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Brucellosis is a prevalent global zoonotic infection but has far more impact in developing
countries. The adipocytes are the most abundant cell type of adipose tissue and their
secreted factors play an important role in several aspects of the innate and adaptive
immune response. Here, we demonstrated the ability of Brucella abortus to infect and
replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1
cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a
mechanism independent of bacterial viability and dependent on lipidated outer
membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion
of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and
adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in
differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte
differentiation involving a TNF-a dependent mechanism, thus suggesting a plausible
interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is
able to alter adipogenesis process in adipocytes and its precursors directly after their
infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through
soluble factors released by B. abortus-infected macrophages.
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INTRODUCTION

Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries
(1). Clinical manifestations of brucellosis are frequently associated with inflammatory responses in
the organs affected (2). Adipose tissue represents one of the largest organs and constitutes up to 25%
of the mass of the body in normal weight individuals (3). It is distributed throughout the body and is
made up of different cell types that are involved in storing energy, regulating metabolism in addition
to fulfilling neuroendocrine and immunological functions (3). Adipocytes secrete a multiplicy of
adipokines, including adiponectin, leptin, and various cytokines such as IL-1b and IL-6. The
resident immune cells—which include lymphocytes and macrophages—also secrete multiple
inflammatory mediators, again including classical cytokines and chemokines (4, 5).
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Adipocytes are the most abundant cell type of adipose tissue and
their secreted factors play an important role in several aspects of the
innate and adaptive immune response among other functions (6).
Therefore, these cells could participate in the modulation of the
immune response during Brucella infection. On the other hand,
adipocytes are specialized for fat storage regulating the balance of
energy and homeostasis (7). The pathogens could take advantage of
this characteristic, turning adipose tissue into a survival niche. In
fact, Mycobacterium tuberculosis, Trypanosoma cruzi, influenza
virus A, Chlamydia pneumoniae, HIV -among other pathogens-
are housed in adipose tissue (8–11). The cell and tissue in which
Brucella persists during chronic infection remain largely unknown.
Most studies describe the location of the bacteria based on the site of
isolation or the histopathology of the disease, but the place where
the bacterium resides has not been elucidated (12, 13).

Adipocytes differentiate from mesenchymal stem cells. During
the differentiation process, the transcriptional factor CCAAT/
enhancer-binding protein (C/EBP)b is transiently induced leading
to activation of two master adipogenic transcription factors,
peroxisome proliferator-activated receptor (PPAR)g, and C/EBPa.
These mediators stimulate each other to activate the transcription of
genes implicated in lipid metabolism (14). Adipocyte differentiation
is regulated by hormones, cytokines, growth factors, and also by
matrix metalloproteinase (MMPs) (15, 16). A recent study
performed in canine fetuses and neonates naturally infected with
B. canis revealed its intracellular localization in adipocytes. B. canis
was localized near to the lipid droplet and in the same place of the
endoplasmic reticulum. The adipocytes from neonates and fetuses
are immature and present features of pre-adipocytes. During their
differentiation process, the pre-adipocytes express unfolded
proteins as occurs during the intracellular replication of Brucella
spp. (17, 18). This finding suggests that pre-adipocytes could be a
replicative niche for Brucella spp. during the differentiation process.
In the present study, we investigate whether B. abortus can infect
and survive in differentiated adipocyte and its precursors, as well as
the incumbency on both adipogenesis and immune response
modulation, on the inflammatory response during brucellosis.
MATERIALS AND METHODS

Bacterial Culture
Brucella abortus S2308, DsRed-expressing B. abortus 2308
(provided by Diego Comerci, UNSAM University, Argentina),
were grown for 18 h in 10 ml tryptic soy agar supplemented
with yeast extract (Merck) with constant agitation (150 rpm) at
37°C. Bacteria were collected and inoculums prepared as previously
described (19). To obtain heat-killed B. abortus (HKBA), bacteria
were washed with sterile physiological solution and heat-killed at
70°C for 20 min. Absence of bacterial viability was verified by the
lack of its in vitro growth on trypticase soy agar (TSA). Live B.
abortusmanipulations were performed in biosafety level 3 facilities.

Cell Culture
3T3-L1 fibroblasts were obtained from the American Type
Culture Collection (ATCC, Manassas, VA) and were culture in
DMEM (Gibco) containing 10% of heat-inactivated fetal bovine
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serum (FBS) (Gibco), 2 mM of L-glutamine (Gibco), 1 mM of
sodium pyruvate (Gibco), and penicillin-streptomycin. The
murine macrophage cell line J774 was grown in DMEM with
10% FBS and supplemented as previously described.

Adipocyte Differentiation
3T3-L1 cells were seeded at 5 x 104 cells/well in 24-well plates and
allowed to reach confluence. After 2 days (day 0), the medium was
changed to differentiationmedium (DMEM, 0.5 mM 3-isobutyl-1-
methylxanthine (IBMX), 1 µM dexamethasone (DM), and 1 µg/ml
human insulin), all from SIGMA. At day 2, the medium was
replaced by a maintenance medium (10% FBS and 1 µg/ml
insulin). Full differentiation was reached at day 10–15.

Adipocyte differentiation was evaluated by oil red O staining
(Sigma). Cultures in 24-well plates were fixed for 1 h with 10%
formalin and then washed with 60% isopropanol, stained for
30 min by complete immersion in a working solution of 6% oil
red O, and wash repeatedly with water. Ten microscopic fields
per well in three wells per condition were quantified for each
experiment. The percentage of adipocytes was calculated for the
nontreated/noninfected controls.

Cellular Infection
3T3-L1 preadipocytes and adipocytes were separately seeded in
two different densities: 2x104 cells per well in 24 well plate, and
1x105 cell per well in 6 well plate. Besides, J774.A1 macrophages
were seeded at a density of 3x105 cells per well in 24 well plates.
These three cell types were infected with B. abortus S2308 or
DsRed-expressing B. abortus S2308 at different multiplicities of
infection (MOI) 100 to 1,000 or at MOI 100 for J774.A1 cell line.
After the bacterial suspension was dispensed, the plates were
centrifuged for 10 min at 2,000 rpm and then incubated for 2 h at
37°C under a 5% CO2 atmosphere. Cells were extensively washed
with DMEM to remove extracellular bacteria and incubated in
medium supplemented with 100 mg/ml gentamicin and 50 mg/ml
streptomycin to kill extracellular bacteria. Adipocytes and
preadipocytes were harvested at different times to determine
cytokine production, MMP secretion, lipid droplets staining and
adiponectin, leptin, PPAR-g, C/EBP-a, C/EBP-b gene transcription.
Supernatants from J774.A1 macrophages were harvested at 24 h
post-infection and sterilized by filtration through a 0.22
nitrocellulose filter. To evaluate the intracellular replication of B.
abortus, the infected cells were washed and lysed at different time
post-infection with 0.2% (vol/vol) of triton X-100. The number of
viable intracellular bacteria was determined by the count of CFU/ml
from serial dilutions to the tenth in TSA plates.

Brucella-Derived Lipoproteins and LPS
B. abortus L-Omp19 and U-Omp19 were obtained as previously
described (20). Both recombinant proteins contained 0.25
endotoxin U/µg protein, as assessed by Limulus amoebocyte
lysates (Associates of Cape Cod, East Falmouth, MA, USA).
Protein concentration was determined by the BCA method
(Pierce, Rockford, IL, USA). Ignacio Moriyon from the University
of Navarra, Pamplona, Spain kindly provided B. abortus S2308 LPS
and E. coli O111K58H2 LPS. Pam3Cys was acquired from
Boehringer Mannheim (Indianapolis, IN, USA).
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Confocal Microscopy
3T3-L1 differentiated cells seeded onto glass coverslips were
infected with DsRed expressing-B. abortus S2308 at MOI 100
as was previously described. At different time points, cells were
fixed with paraformaldehyde, permeabilized with 0.3% Triton X-
100, and then lipid droplets were stained with 1 µg/ml of Bodipy
493/503 (Invitrogen), and nucleus were stained with TO-PRO®-
3 (Invitrogen). The coverslips were mounted in PBS-glycerin (9:1
vol/vol) and analyzed in a FV-1000 confocal microscope with an
oil-immersion Plan Apochromatic 60X NA1.42 objective
(Olympus). Ten microscopic fields per well in 3 wells per
condition were quantified for each experiment. The percentage
of adipocytes was calculated to the noninfected controls. To
determine B. abortus replication we visualized DsRed-expressing
B. abortus positive areas by confocal microscopy and quantified
using Image J software (National Institutes of Health).

The amount and individual diameter size of the lipid droplets
in the image were measured using Image J software and data
were loaded into GraphPad Prism 5.0 (GraphPad Software, La
Jolla, CA, USA) and evaluated for average lipid droplet size and
size-frequency distribution for individual adipocytes. The
adipocytes containing lipid droplets with a mean diameter >1
µM were classified as cells with big lipid droplets size.

Measurement of Cytokine Concentrations
Secretion of IL-1b, IL-6, and TNF-a were quantified by ELISA in
culture supernatants following the manufacturer’s instructions
(BD Pharmingen, San Diego, CA).

No cross-reactivity with other mouse cytokines was
identified. For IL1b ELISA were tested IL-1b IL-2, IL-3, IL-4,
IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p70), IL-15, IFN-g, MCP-1,
TCA3, and TNF-a; for IL-6 ELISA were tested IL-1b, IL-2, IL-3,
IL-4, IL-5, IL-7, IL-9, IL-10, IL-12 (p70), IL-15, IFN-g, GM-CSF,
MCP-1, TCA3, and TNF-a; for IL1 b ELISA were tested IL-2, IL-
3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p70), IL-15, IFN-g,
MCP-1, TCA3, and TNF-a. Sensitivity for IL-1 b, IL-6, and
TNF-a the limit of detection is 15.6 pg/ml.

Zymography
Gelatinase activity was assayed by the method of Hibbs et al. with
modifications, as described (21, 22). Briefly, a total of 20 ml of cell
culture supernatants from infected cells or untreated controls
were mixed with 5 ml of 5X loading buffer [0.25 M Tris (pH 6.8),
50% glycerol, 5% SDS, and bromophenol blue crystals] and
loaded onto 10% SDS-PAGE gels containing 1 mg/ml gelatin
(Sigma-Aldrich, Buenos Aires, Argentina). Following
electrophoresis, gels were washed with a solution containing 50
mM Tris-HCl (pH 7.5) and 2.5% Triton X-100 (buffer A) for
30 min and with buffer A added with 5 mM CaCl2 and 1 mM
ZnCl2 for 30 min and were later incubated with buffer A with
additional 10 mM CaCl2 and 200 mM NaCl for 48 h at 37°C.
Gelatin activity was visualized by the staining of the gels with
0.5% Coomassie blue. Unstained bands indicated the presence of
gelatinase activity.
Frontiers in Endocrinology | www.frontiersin.org 3
Gelatinase Activity Under Native Conditions
Gelatinase activity in unprocessed culture supernatants (native
conditions) was measured by using a gelatinase/collagenase
fluorometric assay kit (EnzChek; Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions. The EnzChek kit
contains DQ gelatin, a fluorescein-conjugated gelatin so heavily
labeled with fluorescein that fluorescence is quenched. When this
substrate is digested by gelatinases or collagenases it yields highly
fluorescent peptides, and fluorescence increase is proportional to
proteolytic activity. Collagenase purified from Clostridium
histolyticum provided in the assay kit serves as a control
enzyme. Plates were read in a fluorescence plate reader (Victor3;
Perkin-Elmer, Waltham, MA).

mRNA Extraction and Quantitative Real-
Time PCR
Total RNA was extracted from cells using the kit Quick-RNA
MiniPrep Kit (Zymo Research) according to the manufacturer’s
instructions. cDNA was synthesized from 1 mg total RNA with the
enzyme reverse transcriptase Improm-II (Promega). Real-time PCR
was done with a SYBR green as a DNA binding fluorescent dye
using a StepOne Real-Time PCR System (Applied Biosystems). The
pairs of primers used were the following: adiponectin sense:5´-
GACGACACCAAAAGGGCTCA-3´, antisense: 5´-GAGTGCC
ATCTCTGCCATCA-3´, leptin sense: 5´-TCCCTGCCTCAGAC
CAGTG-3´, antisense: 5´-TAGAGTGAGGCTTCCAGGACG-3´,
PPAR-g sense: 5´-CTGATGGCATTGTGAGACAT-3´, antisense:
5´-ATGTCTCACAATGCCATCAG-3´, C/EBP-a sense: 5´-TGT
GCGAGCACGAGACGTC-3´, antisense: 5´-AACTCGTCGT
TGAAGGCGG-3´, C/EBP-b sense: 5´-GCTGAGCGACG
AGTACAAGA-3´, antisense: 5´-CAGCTCCAGCACCTTGTG-
3´, b-actin sense: 5´-AACAGTCCGCCTAGAAGCAC-3´,
antisense: 5´-CGTTGACATCCGTAAAGACC-3´.

The amplification cycle for adiponectin, leptin, PPAR-g, C/
EBP-a, and C/EBP-b was the following 10 min 95 °C, 40 cycles
for 15 s at 95°C, 60°C for 30 s, and 72°C for 60 s. All primer sets
yielded a single product of the correct size. The fold change
(relative expression) in gene expression was calculated using the
relative quantitation method (2−DDCt). Relative expression levels
were normalized against b-actin. Intra experiment CT values
differences between samples were less than 0.5.

Statistical Analysis
Each experiment was performed at least three times with
different culture preparations. Data were represented as mean ±
SD measured in triplicate from at least three individual
experiments. Statistical analysis was performed with one-way
ANOVA. Multiple comparisons between all pairs of groups were
made with Tukey’s posttest, and those against two groups were
made with Student᾽s t test, Mann-Whitney test. To determine
normality, the Shapiro-Wilk normality test was used. Graphical
and statistical analyses were performed with GraphPad Prism 5.0
software. P<0.05 was the minimum level for accepting a
statistically significant difference between groups.
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RESULTS

B. abortus Infects and Replicates in Both
Pre-Adipocytes and Adipocytes, and
Inhibits Adipogenesis
There are no former reports about the interaction between B.
abortus and adipogenic cells. Thus, we first determined the
differential capacity of B. abortus to infect pre-adipocytes and
adipocytes. As shown in Figures 1A. B. abortus was internalized
by both, pre-adipocytes and adipocytes in vitro. However, the
multiplication efficiency was dissimilar between them. In pre-
adipocytes the number of intracellular bacteria was increased by
more than one log at 24 h post-infection and continued growing
thereafter. By contrast, adipocytes were less permissive for B.
abortus growth, and the number of bacteria in adipocytes was
significantly lower than that observed for pre-adipocytes (p <
0.01). The number of intracellular bacteria in adipocytes
increased by one log at 48 h post-infection and then decline.

At seven days of adipogenic differentiation, the culture is
heterogeneous with cells that present small and big lipid
droplets (more than 1 µm in diameter). At this time, cells were
infected with DsRed-expressing B. abortus and lipid droplets were
stained with Bodipy 493/503, and cells were evaluated at different
times post-infection. Our results indicate that B. abortus invades
adipocytes in a manner that was independent of the lipid droplets
size (Figures 1B–D). However, B. abortus preferentially replicates
in adipocytes with small lipid droplets (Figure 1E).

To assess whether the infection affects adipocyte differentiation,
pre-adipocytes were infected with B. abortus at MOI 100 and
1,000, in the presence of differentiation medium for 2 days, and
then incubated with maintenance medium. E. coli LPS was used as
a control. At 15 days post-infection cells were fixed. The presence
of differentiated adipocytes was revealed by lipid droplets staining
with Bodipy 493/503 and Oil Red O (Figures 1F–I). B. abortus
infection inhibited adipocyte differentiation as was revealed by a
reduction of lipid droplets formation.

Given the ability of B. abortus infection to inhibit adipocyte
differentiation, subsequent experiments were carried out to determine
whether such infection could also modulate the transcription of the
essential pro-adipogenic factors C/EBP-a, C/EBP-b, and PPAR-g
(14). For this purpose, pre-adipocytes were infected, incubated with
a differentiation/maintenance medium, and mRNA levels
of mentioned pro-adipogenic factors were measured at 15 days.
B. abortus infection promoted a decrease in the transcription of
C/EBP-a and PPAR-g genes despite an increase in the transcription
of C/EBP-b gen (Figures 1J–L). Altogether, these results indicate
that B. abortus replicates preferentially in pre-adipocytes slowing
down their normal adipogenesis.
B. abortus Infection Modulates
Proinflammatory Cytokines and
Adipokines Secretion in Pre-Adipocytes
and Adipocytes
The adipose tissue physiology is committed to the expression of
cytokines and adipokines. They not only control fat metabolism
Frontiers in Endocrinology | www.frontiersin.org 4
but also immune homeostasis (6). Infection with B. abortus at
MOI 100 and 1,000 induced IL-6 (Figures 2A, B) but not IL-1b
nor TNF-a (not shown) secretion by both pre-adipocytes and
adipocytes. In adipocytes, the mRNA transcription level of leptin
remained unaltered after the B. abortus infection, but the levels of
mRNA of adiponectin and resistin are significantly (p < 0.01)
inhibited respect to uninfected control cells (Figures 2C–E). This
is in concordance with the inhibitory effect of B. abortus
infection on adipogenesis, since transcription of adipokine
genes are controlled by the transcription factor PPAR-g (23).
These results indicate that B. abortus infection modulates the
expression of cytokines and adipokines in pre-adipocytes
and adipocytes.
B. abortus Infection Induces MMPs
Secretion in Pre-Adipocytes but Was
Unable to Modulate MMPs in Adipocytes
Cytokines and adipokines have been shown to stimulate MMPs
secretion from different cell types (24–30). Additionally, pre-
adipocytes and adipocytes can produce MMP-2 and MMP-9 (15).
To analyze whether B. abortus is capable of modulating their MMP-
2 and MMP-9 activity, separated pre-adipocyte and adipocyte cells
were infected with B. abortus at MOI 100 and 1,000, and after 24 h
MMPs activity was evaluated, in culture supernatants, by gelatin
zymography. Supernatants, from B. abortus-infected pre-adipocyte
displayed a significant increase in MMP-2 and MMP-9 gelatinase
activity than that of uninfected cells (Figures 3A–C). By contrast, in
adipocytes, no further increase of the MMP-2 and MMP-9 activity
was detected for any MOI of infection (Figures 3D–F). The activity
of MMPs in vivo is counterbalanced by the tissue inhibitor’s action
including TIMPs (31). Therefore, the net gelatinase or collagenase
activity in a complex sample, such as culture supernatants, depends
on the balance between MMP and TIMP activities. This net activity
is not revealed by zymography, since MMP-TIMP complexes may
dissociate during gel electrophoresis. To assess whether the
environment surrounding Brucella-infected pre-adipocytes and
adipocytes has an increased net gelatinase activity, culture
supernatants from these cells were incubated with a non-
fluorescent gelatin-fluorescein conjugate, and the fluorescence
unmasked as a consequence of gelatin degradation was measured
in a fluorometer. Our results indicated that enzymatic activity is
increased significantly in B. abortus-infected supernatants from pre-
adipocytes supernatants but it remained unaltered in supernatants
from B. abortus-infected adipocytes (Figures 3G, H). Therefore, B.
abortus infection increases the MMP-2 and MMP-9 activity in pre-
adipocytes, but no in adipocytes.
B. abortus Lipoproteins Inhibit
Adipocyte Differentiation
Previously, we have reported that Brucella lipoproteins are
crucial for many responses induced by B. abortus infection
(19–21, 32–36). Additionally, adipogenesis inhibition may be a
process involving TLR-ligand interactions (37, 38). At first, we
evaluated whether viable B. abortus was necessary to inhibit
September 2020 | Volume 11 | Article 585923
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adipocyte differentiation. Oil red staining of adipocytes
differentiated in the presence of HKBA revealed a markedly
reduced adipocyte differentiation compared with the
unstimulated cells. We further assessed the B. abortus LPS or
its lipoproteins involvement on adipocyte differentiation
inhibition. To this end, pre-adipocytes were differentiated in
the presence of B. abortus LPS, or B. abortus lipidated outer
Frontiers in Endocrinology | www.frontiersin.org 5
membrane protein 19 (L-Omp19), used as a model of Brucella
lipoprotein, and compared against unlipidated (U)-Omp19 (20).
LPS from E. coli and Pamp3Cys were used as positive controls. As
shown in Figure 4, L-Omp19, but not B. abortus LPS, mimicked
the inhibition of lipid droplets accumulation induced by B.
abortus infection. Nonetheless, the U-Omp19 was not capable
to inhibit lipid droplets accumulation (Figure 4). Together these
A B

D E

F G

IH

J K L

C

FIGURE 1 | B. abortus replicates in pre-adipocytes and adipocytes and inhibits adipogenesis. Infection with B. abortus was performed at a multiplicity of infection
(MOI)= 100, and CFU was determined at different times of infection in pre-adipocytes and adipocytes. (A). Intracellular DsRed-expressing B. abortus in adipocytes
assessed by confocal microscopy, lipid droplets were stained with Bodipy 493/503 (B). Quantification of the experiment performed in B (C–E). Percentage of
infected and non-infected adipocytes with small (S) and big (B) lipids droplets respect to total cells at each time (C). Percentage of infected and non-infected cells at
1 and 7 d post infection present in adipocytes with S or B droplets cells respect to total S o B cells at each time. Quantification of bacterial replication is measured
as means of fluorescence intensity (MFI) (E). Effect of B. abortus infection at MOI 100 and 1,000 on adipocyte differentiation determined by lipid droplets staining with
Bodipy 493/503 (F), quantified by cell counts (G) and Oil Red O staining (H), quantified by cell counts (I). Effect of B. abortus infection on PPAR-g (J), C/EBP-a (K),
and C/EBP-b (L) transcription determined by RT-qPCR in adipocytes after 24 h post-infection. LPS from E. coli (LPS Ec) was used as a positive control. Scale bar:
30 µm. Data are given as the mean ± SD measured in triplicate from at least three individual experiments. Ten microscopic fields per condition were quantified for
each experiment. Data shown are from a representative experiment of three performed. *P < 0.05; **P < 0.01; ***P < 0.001vs non infected cells (NI). ###P< 0.001 vs
non infected pre-adipocytes (NI/Pre-ad.).
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A B

D EC

FIGURE 2 | B. abortus infection modulates proinflammatory cytokines and adipokines secretion in pre-adipocytes and adipocytes. ELISA determination of IL-6 in
pre-adipocytes (A) and adipocytes (B) measured in culture supernatants at 24 h post-infection. Determination of leptin (C), adiponectin (D), and resistin (E) by RT-
qPCR in B. abortus -infected adipocyte cells at MOI 100 and 1,000 at 24 h post-infection. Data are given as the mean ± SD measured in triplicate from five
individual experiments. Data shown are from a representative experiment of five performed **P < 0.01; ***P < 0.001vs non infected cells (NI). ###P< 0.001 vs non
infected pre-adipocytes (NI/Pre-ad.)
A B

D E F

G H

C

FIGURE 3 | B. abortus infection induces MMPs secretion in pre-adipocytes but was unable to modulate MMPs in adipocytes. MMP-2 and MMP-9 activity were
measured by gelatin zymography in culture supernatants from B. abortus-infected preadipocytes (A) and adipocytes (D) at 24 h post-infection. (B, C, E, and F).
Densitometric analysis of results from three independent experiments performed in A and D. For MMP activities, the culture supernatants from B. abortus infected
preadipocytes (G) and adipocytes (H) with a fluorescein-conjugated gelatin substrate that produces highly fluorescent peptides when gelatin is digested. Data are
expressed in fluorescence units informed by the fluorometer. Data are given as the mean ± SD measured in triplicate from four individual experiments. Data shown
are from a representative experiment of five performed *P < 0.05; **P < 0.01; ***P < 0.001 vs non infected cells (NI).
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results indicate that the lipoproteins (L-Omp19) from B. abortus
but not its LPS participates in the inhibition of adipogenesis
among infected pre-adipocytes.

B. abortus-Infected Macrophages
Modulate Adipocyte Differentiation
Macrophages constitute the main host cell for B. abortus replication
(39). We hypothesized that B. abortus-infected macrophages release
soluble mediators that may affect adipocyte differentiation. For this
goal, the adipocyte differentiation process was studied in the
presence of conditioned media from B. abortus-infected
macrophages, or uninfected macrophages as control. As shown in
Figure 5, the adipocyte differentiation was significantly reduced by
conditioned media from B. abortus-infected macrophages but it was
not modified by conditioned media from uninfected macrophages
(Figure 5).

To determine whether conditioned media from B. abortus-
infected macrophages affects at early and/or late stage of the
adipocyte differentiation process, we added the conditioned
media from B. abortus-infected macrophages during the
incubation with adipocyte differentiation medium or, during
the cultivation with maintenance medium. As a control,
conditioned media from uninfected macrophages was included.
The adipocyte differentiation was inhibited when conditioned
media from B. abortus-infected macrophages was added during
the culture of cells with adipocyte differentiation media
indicating that suppresses the pre-adipocyte differentiation at
an early stage while the addition of conditioned medium during
the cultivation with maintenance medium did not affect
adipocyte differentiation (Figure 6). Together, these results
indicate that soluble factors released from B. abortus- infected
macrophages inhibit adipogenesis at an early state.
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B. abortus-Infected Macrophages Inhibit
Adipocyte Differentiation via a Mechanism
Dependent on TNF-a
TNF-a is a proinflammatory cytokine able to downregulate the
adipocyte differentiation (40). Previously, we have reported that
B. abortus-infected macrophages secrete TNF-a (21, 32). To test
whether TNF-a released from B. abortus-infected macrophages
inhibits adipogenesis, we performed experiments with culture
supernatants preincubated with a TNF-a neutralizing antibodies.
As shown in Figure 7, the inhibitory effect of B. abortus-infected
macrophages on adipocyte differentiation was inhibited by the
treatment with TNF-a neutralizing antibody. Also, the isotype
control does not affect. Thus, we concluded that TNF-a plays a key
role in the inhibition of adipogenesis induced by macrophages-
infected with B. abortus.
DISCUSSION

The role of adipose tissue in the pathogenesis of infectious
diseases has increased attention in recent years (41–45).
Adipose tissue constitutes a nutritionally rich organ for the
survival of pathogens such as Mycobacterium tuberculosis,
Trypanosoma cruzi, HIV, among others (9, 46, 47). Cell types
composing adipose tissue include, fibroblasts, smooth muscle,
endothelial, and immune cells. In the setting of infectious or
non-infectious diseases like diabetes or obesity, adipose-resident
immune cells are derived to a proinflammatory phenotype due to
a proinflammatory microenvironment. However, adipocytes are
the most abundant cell type (48).

Cell types composing adipose tissue include, fibroblasts,
smooth muscle, endothelial and immune cells. In the setting of
A B

FIGURE 4 | B. abortus lipoproteins inhibits adipocyte differentiation. Pre-adipocytes were differentiated in the presence of HKBA (1x106 and 1x109 bacteria/ml) and
E. coli LPS (LPS Ec) (10 ng/ml), B. abortus LPS (LPS Ba) (1,000 ng/ml), L-Omp19 (10, 100, or 1,000 ng/ml), U-Omp19 (1,000 ng/ml), or Pam3Cys (50 ng/ml) or
untreated (UT). The presence of adipocytes was revealed by staining of lipid droplets with Oil Red O (A). Quantification of Oil Red O was determined by cell counts
(B). Ten microscopic fields per well in three wells per condition were quantified for each experiment. The percentage of adipocytes was calculated to the untreated
cells (UT). Scale bar: 30 µm. Data are given as the mean ± SD measured in triplicate from five individual experiments. Data shown are from a representative
experiment of five performed ***P < 0.001 vs untreated cells (UT).
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infectious or non-infectious diseases like diabetes or obesity,
adipose-resident immune cells are derived to a proinflammatory
phenotype due to a proinflammatory microenvironment.

In brucellosis, the tissue and cell type in which the bacteria
persist during chronic infection remains unknown. Previous
findings have reported the capacity of B. abortus for intracellular
replication in several cell types (17, 21, 49). In particular, the
Brucella capability to localize intracellularly in adipocytes and its
precursors was recently revealed for B. canis (13, 17). Here, we show
that B. abortus infects and replicates in both adipocyte and even
with higher efficiency, in pre-adipocyte.

An impairment in adipogenesis process may involve an
adipokine misbalance induced by B. abortus infection. Adiponectin
and resistin have been associated with adipogenesis (50, 51). Leptin
acts largely on the hypothalamus, informing the nutritional status of
the adipocytes and controlling adipokines and the endocrine role of
adipose tissues and food intake, thus regulating energy balance (23).
A

B

FIGURE 5 | B. abortus-infected macrophages modulate adipocyte
differentiation. Pre-adipocytes were differentiated in the presence of culture
supernatants from B. abortus infected macrophages at MOI 100 (CM-Ba) or
culture supernatants from non-infected macrophages as control (CM-NI). The
presence of adipocytes was revealed by staining of lipid droplets with Oil Red
O (A). Quantification of Oil Red O was determined by cell counts (B). LPS
from E. coli (LPS Ec) was used as a positive control. Ten microscopic fields
per well in three wells per condition were quantified for each experiment. The
percentage of adipocytes was calculated with respect to untreated cells (UT).
Scale bar: 30 µm. Data are given as the mean ± SD measured in triplicate
from five individual experiments. Data shown are from a representative
experiment of five performed. **P < 0.01; ***P < 0.001 vs untreated cells (UT).
Frontiers in Endocrinology | www.frontiersin.org 8
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FIGURE 6 | B. abortus-infected macrophages modulate early adipocyte
differentiation. Pre-adipocytes were differentiated in the presence of culture
supernatants from B. abortus—infected macrophages at MOI 100 (CM-Ba) or
culture supernatants from non-infected macrophages as control (CM-NI).
Supernatants were added during the early differentiation process
(differentiation media, D), later differentiation process (maintenance media, M)
or during all differentiation process (differentiation and maintenance media, D
and M). The presence of adipocytes was revealed by staining of lipid droplets
with Oil Red O (A). Quantification of Oil Red O was determined by cell counts
(B). LPS from E. coli (LPS Ec) was used as a positive control. Ten
microscopic fields per well in three wells per condition were quantified for
each experiment. The percentage of adipocytes was calculated to the
untreated cells (UT). Scale bar: 30 µm. Data are given as the mean ± SD from
three individual experiments. **P < 0.01; ***P < 0.001 vs untreated cells (UT).
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Additionally, leptin could significantly reduce lipid accumulation
during the adipocyte differentiation process, indicating an
inhibitory effect on adipogenesis. The loss of expression of
adipokines and the acquisition of an inflammatory phenotype
may also involve the secretion of IL-1b, TNF-a, and IL-6 (52).
Here, we have demonstrated an increased secretion of adipokines
such as IL-6, but not IL-1b and TNF-a, among infected pre-
adipocytes and adipocytes after B. abortus infection, being higher
among the former. Likewise, pre-adipocytes depict a higher number
of intracellular bacteria than adipocyte cells. Considering that IL-6
could be able to inhibit the anti-inflammatory adipokines
adiponectin and resistin in an autocrine and paracrine manner
(53), we have measured their transcriptional level after B. abortus
infection. For both, the mRNA level appeared significantly
diminished after infection. However, although IL-6 also induces
leptin production (54, 55), leptin levels were not significantly altered
after infection with Brucella abortus. Several transcription
regulators, such as PPAR-g, C/EBP-a, and C/EBP-b are well-
known to mediate adipogenesis. The main role of PPAR-g in
adipogenesis during infection has been revealed using in vivo
models of infectious diseases (41, 44). Moreover, the expression
level of the critical adipogenic transcription factor PPAR-g was
downregulated after B. abortus infection, thus affecting its role in
the maintenance of mature adipocyte phenotype (56, 57). C/EBPa
is expressed in the late phase of adipocyte differentiation. In
contrast, C/EBPb is expressed very early during adipogenesis and
is also required to sustain the expression of PPAR-g and C/EBPa.
After the treatment of preadipocytes with inducers of differentiation,
a rapid and transient increase in transcription and expression of
C/EBPb occurs and then decrees during the differentiation process
(14). As we expected, B. abortus infection also inhibited C/EBPa
transcription (58). On the contrary, B. abortus infection increases
the transcription of C/EBPb. These contradictory results could be
explained, at least in part, by the fact that the transcriptional activity
of C/EBPb is regulated by several posttranscriptional modifications
(59), including acetylation (60, 61), phosphorylation, and
polyubiquitination (62). Additionally, it could be also speculated
that overexpression of C/EBPbmay be a compensatory mechanism
in response to C/EBPa reduction as was described for brown
adipocyte differentiation (63). Further studies are needed to define
the mechanism involved during B. abortus infection and the
significance of this regulation.

We have observed that B. abortus infection of pre-adipocytes
may also alter the extracellular matrix by inducing MMP-2 and
MMP-9 secretion. Despite this, finding appears to be opposed to
previous studies that reported that these MMPs are involved in
extracellular matrix remodeling during adipocyte differentiation
(15, 64, 65), two plausible explanations should be considered. First,
it is known that other MMPs such as MMP-3 could have the
opposite effects and down modulate the adipogenic differentiation
(66, 67). Second, the MMPs action is controlled by regulators such
as tissue inhibitor of metalloproteinases (TIMPs) as well as
members of protease family of ADAMs (68). In vivo, TIMPs
counterbalanced the activity of MMPs, and these complexes are
dissociated during gelating zymography procedure. However, in
general, in inflammatory conditions, TIMPs do not increase in the
A

B

FIGURE 7 | B. abortus-infected macrophages inhibit adipocyte differentiation
via a mechanism dependent on TNF-a. Pre-adipocytes were differentiated in
the presence of culture supernatants from B. abortus-infected macrophages
at MOI 100 (CM-Ba) or culture supernatants from non-infected macrophages
as control (CM-NI). Supernatants were incubated with an anti-TNF-a
neutralizing antibody (a-TNF-a-CM-Ba) or isotype control (ISO-CM-Ba). TNF-
a (1 ng/ml) was used as a positive control. The presence of adipocytes was
revealed by staining of lipid droplets with Oil Red O (A). Quantification of Oil
Red O was determined by cell counts (B). Ten microscopic fields per well in
three wells per condition were quantified for each experiment. The percentage
of adipocytes was calculated to the untreated cells (UT). Scale bar: 30 µm.
Data are given as the mean ± SD from three individual experiments. ***P < 0.001.
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same degree as MMPs do, thus increasing the MMP/TIMP ratio
(4, 69). Accordingly, supernatants from B. abortus-infected pre-
adipocytes produced gelatin cleavage when evaluated under native
conditions in the fluid phase, with MMP-TIMP complex are not
dissociated as occurs during gel electrophoresis. This indicates that
other mechanisms are involved during adipogenesis inhibition by
B. abortus infection.

Adipogenesis inhibition may be a process involving TLR-
ligand interactions (37, 38). Here, we have demonstrated that B.
abortus-mediated inhibition of the adipocyte differentiation was
independent of the bacterial viability, thus insinuating a potential
role elicited by a structural bacterial component. As in our
previous studies, the bacteria lipoprotein L-Omp19 plays again
a critical role in this sense but not the LPS (20). Such lipid moiety
but not its non-lipidated counterpart U-Omp19, was able to
mimic adipogenesis inhibition induced by B. abortus infection.
The effect was elicited by the lipid moiety, which is likely shared
by all bacterial lipoproteins. The genome of B. abortus codifies no
less than 80 putative lipoproteins (70). This indicates that
lipoproteins present in Brucella could be sufficient to modulate
adipocyte physiology.

In adipose tissue, immune cells including macrophages and T
cells are the main responsible for inflammatory cytokine
production (71, 72). In particular, macrophages participate in
adipose tissue dysfunction and reduced adipogenesis (73, 74).
Brucella infection is accompanied by the infiltration of
inflammatory cells, and the macrophages represent the main
replication niche for these bacteria (75). Even though the role of
macrophage polarization in the pathogenesis of Brucella species is
poorly described until now (76, 77). Here, we have demonstrated
that proinflammatory cytokines -such as TNF-a- secreted by
macrophages in response to B. abortus infection exert an
inhibitory effect on adipogenic differentiation (52). However, we
cannot rule out that other cytokines are also present in the
conditioned media and contribute to these observations.

Overall, these results suggest a possible scenario in which B.
abortus infection via its lipoproteins modulates adipogenesis
process and soluble mediators secreted by B. abortus—infected
macrophages may contribute to this phenomenon, as a
mechanism in which TNF-a is involved.

In conclusion, our results suggest that adipogenesis process
could be altered directly after exposure—even without effective
multiplication—of the adipocytes and their precursors to
Frontiers in Endocrinology | www.frontiersin.org 10
Brucella, or their lipoproteins. Furthermore, this same process
could be indirectly altered, thanks to soluble mediators such as
TNF-a released by macrophages infected by the same bacteria.

These early studies using murine cell lines provide clues
regarding potential mechanisms involved during the interaction
of B. abortus with adipocytes. Further studies using primary human
adipocytes, human adipose tissue explants, and the in vivo murine
model will be needed to confirm whether the responses described
here have a role in the chronic inflammation and chronicity of
the infection.
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