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Pheochromocytomas and paragangliomas (PHEO/PGL) are rare but occasionally life-
threatening neoplasms, and are potentially malignant according to WHO classification in
2017. However, it is also well known that histopathological risk stratification to predict
clinical outcome has not yet been established. The first histopathological diagnostic
algorithm for PHEO, “PASS”, was proposed in 2002 by Thompson et al. Another
algorithm, GAPP, was then proposed by Kimura et al. in 2014. However, neither
algorithm has necessarily been regarded a ‘gold standard’ for predicting post-operative
clinical behavior of tumors. This is because the histopathological features of PHEO/PGL
are rather diverse and independent of their hormonal activities, as well as the clinical
course of patients. On the other hand, recent developments in wide-scale genetic analysis
using next-generation sequencing have revealed the molecular characteristics of
pheochromocytomas and paragangliomas. More than 30%–40% of PHEO/PGL are
reported to be associated with hereditary genetic abnormalities involving > 20 genes,
including SDHXs, RET, VHL, NF1, TMEM127, MAX, and others. Such genetic alterations
are mainly involved in the pathogenesis of pseudohypoxia,Wnt, and kinase signaling, and
other intracellular signaling cascades. In addition, recurrent somatic mutations are
frequently detected and overlapped with the presence of genetic alterations associated
with hereditary diseases. In addition, therapeutic strategies specifically targeting such
genetic abnormalities have been proposed, but they are not clinically applicable at this
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time. Therefore, we herein review recent advances in relevant studies, including
histopathological and molecular analyses, to summarize the current status of potential
prognostic factors in patients with PHEO/PGL.
Keywords: adrenal, pheochromocytoma, paraganglioma, genotype, pathology, SDHB, PASS, GAPP
INTRODUCTION

Pheochromocytomas (PHEOs)/paragangliomas (PGLs) or
PPGLs are not only oncological diseases due to their invasive
or metastatic properties, but also life-threatening endocrinological
disorders associated with medical therapy resistant hypertension
due to catecholamine excess (1–4). Differentiation between
“PHEOs” and “PGLs” is defined based on the sites of the
primary lesion as follows; PHEOs are derived from chromaffin
cells in the adrenal medulla, and PGLs from sympathetic or
parasympathetic paraganglion cells located in extra-adrenal
tissues (5).

Distant metastasis is detected in 5%–20% of PHEOs, and
relatively higher in PGLs, ranging from 15% to 35% (6–9). The
five-year survival rate of metastatic disease has been reported to
be approximately 50% or less (10–12). However, it is difficult to
predict metastatic potential based on histopathological findings
alone, and none of the previously proposed histopathological
scoring systems can reach the levels of accurate metastasis
prediction. Therefore, all PPGLs were proposed to have
malignant potential according to the WHO classification in
2017, because of the absence of hallmark diagnostic markers (5).

In contrast, recent developments in molecular analysis have
clarified the genetic landscape or characteristics of PPGLs, which
could reflect the risks of metastatic potential (1–4, 6). The results
of those studies revealed a higher incidence of genetic
abnormalities associated with hereditary diseases, spanning
more than 20 relevant genes in > 40% of all cases (1–4, 6).
Among the genes above, the presence of SDHX mutations is
reported to increase the risks of developing aggressive disease
behavior by altering intracellular metabolism, especially the
tricarboxylic acid (TCA) cycle (4, 13–17).

In this review, we therefore summarized the previously
proposed histopathological/clinicopathological scoring systems,
including their limitations for predicting the metastatic potential
of the disease, and pitfalls when interpreting the findings. In
addition, the clinical significance of recently reported genetic
abnormalities and genotype-phenotype associations are
also summarized.
GENETIC ABNORMALITIES IN PPGLS

PPGLs were previously called “10%-diseases” associated with
hereditary disorders. However, recent developments in genetic
analysis using next-generation sequencing and large-scale
integrated analysis by The Cancer Genome Atlas (TCGA)
database has identified a much larger number of relevant
genetic abnormalities (6, 18). The prevalence of PPGLs
n.org 2
associated with hereditary diseases involves approximately 40%
of all patients (6). Pathogenic variants with genetic alterations in
relevant genes are generally exclusive to each other, but it is also
true that somatically mutated driver genes are involved in further
development of PPGLs in a minor population with germline
mutations (6), which is considered unique to this tumor. In
addition, comprehensive genetic analysis by Fishbein et al.
further demonstrated that 27% of PPGLs have germline
mutations, 39% somatic mutations (with 5%–10% overlap with
germline mutations), 7% gene fusions, and 89% copy number
alterations (6). PPGLs are sub-classified into three different
groups, according to their genotype-related pathophysiology (4,
6, 19–21). The most prevalent subtype is the “pseudohypoxia
type”, with genetic alterations in SDHX families, FH, VHL, and
EPAS1 (13–17, 22–27). The second is the “Wnt-signal type”
associated with somatic alterations in genes involved in Wnt-
signaling pathways, including CSDE1 mutation and MAML3
gene transfusion (6, 28). The third is the “kinase signal type” with
genetic alterations involving RET, NF1, MAX, and TMEM127,
and which is frequently associated with MEN2 (multiple
endocrine neoplasia type 2) gene abnormalities (4, 6, 29–35).
In addition, a fourth group was also recently proposed as a
cortical admixture subtype, although the detailed features
involved have remained uncertain compared to the three major
subtypes indicated above (6). Therefore, in this paper, individual
genotypes and their pathophysiological characteristics are briefly
reviewed. Previously reported genetic alterations associated with
PPGLs are also summarized in Table 1.

“Pseudohypoxia Type”
“Pseudohypoxia type” is the most prevalent phenotype in
PPGLs, and the great majority of genetic abnormalities
involving this phenotype have been detected in genes involved
in the TCA cycle, including SDHX family, FH, VHL, EPAS1,
SLC25A11, and others (13–17, 22–27). Chromaffin cells are
physiologically involved in oxidative metabolism status, with
abundant aerobic respiration by mitochondria synthesizing ATP
by activating the TCA cycle. However, genetic alterations in
genes encoding catalyzing enzymes involved in the TCA cycle,
such as succinate dehydrogenase, are known to result in loss of
their physiological functions. These altered genes subsequently
promote anaerobic metabolism by tumor cells, shifting ATP
resources from the TCA cycle into the system of metabolic
glycolysis (62–64). These alterations in intracellular
metabolism eventually result in degradation of chromatin
remodeling, reactive oxygen species production, and DNA
methylation (62–66). These intracellular changes also enable
tumor cells to efficiently synthesize ATP, although the amounts
of ATP synthesized from glycolysis per reaction does not reach
October 2020 | Volume 11 | Article 587769
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TABLE 1 | Previously identified mutated driver genes associated with PPGLs.

Type Gene Conding Protein Chromosome
location

Germiline
or

Somatic

Predominant
tumor site

Contribution to
metastatic
potential

Associated hereditary
diseases

Reference

1 SDHA Succinate Dehydrogenase
Complex Flavoprotein
Subunit A

5p15.33 Germline PGL>PHEO Low Famlilial PGL type 5 (6, 13),

1 SDHB Succinate Dehydrogenase
Complex Iron Sulfur
Subunit B

1p36.13 Germline PGL>PHEO Intermediate Famlilial PGL type 4 (14)

1 SDHC Succinate Dehydrogenase
Complex Subunit C

1q23.3 Germline PGL>>PHEO Very low Famlilial PGL type 3 (15)

1 SDHD Succinate Dehydrogenase
Complex Subunit D

11q23.1 Germline PGL>PHEO Low Famlilial PGL type 1 (6, 16)

1 SDHAF2 Succinate Dehydrogenase
Complex Assembly Factor
2

11q12.2 Germline PGL>>PHEO Very Low Famlilial PGL type 2 (17, 36)

1 FH Fumarate Hydratase 1q43 Germline PHEO, PGL Low FH-deficient HLRCC (Hereditary
leiomyomatosis and renal cell
carcinoma)

(37)

1 VHL Von Hippel-Lindau Tumor
Suppressor

3p25.3 Germline PHEO>PGL Low-Intermediate Von-Hippel-Lindau disease (6, 25),

1 EPAS1
(HIF2A)

Endothelial PAS Domain
Protein 1

2p21 Germline,
Somatic

PHEO, PGL Low-Intermediate Pacak-Zhuang syndrome (6, 26, 27)

1 EGLN1
(PHD1)

Egl-9 Family Hypoxia
Inducible Factor 1

1q42.2 Germline PHEO, PGL Not characterized Polycythemia (6, 38)

1 EGLN2
(PHD2)

Egl-9 Family Hypoxia
Inducible Factor 2

19q13.2 Germline PHEO, PGL Not characterized Polycythemia (38)

1 MDH2 Malate Dehydrogenase 2 7q11.23 Germline PHEO, PGL Not characterized Not characterized (23, 39),
1 SLC25A11 Solute Carrier Family 25

Member 11
17p13.2 Germline PGL Low-Intermediate Not characterized (40)

1 DLST Dihydrolipoamide S-
Succinyltransferase

14q24.3 Germline PHEO, PGL Not characterized Not characterized (41)

1 DNMT3A DNA Methyltransferase 3
Alpha

2p23.3 Germline,
Somatic

PHEO, PGL Not characterized Acute Myeloid Leukemia (AML)
(42)

(43)

1 GOT2 Glutamic-Oxaloacetic
Transaminase 2

16q21 Germline PHEO, PGL Not characterized Not characterized (44)

2 CSDE1 Cold Shock Domain
Containing E1

1p13.2 Somatic PHEO, PGL Not characterized ― (6)

2 MAML3 Mastermind Like
Transcriptional Coactivator
3

4q31.1 Somatic,
Transfusion

PHEO, PGL Low-Intermediate ― (6, 28),

3 KIF1B Kinesin Family Member 1B 1p36.22 Germline PHEO? Not characterized Ganglioneuroma,
leiomyosarcoma, lung
adenocarcinoma,
neuroblastoma, ganglioneuroma

(45)

3 RET Proto-Oncogene Tyrosine-
Protein Kinase Receptor
Ret

10q11.21 Germline,
Somatic

PHEO>>PGL Low Multiple endocrine neoplasia type
2

(6, 29–
31),

3 NF1 Neurofibromin 1 17q11.2 Germline,
Somatic

PHEO>PGL Low Nuerofibromatosis type 1 (6, 29–
32),

3 MAX MYC Associated Factor X 14q23.3 Germline PHEO>PGL Low Familial PCC (6, 34,
35),

3 TMEM127 Transmembrane Protein
127

2q11.2 Germline PHEO>PGL Low Familial PCC (6, 33),

3 HRAS GTPase HRas 11p15.5 Somatic PHEO? Not characterized ― (6)
3 BRAF Serine/Threonine-Protein

Kinase B-Raf
7q34 Somatic PHEO, PGL Not characterized ― (6)

Others MEN1 Menin 1 11q13.1 Germline PHEO, PGL Not characterized Multiple endocrine neoplasia type
1

(46)

Somatic IRP1 Iron Regulatory Protein 1 9p21.1 Somatic PHEO, PGL Not characterized ― (47)
Somatic SETD2 Histone-Lysine N-

Methyltransferase SETD2
3p21.31 Somatic PHEO, PGL Low-Intermediate ― (6, 18,

48),
Somatic FGFR1 Fibroblast Growth Factor

Receptor 1
8p11.23 Somatic PHEO, PGL Not characterized ― (6, 49),

(Continued)
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the same levels as those from the TCA cycle (62–66). This
phenomenon has attracted considerable interest because of its
possible associations with Warburg effects detected in some
neoplastic cells (65, 66). Therefore, sub-typing based on
intracellular metabolism in PPGLs has also been proposed.
Some clinical studies exploring the ability of glucose
absorption in PPGLs by FDG-PET imaging have been
reported, and are proposed to be practically useful as a
noninvasive diagnostic tool, especially for detecting
pseudohypoxic phenotypes of tumors, and those manifesting
potentially malignant behavior over their clinical course (67, 68).

“Wnt-Signal Type”
The “Wnt-signal type” is known as the most prevalent phenotype
among sporadic PPGLs, with somatic alterations to driver genes
(4, 6). Wnt-/Shh-related pathways are widely reported to be
involved in cell proliferation in various types of diseases (69, 70).
The activation of Wnt-related signals is not necessarily specific
for PPGLs, but the presence of this particular type of genetic
abnormality has been reported to result in relatively frequent
distant metastasis or recurrence, especially in cases involving
MAML3 gene fusions (6). Somatic mutations of the CSDE1 gene
and transfusion of MAML3 are both classified as exhibiting this
phenotype. CSDE1 frameshift and splice-site mutations have
been reported in a minor population of PPGLs with previously
known germline mutations, including VHL, NF1, and RET (6).
These CSDE1 genetic alterations result in loss-of-function (6).
CSDE1 is well known in regulating translation initiation,
apoptosis, RNA stability, and differentiation/development of
neuronal tissue (71, 72). The functional roles of mutated
Frontiers in Endocrinology | www.frontiersin.org 4
variants of CSDE1 were also previously validated by
microarray analysis using mouse embryonic stem cells (73, 74).

PPGLs with MAML3 gene fusions are reported to be
associated with a higher prevalence of metastatic diseases,
f requent ly in conjunct ion with SDH loss (6 , 28) .
Comprehensive genetic analysis revealed that the UBTF-
MAML3 fusion gene activates Wnt-Shh signaling, but only a
small number of studies have investigated the clinical
significance of this chimeric fusion gene (6, 28). Therefore, the
detailed underlying mechanisms, as well as their prevalence, have
not been thoroughly studied, and further investigations
are warranted.

“Kinase Signal Type”
The “kinase signal type” is associated with systemic hereditary
diseases such as MEN2A/2B (RET mutat ion) and
neurofibromatosis type 1 (NF1 mutation) (29–32). Familial
PHEOs with TMEM127 or MAX mutations are also
categorized into this subtype (33–35). Among them, the gain-
of-function caused by RET gene mutation has been studied in the
most detail. RET encodes a transmembrane receptor tyrosine
kinase involved in the development of the neural crest. RET
mutations detected in MEN2A are reported to cause
homodimerization, which subsequently activates PI3K-AKT,
RAS, p38-MAPK, and JUN N-terminal kinase pathways in a
ligand-independent manner, promoting abnormal cell
proliferation (75–77). Recently, somatic mutations detected
involving FGFR1, NF1, BRAF, HRAS, and others have also
been reported to contribute to the activation of the relevant
pathways indicated above (6). However, the underlying
TABLE 1 | Continued

Type Gene Conding Protein Chromosome
location

Germiline
or

Somatic

Predominant
tumor site

Contribution to
metastatic
potential

Associated hereditary
diseases

Reference

Somatic MET Hepatocyte Growth Factor
Receptor

7q31.2 Somatic PHEO, PGL Not characterized ― (50)

Somatic TP53 Cellular Tumor Antigen P53 17p13.1 Somatic,
Germline

PHEO, PGL Not characterized Li-Fraumeni Syndrome (6)

Somatic ARNT Aryl Hydrocarbon Receptor
Nuclear Translocator

1q21.3 Somatic PGL Not characterized ― (6)

Somatic MYO5B Myosin VB 18q21.1 Somatic PHEO, PGL Not characterized ― (51, 52),
Somatic MYCN N-Myc Proto-Oncogene

Protein
2p24.3 Somatic PHEO, PGL Not characterized ― (51)

Somatic VCL Vinculin 10q22.2 Somatic PHEO, PGL Not characterized ― (51)
Somatic KMT2D Histone-Lysine N-

Methyltransferase 2D
12q13.12 Somatic PHEO, PGL Not characterized ― (53)

Somatic TERT Telomerase Reverse
Transcriptase

5p15.33 Somatic PHEO, PGL Low-Intermediate ― (54–57),

Somatic ATRX Transcriptional regulator
ATRX

Xq21.1 Somatic PHEO, PGL Low-Intermediate ― (6, 36,
58–60)

Somatic IDH1 Isocitrate Dehydrogenase
(NADP(+)) 1

2q34 Somatic PHEO, PGL Not characterized ― (6, 59)

Somatic IDH2 Isocitrate Dehydrogenase
(NADP(+)) 2

15q26.1 Somatic PHEO, PGL Not characterized ― (61)

Somatic H3F3A H3 Histone Family Member
3A

1q42.12 Somatic PHEO, PGL Not characterized ― (50)
October 2020 | Volume 11 | Art
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mechanisms involving the kinase signaling pathway remain
unknown, especially whether these pathways possibly interact
with the downstream pathways of other subtypes.

Others (Somatic Abnormalities)
With the exception of three major subgroups, multiple somatic
genetic abnormalities have been reported, involving IRP1 (47),
SETD2 (6, 18, 48), FGFR1 (6, 49),MET (50), TP53 (6), ARNT (6),
MYO5B (51, 52), MYCN (51), VCL (51), KMT2D (53), TERT
(54–57), ATRX (6, 57–59), IDH1 (6, 58), IDH2 (36), and H3F3A
(50). However, it is also true that majority of newly reported
somatic gene abnormalities are detected in only a minor
proportion of patients with PPGLs. Among these somatic gene
abnormalities, aberrant telomere maintenance mechanism
(TMM), which is caused by TERT (telomerase reverse
transcriptase) structural rearrangement, genetic abnormalities,
and ATRX mutations, has been reported to be associated with
poor clinical outcomes in patients (54–57). Structural
rearrangement of TERT has also been reported to result in its
over-expression as a result of the placement of enhancers
proximal to the TERT promoter (56). The presence of somatic
mutations detected in the TERT promoter is not necessarily
concordant with TERT overexpression, but a specific hot-spot,
C228T, is reported to be associated with adverse clinical
outcomes in patients (57, 78). However, its cross-interaction
with SDHX-related pseudohypoxic pathways cannot be
ruled out.
CHALLENGES OF PREDICTIVE
CLINICOPATHOLOGICAL/
HISTOPATHOLOGICAL SCORING
SYSTEMS FOR MALIGNANT BEHAVIOR/
METASTASIS IN PPGLS

Histopathological risk stratification, or discerning malignancy, in
PPGL patients is very challenging and is generally considered
one of the most difficult differential diagnoses in the field of
surgical pathology. Several histopathological scoring systems
have been proposed, including PASS and GAPP scores, but it
is also true that those above could by no means precisely predict
the clinical outcome and/or the degree of aggressive clinical
behavior in PPGL patients (5, 79–81). As a basis for these two
established representative histological scoring systems, several
combined scoring systems with genetic abnormalities and
immunohistochemical findings have also been recently
proposed, such as M-GAPP (Modified-GAPP) score (82),
ASES (Age, Size, Extra-adrenal location, and Secretory type)
score (83) and COPPs (Composite Pheochromocytoma/
paraganglioma Prognostic score) (84). However, further
investigations are needed to clarify the practical value of such
systems in discerning the clinical behavior of patient tumors.

Therefore, in this section, previously proposed histopathological/
clinicopathological scoring systems and the recent validation
studies of these systems were covered to clarify the usefulness
Frontiers in Endocrinology | www.frontiersin.org 5
and limitations of histopathological findings to predict the
clinical behavior of tumors, as well as the potential pitfalls
involving interpretation of such findings with high inter-/intra-
observer variation by both pathologists and clinicians.

PASS (Pheochromocytoma of the Adrenal
Gland Scale Score)
PASS was the first histopathological scoring system proposed by
the group of Armed Forces Institute of Pathology led by
Thompson in 2002, and this system was composed of twelve
findings based on histological features as follows (summarized in
Figure 1A): 1) large cell nests or diffuse growth of >10%, 2)
central or confluent tumor necrosis, 3) high cellularity, 4) cell
monotony, 5) tumor cell spindling (even if focal), 6) mitotic
figures >3 figures/10 high power fields, 7) atypical mitotic
figure(s), 8) extension into adipose tissue, 9) vascular invasion,
10) capsular invasion, 11) profound nuclear polymorphism, 12)
and nuclear hyperchromasia (79). Tumors with 4 points or more
were proposed to be associated with a high prevalence of distant
metastasis, and those with less than 4 points considered as
benign (never metastatic) (79). Of particular note, the use of
PASS in extra-adrenal PGLs was limited because this particular
scoring system was designed only for PHEOs, and included those
criteria only applicable to intra-adrenal tumors such as extension
into adipose tissue (81).

After the proposal of PASS, several validation studies were
reported in the literature (82, 85–87). The presence of
relatively high inter-/intra-observer variation has been
reported in the confirmatory studies indicated above. Among
those 12 histological features above, the presence of capsular
and vascular invasion, extension into adipose tissue, and
atypical mitosis could reach relatively high inter-observer
concordance in > 80% of the examined cases (88). However,
the histological features of high cellularity, profound nuclear
polymorphism, and nuclear hyperchromasia resulted in low
inter- and intra- observer concordance in their interpretation,
even among pathologists with sufficient experience and
knowledge in this field (88). Furthermore, it is also pivotal to
note that the gradients of scoring points of individual
histological features did not necessarily match the degree of
inter-/intra-observer variation (88). Scoring systems based
only on morphological or histological findings could become
more subjective and, therefore, some studies employing
combined PASS and genetic abnormality, as well as
immunohistochemistry, have been proposed in recent years
in order to overcome potential disadvantages or pitfalls of the
system, as described above.

GAPP Score (Grading of Adrenal
Pheochromocytoma and Paraganglioma)
and M-GAPP (Modified GAPP)
The GAPP score was proposed by Kimura et al. in 2014 and
required not only morphological findings, but also clinically
proven catecholamine-producing types and proliferative ability
of tumor cells by Ki-67 (MIB-1) labeling index (LI), in contrast to
PASS, which could be performed only on hematoxylin-eosin
October 2020 | Volume 11 | Article 587769
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A

B

D

E

C

FIGURE 1 | Previously proposed histopathological/clinicopathological scoring system. (A) PASS (Pheochromocytoma of the adrenal gland scale score). (B) GAPP
(Grading of adrenal pheochromocytoma and paraganglioma). (C) M-GAPP (Modified GAPP). (D) ASES (Age, Size, Extra-adrenal location and Secretory type) score.
(E) COPPs (Composite Pheochromocytoma/paraganglioma Prognostic score).
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stained tissue slides. This GAPP scoring system classified PPGLs
into three different grades: well- (0-2 points), moderately (3-6
points), and poorly differentiated (7-10 points) PPGLs (80). The
details of this scoring system are summarized in Figure 1B. The
five-year survival rates of these three groups are 100% (well-
differentiated), 66.8% (moderately differentiated), and 22.4%
(poorly differentiated) (80). GAPP has been used in some
diagnostic pathology laboratories, but several limitations or
pitfalls have been raised regarding its clinical utility (4, 5, 81).
In particular, MEN2A-associated PPGLs are over-diagnosed by
both PASS and GAPP in predicting the potential malignant
behavior of tumors (85). MEN2A-associated PPGLs rarely
metastasize, although large cell nests or diffuse growth patterns
(MEN2A-associated: 77% vs. benign: 30%, malignant: 90%) and
increased Ki-67 LI of > 3% (MEN2A-associated: 31% vs.
sporadic: 11%) are frequently detected in such cases, which
result in high scores (85). In addition, the original GAPP
system did not include finding regarding SDHX status (80).
Therefore, Koh et al. subsequently proposed a modified GAPP
score, modifying the gradient of the scoring points, and added
the findings of SDHB immunohistochemistry (82). The details of
M-GAPP are summarized in Figure 1C. The sensitivity of
GAPP and M-GAPP is relatively high, while their specificity
only reaches 50%–60% in terms of predicting distant metastasis
in PPGL patients (82). The area under the curve (AUC) of
these scoring systems resulted in 0.822 for M-GAPP, 0.728 for
GAPP, and 0.753 for PASS (82), and there were no differences
among the predictive values for patients. Therefore, other
clinicopathological factors such as tumor size or patient age
should be considered when determining the malignant potential
of PPGLs. Further improvements in histopathological evaluation
are warranted to more precisely predict the malignant potential
of tumors.

ASES (Age, Size, Extra-Adrenal Location,
and Secretory Type) Score
ASES (Age, Size, Extra-adrenal location and Secretory type)
scoring was recently proposed by Cho et al. in 2018 (83). They
performed a retrospective analysis using a relatively large
number of cases, including 333 PPGLs (83). In contrast to
other histopathological predictive models, ASES is entirely
composed of only 4 clinical parameters (Figure 1D). The AUC
to predict malignant behavior is reported to be 0.735 (88), and
the practical advantages of using this scoring system includes no
requirement for surgical specimens, which could apply this
scoring system to all PPGLs, regardless of clinical stage (83).
However, the sensitivity and specificity of these histology-based
scoring systems remain unknown.

COPPs (Composite Pheochromocytoma/
Paraganglioma Prognostic Score)
COPPs (Composite Pheochromocytoma/paraganglioma Prognostic
score) was recently proposed by Pierre et al. in 2019, integrating
morphological features and immunohistochemical findings of S-100
and SDHB (84). They examined a total of 147 PPGLs and
performed multivariate analysis, including incorporation of the
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morphological features listed in PASS, immunohistochemical
findings of S-100, Ki-67, and MCM6, clinicopathological factors
(tumor size, age, and hypertension) and genotype (84). Finally,
COPPs were defined according to the following criteria:
three clinicopathological parameters (tumor size > 7 cm, necrosis,
and vascular invasion), loss of S-100 immunoreactivity (loss of
intervening sustentacular cells), and loss of SDHB immunoreactivity
(suggesting SDHB mutation) (84) (Figure 1E). When compared
with previously proposed scoring systems, COPPs could provide a
high AUC to predict potential metastasis in patients (sensitivity:
100%, specificity: 94.7%) (84). However, prospective validation
studies involving COPPs have not been reported, and not all
of the parameters proposed in this scoring system are readily
available in clinical practice. Thus, COPPs could not reach the
levels suitable for practical usage in current clinical settings and
awaits validation.
PRACTICAL IMMUNOHISTOCHEMICAL
(IHC) PPGL MARKERS

In addition to the above previously proposed clinicopathological
scoring systems, several immunohistochemical (IHC) markers
have also been reported in the literature to be able to differentiate
metastatic from non-metastatic PPGLs. In this paper, the
practical usefulness of IHC and its limitations and pitfalls in
daily clinical settings are summarized.

Conventional Markers
SDHB IHC has been employed to detect SDHB gene mutations
with relatively high concordance (sensitivity: 100% [95% CI:
87%–100%], specificity: 84% [95% CI: 60%–97%]) as
demonstrated by the total absence of immunoreactivity, with
positive immunoreactivity in endothelial cells as a positive IHC
control (89). However, it is pivotal to note that interpretation of
SDHB IHC is sometimes difficult because of the presence of false-
negative findings, caused by various pre-analytical factors such as
inappropriate fixation, which results in various staining patterns,
including potential false-negative findings (89, 90). In particular,
patterns of SDHB immunoreactivity with a complete absence, or
weak but diffuse dot-like cytoplasmic staining patterns were
detected in SDHB-mutated PPGLs (90). Therefore,
confirmatory genetic analysis is practically mandatory for cases
with equivocal immunoreactivity.

Both S-100 and Ki-67 are well-known and widely used
markers for evaluation of the malignant potential of PPGLs
(80, 81, 84). S-100 is generally immunolocalized in sustentacular
cells surrounding tumor cells (91). Absence or attenuation of S-
100 immunoreactivity (sustentacular cells) is generally
considered to reflect diffuse growth patterns that deviate from
the structure of Zellballen, possibly resulting in the aggressive
clinical behavior of tumors (84, 91). S-100 positive sustentacular
cells have recently been reported as non-neoplastic cells because
SOX-10 and SDHB are both positive only in sustentacular cells in
the cases of SDHB-mutated PPGLs (91). However, detailed
characterization of sustentacular cells remains to be conducted.
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The Ki-67 LI is also listed as one of the parameters in GAPP
and M-GAPP. However, it is also important to note that Ki-67 LI
is generally low (< 3%) in > 80% of PPGLs, and its intratumoral
heterogeneity is also marked (80–82). In addition, the guidelines
to obtaining Ki-67 LI, such as whether counting should be
performed in “hot spots” or “averages”, have not necessarily
been standardized, and inter-observer or -laboratory differences
in Ki-67 LI results might be unavoidable.

Thus, these IHC markers are marginally useful for predicting
the clinical behavior of tumors, but none of the previously
proposed IHC markers are by no means independent
predictive markers in patients.

Catecholamine-Synthesizing Enzymes
In addition to broadly used IHC markers, analyses of hormonal
activities and IHC analysis of catecholamine-synthesizing
enzymes such as tyrosine hydroxylase (TH), dopamine beta
hydroxylase (DBH), dopa decarboxylase (DDC) and
phenylethanolamine N-methyltransferase (PNMT) have also
been reported in the literature. The expression profiles of these
enzymes do not only characterize the secretory phenotypes of
norepinephrine or epinephrine, but also reflect differentiation of
the tumor cells in PPGLs (80, 92). PNMT catalyzes the final step
of catecholamine biosynthesis from norepinephrine into
epinephrine. Of particular interest, pseudohypoxic PPGLs are
generally negative for PNMT, and have silent clinical and
hormonal phenotypes, which could delay therapeutic
intervention in such patients (93). Fukaya et al. reported that
lower DDC immunoreactivity was detected in poorly
differentiated PPGLs, histologically representing confluent
necrosis, diffuse growth, nuclear polymorphism, and tumor cell
spindling (94). Therefore, it is considered worthwhile to
incorporate IHC analysis of these four catecholamine-
producing enzymes into routine clinical practice in institutions
treating relatively large volumes of patients with PPGLs because
antibodies against all four enzymes used for IHC are
commercially available (94).

Newly Proposed Markers
In addition to the classical markers above, several relatively unique
IHC markers have recently been proposed for predicting the
presence of distant metastasis in PPGLs. Deng et al. reported
lower immunoreactivity of Snail, Galectin-3, and IGF-1R in
benign PHEOs without local invasion and distant metastasis,
based on a study of 226 PPGL cases (95). Leijon et al.
immunolocalized SSTR (somatostatin receptor) family as a
potential prognostic factor or a therapeutic target, and reported
that 71.4% (10/14) of cases of metastasized PPGLs abundantly
expressed SSTR2 (96). Among them, different immunoprofiles
were detected between metastasized PGLs and PHEOs (PGLs:
100% (9/9 cases), PHEOs: 20% (1/5 cases). In contrast, SSTR4 and
SSTR5 were IHC-negative in the majority of the cases examined,
and both SSTR1 and SSTR3 were divergent and independent of
SDHX deficiency, as well as the presence of metastases (96).
However, the usefulness of somatostatin analogs in the
treatment of patients with PPGLs has not been established, and
the clinicopathological value of SSTR IHC should be validated by
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further studies. Surrogate markers associated with tumor immune
microenvironmental factors have been studied recently, especially
PD-1/PD-L1 in PPGLs (97, 98). Guo et al. examined PD-L1
immunoreactivity in 77 PPGL cases using an anti-PD-L1
antibody (clone E1L3N) and reported that 59.74% (46/77 cases)
of PPGLs were IHC-positive for PD-L1, with high co-efficiency of
Ki-67 LI, as well as the presence of hypertension (97). On the other
hand, Pinato et al. examined 100 PPGL cases using the same anti-
PD-L1 antibody (clone E1L3N) and anti-PD-L2 antibody
(polyclonal) (98). They reported that PD-L1 was IHC-positive in
18% (18/100 cases) and PD-L2 in 16% (16/100 cases) of PPGLs,
respectively (98). Of particular interest, PD-L2 immunoreactivity
in tumor cells was significantly correlated with overall survival of
patients in their study (98). The presence of PD-L1
immunoreactivity in tumor cells could potentially indicate the
utility of immune-checkpoint inhibitors, but standardization of
histopathological evaluation of such markers, as well as unification
of IHC antibody clones, are mandatory before various immune
checkpoint inhibitors can be used therapeutically in PPGLs. In
addition, few studies have reported histopathological surrogate
markers of the tumor-immune microenvironment in PPGLs, and
the clinical therapeutic efficacy of immune-checkpoint inhibitors
remains unknown.

In summary, with a possible exception of SDHB, IHC-based
analysis was less predictive than genetic analysis and past clinical
history of the relevant hereditary diseases, and none of the above
could be an independent predictive marker or a therapeutic target
molecule. Therefore, future clinical trials as well as investigations
of novel therapeutic targets are warranted in PPGLs.
SUMMARY

Recent advances in genetic and molecular characterization have
classified PPGLs into subgroups based on their genotype-related
pathophysiology. These genetic abnormalities are frequently
detected in approximately 40% of PPGLs, far more than
proposed over the past decades. Among them, SDHX
mutations are the most frequently detected, resulting in
pseudohypoxic status of tumor cells and which correlate with
patient clinical outcomes, especially in detecting metastatic
potential. Several histopathological and clinicopathological
scoring systems have been proposed, but it is still challenging
for diagnostic pathologists to predict malignant behavior based
on histopathological findings of resected specimens alone, in
contrast to other tumors such as adrenocortical neoplasms.
Therefore, comprehensive scoring systems, combined with
histopathological findings, genotyping, IHC, hormonal
activities (metabolic phenotypes), the sites of involvement, and
other clinical parameters have recently been proposed in the
literature. However, none of the scoring systems reported could
reach the necessary levels of practical usage or incorporation into
clinical guidelines with high accuracy. In addition, no surrogate
markers of specific therapy in patients with PPGL have been
identified. Further investigations are required to clarify detailed
pathophysiology of PPGLs, as well as more precise patient
risk stratification.
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