17q21 c.*158C>T rs1233082195 father 0.000008
2 NOTCH2 1p13-p11 c.2600-24C>A rs149097658 mother 0.0034 0.024
2 GLI2 2q14 c.845+10G>A rs199673018 father 0.00024 0
2 GLI3 7p13 c.1028+15G>A rs116842918 father 0.0014 0.012
3 MAMLD1 Xq28 non c.1066C>T, p.R356X rs782347827 mother
3 MYO7A 11q13.5 c.1554+22C>T mother 0.0006 0.0024
3 MYO7A 11q13.5 miss c.3124T>G, p.W1042G mother
4 MAMLD1 Xq28 miss c.1261G>C, p.A421P mother
4 MAML3 4q28 miss c.1612A>G, p.M538V rs148778901 mother 0.0074 0.0072
4 GLI3 7p13 miss c.1843A>T, p.T615S rs200913720 mother 0.0006 0.0024
4 GLI3 7p13 miss c.674C>T, p.T225I rs753769482 mother
5 MAMLD1 Xq28 non c.454C>T, p.Q152X mother
5 RET 10q11.2 miss c.1465G>A, p.D489N rs9282834 mother 0.0296 0.014
5 NOTCH2 1p13-p11 c.2600-24C>A rs149097658 father 0.0191 0.024
5 GLI2 2q14 syn c.4611C>T, p.L1537L rs1335405295 father
6 MAMLD1 Xq28 miss c.1624C>T, p.P542S rs146443503 mother 0.0015 0.016
6 MYO7A 11q13.5 c.6051+9C>T rs747742075 father 0.0018
6 CYP1A1 15q24.1 miss c.518C>G, p.T173R rs28399427 father 0.008 0.0072
6 WNT9A 1q42 c.353-30G>A rs141239747 mother 0.0314 0.039
6 FRAS1 4q21.21 syn c.10930C>T, p.L3644L rs183729151 father 0.0025 0.0048
6 GLI3 7p13 syn c.3015C>T, p.A1005A rs200965852 father 0.0173 0.024
7 MAMLD1 Xq28 miss c.1000C>T, p. P334S rs41313406 mother 0.08 0.0031
7 CYP1A1 15q24.1 syn c.927C>T, p.N309N rs368742906 unknown 0.0031 0.0024
7 PIK3R3 1p34.1 miss c.290A>G, p.Q97R rs1225342856 unknown
8 MAMLD1 Xq28 non c.370C>T, p.Q124X mother
8 CDH23 10q22.1 miss c.1282G>A, p.D428N rs188376296 father 0.0031 0.0048
8 MYO7A 11q13.5 miss c.1133G>A, p.R378H rs397516282 father
8 MYO7A 11q13.5 c.4152+15A>G rs1033447071 father
8 FREM2 13q13.3 miss c.4916G>A, p.R1639K rs77886481 mother 0.0197 0.014
8 FRAS1 4q21.21 c.7372-24A>G rs78365404 mother 0.013 0.0096
8 FRAS1 4q21.21 miss c.8493C>G, p.F2831L rs774409872 mother 0.0019 –

9 MAMLD1 Xq28 miss c.2975C>T, p.T992I mother
9 CDH23 10q22.1 c.9077+7C>T rs76114420 mother 0.0259 0.022
9 WNT9B 17q21 syn c.1059C>T, p.Y353Y rs537242221 mother 0.0006 0.0024
9 MAML3 4q28 miss c.2969C>T, p.P990L rs185593153 father 0.0006 0.0048
9 FRAS1 4q21.21 c.5857-434C>T mother
10 MAMLD1 Xq28 miss c.2780C>T, p.R927L rs782511956 mother
10 CDH23 10q22.1 c.4210-16C>A rs775928557 father
10 CDH23 10q22.1 c.9077+7C>T rs76114420 mother 0.0259 0.022
10 MYO7A 11q13.5 syn c.324C>T, p.Y108Y rs116892396 mother 0.0161 0.026
a
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MAML1-MAMLD1 for patient 1 (Figure 5A); CHD23-MYO7A
and FREM2-FRAS1 for patient 8. In patient 2, NOTCH2 was
shown to play a central role in its associated with the WNT9B,
MAMLD1, and GLI2/3 network (Figure 5B). In patient 10,
PTPN11, PIK3R3, CDH23, and MYO7A were directly related
(Figure 5J). The CHD23-MYO7A network was identified in three
patients (patients 1, 8, and 10).
DISCUSSION

The genetic architecture of human inheritance has traditionally
been divided into two major types. Typically, complex traits
exhibit polygenic architectures resulting from the presence of
several common variants with low effect, whereas rare traits are
usually associated with monogenic determinants with high effect
(24). There is growing evidence that suggests that these two
classes of phenotypes might not be as biologically distinct as
previously considered, and genetic structure of a lineage is
present, rather than a dichotomy (25). Mendelian disorders
have also been found to be influenced by multiple or common
genetic variants (26–28).

Sex development is a highly complex biological event that
requires the expression and regulation of a large number of genes
with spatial and temporal precision. Although there is
considerable information regarding sex development in
individuals with monogenic DSDs, the broad spectrum of
phenotypes in numerous DSD cases remains less understood.
In this study, we investigated the hypothesis that MAMLD1-
related DSD may follow an oligogenic mode of inheritance.

All enrolled patients harbouredMAMLD1 variants, and all of
them shared a broad spectrum of phenotypes. The most
prevalent phenotype was hypospadias and others included
cryptorchidism, bifid scrotum, and/or micropenis. The T levels
in patients were within the normal range, and were indicative of
the mini-puberty stage. An appropriate T response after hCG
stimulation was observed in all patients for whom data were
available. Additionally, we detected 43 potential disease-causing
variants of 18 genes with reported MAMLD1 interaction.
Interactome analysis of identified DSD-related genes was
performed to evaluate the possible gene–protein interactions.
Using the obtained information, we constructed a genetic map of
potential oligogenic hits identified in the patients with 46,XY
DSD harbouring heterozygous MAMLD1, keeping in mind the
existing view of genetic interactions in male sex determination
and development. Our findings provide further evidence that
individuals with MAMLD1-related 46,XY DSD could harbour
two or more variants of known DSD-related genes. The
phenotypic outcome might be determined by multiple genes.

A series of studies have been conducted to elucidate the role
of oligogenic inheritance in DSDs. A recent study suggested that
the expanded DSD phenotypes associated with NR5A1
mutations resulted from the oligogenic inheritance of other
genes related to testicular development, such as MAP3K1,
POR, CHD7, and AKR1C3 (22, 29). Similarly, Eggers et al.
observed a storage effect in a cohort of patients with severe
hypospadias. In three patients, they observed the oligogenic
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inheritance of variants of testis development-related genes
(MAP3K1 and ZFPM2) in combination with VUS. Another
patient with severe hypospadias was observed to carry two
disease-causing variants of HSD3B2 and GNRHR (30, 31). In
addition, among patients with 46,XY DSD of unknown aetiology,
five patients were observed to carry a mutation in AR, besides
carrying other variants in genes encoding proteins participating
in androgen action or gonadal development (31). Recently, Flück
et al. investigated additional genetic hits in patients with
MAMLD1-related DSDs. Using HTS and a custom-tailored
Frontiers in Endocrinology | www.frontiersin.org 8
algorithm, they identified 55 potentially deleterious genetic
variants of 41 additional genes (23). The above information
indicates that oligogenic inheritance may contribute to a broader
DSD phenotype than previously reported.

In the present study, sevenMYO7A variants were identified in
five patients (patients 1, 3, 6, 8, and 10), five CDH23 variants
were identified in five patients (patients 1, 8, 9, and 10), and five
FRAS1 variants were identified in four patients (patients 6, 8, 9,
and 10). Several gene combinations were identified: MYO7A-
CDH23 in three patients, NOTCH2-GLI2 in two patients, and
A

B

FIGURE 4 | Interaction network of DSD- and MAMLD1-related genes identified in DSD individuals harbouring genetic variants in MAMLD1. (A) The scheme depicts
an overview of detected genes and their interrelationship. (B) Core network of the detected genes and their interrelationship. Filled nodes show proteins with known
or predicted 3D structure. Empty nodes depict proteins with unknown 3D structure. Candidate genes are underlined. Known interactions correspond to curated
databases (turquoise lines) and experimentally determined interactions (pink lines). Predicted interactions correspond to gene neighbourhood (green lines), gene
fusions (red lines) and gene co-occurrence (blue lines). Other interactions correspond to text mining (yellow lines), co-expression (black lines) and protein homology
(violet lines).
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MYO7A-FRAS1 in two patients. MYO7A, CDH23, and FRAS1
were the most frequently identified genes, which suggested a
shared genetic basis.

Overall, some of the genes identified in the ten patients
harbouring MAMLD1 variants were previously reported to be
associated with specific syndromes in patients with genitourinary
anomalies: RET was shown to be associated with congenital
anomalies of the kidney and the urinary tract (CAKUT)
syndrome, EVC with Ellis-van Creveld syndrome, FRAS1 and
FREM2 with Fraser syndrome, PTPN11 with Noonan syndrome,
and WNT9B with Mayer-Rokitansky-Küster-Hauser syndrome.
However, none of the patients enrolled in this study presented
with the complete set of phenotypic features typical to these
syndromes, possibly because none of these variants induced the
complete impairment of gene expression and protein function.
On the contrary, advances in sequencing technology have greatly
expanded and challenged the validity of the established
phenotypes of known syndromes. In this respect, extensive
studies on a greater number of cases should be conducted to
obtain better evidence.
Frontiers in Endocrinology | www.frontiersin.org 9
Interactome analysis was performed to identify DSD-related
genes using bioinformatics software to assess possible gene–
protein interactions (Figures 4 and 5). Overall, a connection
was observed among all 18 genes. MAMLD1 directly connected
to MAML1/2/3 and NOTCH1/2. Through NOTCH1/2, eight
genes (WNT9A/9B, GLI2/3, RET, FLNA, PTPN11, and EYA1)
were associated with MAMLD1. Flück et al. have reported the
interaction network of genes identified in DSD patients
with MAMLD1 variants (23). However, there is the
discrepancy between the present and the previous studies in
the scheme of the interaction network. The presence of
interactions between GLI2 and NOTCH2, MYO7A, and EYA1
have been displayed in the present study, and a known
interaction between WNT9A and NOTCH2 disappeared in the
present study. This phenomenon may caused by the version
difference of STRING software, and the medium confidence, in
the present study, the medium confidence was set to 0.4, and
when it was set to be lower, the interaction betweenWNT9A and
NOTCH2 were displayed, which means that the screening
criteria in our study were higher than the reported article.
A

B

D

E

F

G

I

H

J

C

FIGURE 5 | Interaction networks of DSD- and MAMLD1-related genes identified per MAMLD1 individual. (A) to (J) correspond to the interaction networks per
patient. Filled nodes show proteins with known or predicted 3D structure. Empty nodes depict proteins with unknown 3D structure. Candidate genes are underlined.
Known interactions correspond to curated databases (turquoise lines) and experimentally determined interactions (pink lines). Predicted interactions correspond to
gene neighborhood (green lines), gene fusions (red lines) and gene co-occurrence (blue lines). Other interactions correspond to text mining (yellow lines), co-
expression (black lines) and protein homology (violet lines).
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The specific interactome of the identified genes in all the
patients studied is shown in Figure 5. In patients 2, 5, and 10,
MAMLD1 and MAMLD1-related genes (MAML1,MAML2, and
MAML3) were directly related to NOTCH2 (Figures 5B, E, J).
The core network is illustrated in Figure 4B, and shows that
NOTCH 1/2 and MAMLD1-related genes constitute the core
genes, which was in line with the reported literature (23).
NOTCH signalling is a highly conserved signalling pathway
and involves the participation of four transmembrane receptors
(32). There is growing evidence that mis-regulation of NOTCH
signalling may lead to common disorders, ranging from
neuropsychiatric to metabolic disorders (33, 34). Furthermore,
somatic mutations in genes encoding specific components of the
pathway and/or mis-regulation of NOTCH signalling activity
have also been linked to oncogenesis and tumour progression in
different cancer types (35, 36). The efficient regulation of this
pathway was also shown to be essential for the regulation of
embryonic development in multiple organ systems, including the
gonadal system (37). NOTCH signalling is implicated in Leydig
cell differentiation in an inhibitory regulatory manner (37).
Further investigations that focus on the functional impacts of
each pathogenic mutation will likely provide a better mechanistic
understanding of how specific phenotypes may be linked to
defects in the NOTCH signalling pathway.

This study has several limitations. The sample size was
considerably small to establish a relationship between the
observed genotypes and phenotypes, and due to the small
sample size, the impact of mutation or variant types had to be
excluded from a genotype-phenotype correlation analysis, which
reduced the significance of the observations. In addition,
functional studies are necessary to further clarify the exact
disease-causing effect in patients with 46,XY DSD harbouring
MAMLD1 variations; however, when multiple variants are being
searched for, which may contribute only partially, this testing
method cannot be considered feasible. Therefore, in future
studies, we intend to increase the sample size and also extend
the follow-up period. Additionally, we intend to employ next-
generation statistical analyses of genetic data to identify
associations between a group of variants and complex traits in
sex development. Moreover, recent improvements in gene
editing enabled by advancements in the CRISPR-Cas 9
technology may provide an opportunity for testing the
hypotheses on the potential of oligogenic inheritance in DSDs
in the near future (38).

In conclusion, we believe our findings provide evidence that
individuals with MAMLD1-related 46,XY DSDs could harbour
two or more variants of known DSD-related genes. The
phenotypic outcomes might be determined by multiple genes.
A more extensive study involving other DSD cohorts is necessary
Frontiers in Endocrinology | www.frontiersin.org 10
to assess whether the genetic variants identified in this study are
truly related to DSDs, and that the inclusion of these variants
might help establish a better genotype–phenotype correlation.
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