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Estrogens exert their physiological and pathophysiological effects via cellular receptors,
named ERa, ERpB, and G-protein coupled estrogen receptor (GPER). Estrogen-regulated
physiology is tightly controlled by factors that regulate estrogen bioavailability and
receptor sensitivity, while disruption of these control mechanisms can result in loss of
reproductive function, cancer, cardiovascular and neurodegenerative disease, obesity,
insulin resistance, endometriosis, and systemic lupus erythematosus. Restoration of
estrogen physiology by modulating estrogen bioavailability or receptor activity is an
effective approach for treating these pathological conditions. Therapeutic interventions
that block estrogen action are employed effectively for the treatment of breast and
prostate cancer as well as for precocious puberty and anovulatory infertility.
Theoretically, treatments that block estrogen biosynthesis should prevent estrogen
action at ERs and GPER, although drug resistance and ligand-independent receptor
activation may still occur. In addition, blockade of estrogen biosynthesis does not prevent
activation of estrogen receptors by naturally occurring or man-made exogenous
estrogens. A more complicated scenario is provided by anti-estrogen drugs that
antagonize ERs since these drugs function as GPER agonists. Based upon its
association with metabolic dysregulation and advanced cancer, GPER represents a
therapeutic target with promise for the treatment of several critical health concerns
facing Western society. Selective ligands that specifically target GPER have been
developed and may soon serve as pharmacological agents for treating human disease.
Here, we review current forms of estrogen therapy and the implications that GPER holds
for these therapies. We also discuss existing GPER targeted drugs, additional approaches
towards developing GPER-targeted therapies and how these therapies may complement
existing modalities of estrogen-targeted therapy.
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INTRODUCTION

This review is organized in three general sections. First, we
review basic information regarding estrogen bioavailability and
its receptors. Second, we discuss the impact that GPER has upon
our understanding of the influence of estrogen on human
disease, and its implications for anti-estrogen therapy. Finally,
we review existing pharmacological compounds that selectively
target GPER and outline future potential approaches for
targeting GPER.

ESTROGEN AND ITS RECEPTORS

Estrogens are gonadocorticoids and the primary female sex
hormones. Their actions promote the development of female
reproductive tissue and secondary sexual characteristics, and
they influence all phases of reproduction including conception,
fetal development, parturition, and nursing. Hence, estrogens
exert their effects not only on reproductive tissue but on a wide
range of physiological systems, including integumentary, central
nervous, cardiovascular, skeletal, immune, metabolic, and
excretory systems (1, 2). In humans, three forms of estrogen
are synthesized. They are defined by their common 18 carbon
(C-18) estrane ring structure and are numbered E1- E3 to reflect
the number of hydroxyl groups linked to the estrane ring (Figure
1). Accordingly, they are named estrone (E1), estradiol (E2), and
estriol (E3). Each of these endogenous estrogens is lipophilic and
is presumed to exit and enter cells through their ability to freely
diffuse across the plasma membrane. All endogenous estrogens
are synthesized in the smooth endoplasmic reticulum in a shared

pathway of steroidogenesis from cholesterol (C-27) (Figure 2).
In this pathway, cholesterol is metabolized through a variety of
enzymatic steps into (C-21) progestogens and (C-19) androgens
that serve as the immediate steroid intermediate for estrogens. E1
and E2 are primarily secreted by ovarian granulosa cells in
response to stimulation by neuroendocrine glycoprotein
hormones, including luteinizing releasing hormone (LHRH),
luteinizing hormone (LH), and follicle stimulating hormone
(FSH), which are released from the hypothalamus and
pituitary (3). During reproductive years, E1 and E2 are the two
most common circulating estrogens found in plasma, with scant
amounts of E3 measured. Estrogens can also be synthesized in a
variety of non-ovarian tissues, including, adrenal gland, fat,
brain, bone, skin, vascular smooth muscle and intestine (2).
However, in these tissues, estrogens must be directly synthesized
from androgens, as these tissues lack the necessary enzymatic
machinery to synthesize C-19 androgens. E3 is synthesized at
low levels in the liver and intestine by 160.-hydroxylation of E1
or E2 by cytochrome P450 enzymes, such as CYP3A4 (4). During
pregnancy, E3 becomes the primary estrogen as it is synthesized
at high levels by the placenta, far exceeding that of E1 or E2 in
plasma. While its role in fetal development is not clear, low levels
of E3 in maternal serum or urine is prognostic of poor perinatal
health and congenital anomalies (5, 6).

The process by which estrogens are transported throughout
the body and exert their biologic effects in target tissues is not
completely understood. The vast majority of synthesized
estrogen circulates in the plasma bound to either serum
albumin or sex hormone binding globulin (SHBG) (7, 8). Only
a small fraction (~ 1 to 2%) is unbound or “free” and available to
bind to its receptors (9). E1 and E3 each bind SHBG with much
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FIGURE 1 | Steroid hormone synthesis and metabolism. The diagram designates key enzymatic steps in steroidogenesis.
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lower affinity than E2 and likewise each of these estrogens also
shows a much lower affinity and potency for its receptors than E2
(10). SHBG also binds dihydrotestosterone (DHT) and
testosterone (T) but with relative binding affinities that are 20-
and 5-fold higher than for E2 (11, 12). In premenopausal women,
SHBG levels are twice as high as in men and this has been
suggested to limit their androgen and estrogen exposure (9, 13).
SHBG concentrations decrease following menopause but
increase during the sixth decade of life (14), and low serum
levels of SHBG have been associated with hyperandrogenism and
endometrial cancer (13). Ultimately, estrogens are eliminated
from the body following their metabolic conversion to inactive
metabolites, which poorly bind SHBG, and are excreted in urine
and feces. Metabolic conversion occurs primarily in the liver but
also in other tissues, and involves their biotransformation via
enzyme-mediated conjugation to glucuronide, glutathione,
methyl, and/or sulfate moieties, modifications which enhance
their solubility in plasma and enhance its absorbability by tissues
(15) (Figure 2). Among these estrogen conjugates, estrone
sulfate (E1-S) is the most predominant in plasma, and its
reclamation by steroid sulfatase is yet another route by which
estrogen biosynthesis may occur in extragonadal tissue (16).
The physiological effects of estrogen are manifested through
the integrated action of cellular receptors that belong to the
nuclear steroid hormone receptor (SHR) and G-protein coupled
receptor (GPCR) superfamilies. This paradigm of coordinated
signaling by estrogen through SHRs and GPCRs is evolutionarily
conserved (17) and is also employed by progestogens (18, 19)
and androgens (20). ER and GPER transmit intracellular signals
via fundamentally distinct mechanisms that occur with distinct
kinetics and involve unique signaling effectors (21) (Figure 3). In
general, ERs are localized intracellularly and function as
estrogen-inducible transcription factors, while GPER exhibits
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FIGURE 2 | Estrogen metabolism. This schematic identifies key intermediates in the metabolism of estrone and estradiol.

all the hallmarks of a plasma membrane receptor that manifests
its actions through heterotrimeric G-proteins, which in turn
transactivate plasma membrane receptors and enzymes (22).
Evidence also exists that ERs may function similarly to GPER,
and this has been reviewed elsewhere (23). Despite their
differences in cellular location and mechanism of action, SHRs
and GPCRs each undergo allosteric modulation in response to
binding their cognate ligands, with signaling activity of SHRs and
GPCRs enhanced by the physical interaction of their cognate
ligands at specific receptor contact sites. The estrogen binding
characteristics of GPER and ER are distinct, and they
demonstrate a different dissociation constant, Ky, in
radiotracer assays using *H-estradiol (Table 1). As discussed in
detail (30), it is important to recognize that the relative binding
affinities (RBAs) of ERo, ERP and GPER cannot be readily
compared due to the fact that ERs and GPER are expressed at
different levels and they exist in different physicochemical
environments; ER isolated in detergent-free cytosolic
homogenates versus GPER enriched in lipid-rich plasma
membrane preparations. Thus, the lower K4 that is measured
for E2 in ER binding assays relative to GPER binding assays does
not suggest that E2 has a higher affinity for ER relative to GPER.
Because SHRs are readily isolated from the soluble fraction
of cellular homogenates, crystallization and identification of
physical ligand contact sites encoded with the structure of
SHRs has been achieved (31-33). Crystal structures at
resolutions of 2.6 angstroms for ER liganded to E2 or the ER
antagonist, raloxifene (RAL), have been determined (34). These
results show that E2 and RAL share contact sites with different
binding modes and that each induces distinct conformations
within the ER transactivation domain. The findings from these
studies illustrate that the principal ligand contact sites of ER are
defined within a hydrophobic cavity consisting of twelve helices
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FIGURE 3 | Schematic model of GPER trafficking and signaling. Nascent GPER is biosynthesized in the endoplasmic reticulum (ER) where it undergoes
carbohydrate addition, editing and dimerization prior to forward trafficking through the Golgi apparatus during its transport to the plasma membrane. Misfolded
GPER is polyubiquitinated and degraded at the 26S-proteasome. At the plasma membrane GPER exists as a high affinity GDP-coupled Goy heterotrimer. Upon
engagement of estrogenic ligands, GPER assumes an activated confirmation resulting in the dissociation of Gos and GBy subunit proteins, which in turn, stimulate
adenylyl cyclase and integrin-dependent release of membrane-tethered EGF-ligands, respectively. Independent studies evaluating retrograde trafficking of GPER
suggest that it undergoes constitutive endocytosis and degradation via a ubiquitin-transGolgi-proteasome pathway. It is not yet clear whether sustained GPER
signaling is observed from intracellular receptor (question marks).

TABLE 1 | Relative binding affinities of estrogenic ligands to estrogen receptors.

Ligand Structure Relative Binding Affinity (RBA)
ERa ERB GPER
Steroids
17B-estradiol (E2) 100 100 100
Estrone (E1) 60 37 <0.04
Estriol (E3) 14 21 <0.4
(Continued)
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TABLE 1 | Continued

Ligand Structure Relative Binding Affinity (RBA)
ERa ERB GPER
170- estradiol 7 2 <0.04
Aldosterone <0.0001 <0.0001 a <0.00001
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(Continued)
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TABLE 1 | Continued

Ligand Structure Relative Binding Affinity (RBA)
ERa ERB GPER
Ligand Structure ECso (nM)*
Daidzein o ] OH 250 100 <1
HO I o}
200 74 100

Equol ‘ OH
HO O (o}

RBAs for ERa and ERf are based on reports from multiple sources (24-28). RBA determined from solubilized receptor competition experiments. ~Data are based on fluorescence
competitive binding assay. RBA for GPER are based on values taken from (29). *ECs, is calculated based on functional assays.

(H1-12). Recognition of E2 within the ligand binding domain is
achieved through a combination of hydrogen bond formation by
the phenolic hydroxyls with polar residues contained within H3.
H6 and H11, as well as alignment of the nonpolar character of
estrane ring with hydrophobic residues that comprise these
helices. As GPCRs are integral membrane proteins, purification
is more challenging, and crystallization of GPER has yet to be
achieved. In some regards, the hydrophobic environment
provided within the closely aligned seven transmembrane
helices of GPER is somewhat similar to the structure of the ER
ligand binding domain. Several studies relying upon in silico
molecular docking simulations have calculated principal binding
interactions within the exoplasmic and/or transmembrane of
GPER (35, 36). However, the role of these predicted ligand
contact sites still needs to be evaluated by genetic studies
which examine the influence of amino acid substitutions on
GPER binding and signaling activity.

GPER IN METABOLIC DISEASE AND
CANCER

Studies using knockout mice indicate that ER and GPER play
different roles in estrogen physiology, with ER or GPER null mice
primarily exhibiting reproductive (37, 38) and metabolic (39)
deficits, respectively. This simple dichotomous description clearly
oversimplifies the influence of each receptor type on estrogen
physiology. However, collectively, the phenotypes of ER-null (40)
and GPER-null (41) mice reflect the loss of reproductive function
and metabolic homeostasis that is attributed to decreased ovarian
estrogen biosynthesis accompanying menopause. While it is well
appreciated that the metabolic effects of estrogen are manifested
through ERs (42) and GPER (43), preclinical results published
earlier this year in a study led by Sharma and Prossnitz, showed that
chronic administration of the synthetic GPER selective agonist, G-1/
Tespria, could restore fat, glucose and lipid homeostasis (44). This
result indicates that targeting GPER may be an effective means for
treating diabetes and obesity, and extends prior work that showed
G-1 can ameliorate atherosclerosis in mice (45). The observation
that chronic GPER signaling may alter metabolic activity has
potential significance regarding a role for GPER in cancer as

prolonged, uninterrupted estrogen exposure (46) and metabolic
syndrome (47) are independent risk factors for cancer. Thus, GPER
may serve as a centrally positioned factor that drives estrogen-
induced carcinogenesis through chronic signaling that promotes
metabolic disorder. In support of this concept, studies have linked
GPER expression to clinical indices that predict advanced disease in
breast cancer including increased tumor size, the presence of distant
metastases, and tamoxifen-resistance (48-51). Similar results have
been obtained in ovarian (52), endometrial (53), and testicular
cancers (54) with GPER directly linked to poor survival. However,
other reports suggest an inverse relationship between GPER and
cancer progression (similar to that demonstrated by ER) (55, 56).
The most likely explanation for the differences observed in the
analysis of human cancer and GPER resides in the lack of a
standardized procedure for its immunohistochemical detection
and quantification in tumor biopsy specimens. For instance, some
studies have set an absolute threshold for GPER expression among
tumors, while others have focused on the relative difference between
GPER in tumors and adjacent normal tissue in individual patients
(55, 57, 58). Neither have laboratory studies resolved whether GPER
is pro-oncogenic. Several observations strongly support that it is.
First, GPER is required for the survival of xenograft-derived cancer
stem cells and metastatic disease (59). Second, in breast cancer cells,
GPER integrates assembly of the fibronectin matrix (60) with the
release of EGF (61); thus satisfying two basic requirements or
cellular survival: attachment to the extracellular matrix and
responsiveness to growth factors. Third, in a preclinical model,
breast cancer is less aggressive when GPER is genetically inactivated
(62). Finally, the GPER selective antagonist, G36, delays the growth
of type II endometrial cancer in mice (63). Nevertheless, other
studies have suggested that GPER is tumor suppressive (64, 65).
Specifically, stimulation with GPER-selective agonist, G-1 leads to
pro-apoptotic signaling, as well as decreased proliferation and
migration by cancer cells. Limitations of the latter studies are that
G-1 was used at a 100-fold higher concentration than its reported K;
or ECs (65) and receptor knockdown strategies were not used to
test for off-target effects. In addition, these studies did not determine
whether the G-1 responses also occur when the endogenous
estrogen, E2 is applied, or for effects of selective GPER
antagonists (G15 or G36). The latter point is particularly relevant
because studies reporting GPER as tumor suppressive measured
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inhibitory biological responses. Other studies have reported that the
GPER promoter is methylated in a small percentage of cancer
biopsies (66). Then again, genetic silencing is observed for many
genes in cancer specimens, and this could be explained by genomic
instability. Indeed, promoter methylation of ESR-1 (ERo) is
common in breast cancer (67, 68). Notably, epigenetic silencing of
GPER as an anti-cancer mechanism is at odds with data in public
repositories, showing that GPER is widely expressed, and rarely
mutated, in solid or hematopoietic cancers and in cancer cell lines.
Thus, the conclusion that GPER is “tumor suppressive” is
inconsistent with the widely accepted concept that a tumor
suppressor gene requires genetic inactivation or epigenetic
silencing. Furthermore, the idea that GPER is anti-oncogenic does
not fit well with findings which suggest an active role for GPER in
cancer progression in the tumor microenvironment (21).
Specifically, the hypoxic environment created by proliferating
cancer cells favors increased expression of GPER and local
estrogen production. Breast cancer cells and cancer-associated
fibroblasts (CAFs) upregulate GPER expression via hypoxia-
inducing factor-1o. (HIF-1o)-regulated transcriptional control
(69). Increased AP-1 mediated aromatase transcription and
activity is measured in breast cancer cells following estradiol or
tamoxifen-mediated stimulation of GPER (70). Nor does an anti-
oncogenic role for GPER reconcile with bioinformatic analyses that
show that its expression correlates directly with pro-metastatic
signaling pathways in estrogen receptor negative breast cancer
(71). Nevertheless, the discrepancy between the pro-oncogenic
and tumor suppressive activities of GPER has been discussed (72)
and underscores the need to define the mechanisms that drive
GPER activity and their relationship to oncogenesis.

IMPLICATIONS OF GPER FOR
ANTI-ESTROGEN THERAPY

ERs and GPER act independently but coordinately to maintain
homeostasis of estrogen-responsive tissue. Thus, it is likely that
neoplasms that arise from these tissues may either continue to
direct estrogen action through both receptor types or lose control
of one or both receptor mechanisms during their evolution. In
fact, this is the pattern that is observed in breast cancer with
treatment-naive tumors containing both receptors, one or the
other receptor, or neither receptor (73). From a clinical
perspective, GPER disrupts the ER-centric, binary rubric which
categorizes breast cancer as either estrogen responsive or
nonresponsive, with nearly, 20% of all breast cancers
expressing GPER in the absence of ER. Interestingly, a
preponderance of these ER-GPER+ tumors are triple negative
breast cancers that lack ER, progesterone receptor (PR) and her2/
neu (74).

Therapeutic interventions that reduce bioavailable estrogen
should be an effective means to prevent the biological action of
ERo, ERB, and GPER. At present, three common methods are
employed for reducing bioavailable estrogen: i) ovarian ablation
by ovariectomy or radiation, ii) ovarian suppression by bolus
administration of a gonadotrophin releasing hormone (GnRH)

superagonist, such as goserelin or leuprolide, or iii) chemical
inhibition by administration of aromatase inhibitors (Als), such
as exemestane, letrozole or anastrazole. Each of these three
treatment interventions are used for the treatment of breast
cancer. However, no single method for reducing estrogen is
failproof and each of these approaches induces premature
menopause, which is associated with long-term mortality risks,
including increased risk of cardiovascular disease (75) and loss of
bone density (76), as well as menopausal symptoms that can
impact on quality of life (77). Elimination of ovarian function,
either permanently by ablation or temporarily by interrupting
the neuroendocrine circuit of estrogen biosynthesis, does not
interfere with nonovarian biosynthesis. Als are effective in this
manner in that their effects prevent estrogen biosynthesis
independent of tissue origin. While Als effectively delay breast
cancer progression in approximately 50% of breast cancer
patients, their beneficial value in the remaining patients is
offset by their high rate of acquired and de novo resistance
(78). In evaluating the efficacy of blockade of estrogen
biosynthesis in the context of either GPER (or ER), it is
important to point out that nuclear steroid hormone receptors
(SHRs) and G-protein coupled receptors (GPCRs) are
allosterically regulated receptors that are capable of ligand-
independent action (79, 80). Thus, inhibition of estrogen
biosynthesis may not be effective for patients whose tumors
contain mutant receptors that lose ligand binding activity but
retain constitutive signaling. Although ligand binding mutants
have not yet been defined for GPER, they have been identified for
other GPCRs (81) and for ER (82).

An important concern regarding therapies that block
estrogen biosynthesis is that theoretically they should
effectively increase the ability of exogenous estrogens to
interact with their cellular receptors. Albeit, it is not known
whether or not Als alter the interaction of exogenous estrogens
with either GPER or ER, as this has not yet been tested
experimentally. This idea is particularly interesting in light of
the fact that although xenoestrogens show low binding affinities
relative to 17(B-estradiol for ER. The same is not true for GPER,
as xenoestrogens show much higher relative binding affinities for
GPER (Table 1). In order to illustrate their potential effect on
anti-estrogen therapy in the context of GPER, a few of the more
abundant exogenous estrogens that are relevant for this
discussion are mentioned here. For example, in independent
assays, the dietary soy isoflavone, daidzein (DZN) exhibits a high
relative potency for GPER relative to ER, with an ECs in the
subnanomolar range compared with an EC50 that is more than
100- to 200-fold higher for nuclear ERs. Dietary exposure to soy
is not trivial, in fact, measurements of postprandial serum
concentrations of DZN can exceed preovulatory levels of E2 by
10-fold (83). Adding further complexity to the influence of
phytoestrogens on breast cancer is the popular belief that a
soy-rich diet is breast cancer protective (84). Epidemiological
studies have placed emphasis on whether metabolism of DZN to
S-equol, which is exclusively mediated by the gut microbiome is a
critical factor in influencing estrogen physiology and ER-targeted
therapy (85). This concept is interesting in light of the finding
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that Eastern women, whom show a two-fold reduced risk for
developing breast cancer relative to Western women are twice as
likely to harbor gut bacteria that metabolize DZN to S-equol
(86). However, the oncogenic activity of DZN and S-equol is
unclear as DZN exerts pro- and anti-oncogenic activity in mice,
while other studies suggest that S-equol is anti-oncogenic (84).
The influence of dietary estrogens on estrogen-targeted therapies
is controversial (87). A recent guidance statement from the
American Association of Clinical Endocrinologists (AACE)
suggests that a soy-rich diet may be used as an alternative
approach for estrogen replacement therapy (88) indicating that
endogenous estrogens and phytoestrogens are biologically
equivalent. Yet, an oft quoted study of 524 postmenopausal
Chinese women with breast cancer showed improved survival
and less recurrence in patients with the highest quartile of soy
intake relative to counterparts in the lowest quartile of soy
consumption (89). Significantly, this study showed a significant
risk increase for patients receiving tamoxifen compared to those
that received anastrozole. These data have been interpreted to
indicate that soy may act competitively to block binding of
tamoxifen to ER. Alternatively, these findings may suggest that
the poorer survival observed in the tamoxifen arm of the study
may be due to the fact that tamoxifen and soy isoflavones
function as GPER agonists. Moreover, the Kang study did not
control for obesity nor bacterial metabolism of DZN.
Nonetheless, in humans avoidance of dietary soy or ingestion
of DZN supplements by breast cancer patients receiving estrogen
targeted therapy is encouraged (90) despite the fact that the RBA
of DZN is 0.003% for ERa and 0.05% for Erf} (91). The question
of whether soy isoflavones show enhanced carcinogenicity in the
absence of endogenous estrogen has not yet been carefully
addressed. Human and mouse studies which control for
phytoestrogen intake, gut metabolome, and obesity in the
presence or absence of Als are necessary to evaluate the
carcinogenicity of soy isoflavones in the face of AI therapy.
GPER also provides similar concerns regarding the
carcinogenicity of the plasticizer, bisphenol A (BPA), the highest
volume chemical produced world-wide (92). Human exposure to
BPA is significant as >90% of the US population contains
measurable amounts of BPA, with highest levels in children (93).
BPA exhibits an RBA for GPER that is 100-fold greater than that
measured for nuclear ERs (Table 1). In vitro studies indicate that
BPA potency for GPER is high, with biological effects measured in
the low nanomolar range in breast cancer cells and breast cancer-
associated fibroblasts (60, 94) and in human seminoma and
testicular cancer cells (95). Exposure to BPA is associated with
many human diseases, including obesity, diabetes and cancer, and is
able to induce toxicological effects in tissues and cultured cells (96).
The Environmental Protection Agency and the Food and Drug
Administration agree upon a safe reference dose (RfD) for BPA in
humans at 50 pg/kg/day that was scaled from toxicology studies in
rodents (97). Carcinogenicity testing at doses below and above the
RfD in mice has yielded mixed results. While BPA is not considered
a robust carcinogen, early life exposures in rodents at the RfD is
associated with prostate and breast cancer (98). These authors duly
underscore that the most vexing variable in the analysis of BPA

carcinogenicity is the acknowledged error of scaling RfD between
man and rodent due to the fact that BPA exhibits nonmonotonic
dose responses in many biochemical and biological assays (99).
Even more significant with regards to GPER, urinary concentrations
of BPA in participants in the National Health and Nutrition
Examination Survey (NHANES) demonstrated a positive
association with metabolic syndrome (100). Moreover, exposure
to BPA correlates with an increase in serum SHBG, even though
BPA shows poor binding affinity for SHBG (12). Thus, theoretically,
for a patient receiving Als, BPA is a particularly potent GPER
agonist. However, this has yet-to-be addressed in studies in which
dietary estrogen intake, obesity, and gut metabolome are carefully
controlled. Nonetheless, BPA is a particularly troubling
environmental estrogen due to the fact that it is a malleable
chemical structure that has been manipulated by chemists to
produced more than 40 analogues. Many of these BPA similar
are detected in humans at even higher concentrations than BPA (93,
101), and at least seven BPA analogues exhibit similar RBAs and
relative potencies for GPER in breast cancer cells (35).

ER antagonism, using a selective estrogen receptor modulator
(SERM), such as tamoxifen or a selective estrogen receptor
degrader (SERD), such as fulvestrant, is yet another form of
anti-estrogen therapy that is widely effective in the treatment of
breast cancer, providing greater than 10 year survival in
postmenopausal women with early stage, ER-positive cancer
(102). Still, not all of these patients respond to ER antagonists,
as de novo resistance occurs, and this may be due to many
reasons, including: i) the presence of constitutively active ER
mutants, ii) hyperactive growth factor signaling, or iii) the
presence of an alternative estrogen receptor, i.e. GPER (103).
GPER adds further complexity to anti-estrogen therapy in that
ER antagonists, including tamoxifen, faslodex and raloxifene
function as GPER agonists (21, 29). Furthermore, ER
antagonism or Als are not effective for postmenopausal
women with late stage disease or for premenopausal women
(104). Consistent with this idea, results from the SOFT
(Suppression of Ovarian Function Trial) suggest that even
further supplementation of estrogen-targeted therapy
(Tamoxifen or AI) by adding ovarian suppression for
premenopausal ER-positive breast cancer, while effective in
reducing serum estrogen and disease relapse had no effect on
overall survival (78). In this study, patients were not further
stratified by whether their tumors expressed GPER. However, an
argument could be made that patients whose tumors lacked
GPER [approximately one-third of ER+ tumors (73)] may be
more likely to respond to ER antagonism plus ovarian
suppression. Further confusion regarding the role of estrogen
and its receptors in female reproductive cancer comes from the
disconnect between menopausal status and proliferative index, as
measured by Ki-67 in tumor biopsy tissue. Breast tumors from
patients with intact ovaries, show high mitotic indices, while
postmenopausal women with ER-positive breast cancer are
assigned either anti-estrogen therapy regardless of Ki-67 index
(105). Chemotherapeutic agents, which are toxic but target
rapidly proliferating cells are layered on top of anti-estrogen
therapy for patients with aggressive estrogen-dependent cancers
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(106), without consideration of their GPER status, which has
been tied to chemotherapeutic resistance via its capacity to
trigger EGFR transactivation (107). Recent results from the
PALOMA-III trials, further showed that addition of
palbociclib, which targets cyclin-dependent kinases, CDK4 and
CDKG®, to ER-targeted therapy (fulvestrant) provides increased
overall survival for patients with advanced ER-positive breast
cancer (108). Early results achieved with palbociclib in metastatic
breast cancer are encouraging. Yet they do not resolve whether
palbociclib selectively targets proliferation in fulvestrant-
resistant, ER-positive breast cancer cells, or whether its actions
directly influence GPER-dependent cellular responses associated
with tumor cell metastasis and disease progression. Collectively,
these examples indicate that definition of GPER status for
patients with breast cancer may help to select patient
populations which are best able to respond to existing anti-
estrogen therapies, either ovarian suppression, ER antagonism or
aromatase inhibitor.

EXISTING AND FUTURE
PHARMACOLOGICAL COMPOUNDS THAT
TARGET GPER

For all of the above reasons, therapeutic approaches that block
GPER action hold great promise for the treatment of cancer.
After all, nearly one-third of all FDA-approved drugs target
GPCRs (109). While GPCR targeted drugs have been
predominately used for the treatment of cardiovascular disease
and diabetes, the concept of developing GPCR targeted cancer
therapeutics has gained traction over the past decade (110). This
is largely due to preclinical studies which link GPCRs to cancer
growth and metastasis, often in a scenario where the GPCR
involved is chronically exposed to local or circulating agonist.
Examples of this include, the bioactive lipid, lysophosphatidic
acid, and its receptor, LPAR-1 in breast cancer (111),
chemokines, CXCL8/IL8 and CXCR1 and CXCR2 in
melanoma, pancreatic cancer and gastric tumors (112) and
CXCL12 and CXCR4 in multiple cancers (113). Consistent
with the notion that chronic estrogen exposure may drive
GPER oncogenesis, breast tumors with increased GPER plasma
membrane density show poor prognosis (51). This may be
consistent with the concept that GPCRs often demonstrate a
hyperbolic relationship between ligand occupancy and receptor
response (114). This is widely described as “fractional
occupancy” and suggests that a small change in GPER plasma
receptor density could result in a more than linear increase in
GPER activity. It is also important to consider that GPER shows
specific binding activity to estrogenic ligands, natural or
synthetic, which are hydrophobic and/or lipophilic and easily
diffuse through or insert themselves into a lipid bilayer. In fact, it
has previously published that crude membrane fractions exhibit
specific GPER binding activity (Thomas et al, 2005). Whether
intracellular interaction between GPER and its ligands allows for
sustained intracellular signaling or plays a role in the proper
folding and transport of GPER to the plasma membrane has not

yet been determined. In this regard, it is important to recognize
that an intracellular staining pattern is observed in most, but not
all, cell types (115). However, a plasma membrane staining
pattern by immunohistochemical (IHC) analysis of
microtome-sectioned, archival paraffin-embedded tissue is not
easily detected unless the majority of the receptor is at the plasma
membrane, and little is detected intracellularly. With this in
mind, slight differences in GPER ligand sensitivity would be
difficult to detect by IHC, however, measurement of GPER
plasma membrane density by flow cytometric analysis of intact
breast cancer cells (116) may provide a better handle as whether
to apply anti-estrogen therapy in the context of GPER-targeted
therapies described below.

Small Molecule GPER Antagonists

Several GPER antagonists have been developed (Table 2). While
many of these first-generation drugs hold promise, we review
below two GPER antagonists with half-maximal inhibitory
concentration (ICsy) within the nanomolar range. The first
GPER antagonist in this class, named G15, was developed by
Prossnitz and colleagues using a combination of virtual and
biomolecular screening steps (117). First these authors used a
software-assisted virtual screen of the NIH Molecular Libraries
Small Molecule Repository (MLSMR) of 144, 457 molecules.
From this primary screen 57 compounds were isolated that were
similar in structure to the GPER selective agonist, G-1, a
substituted dihydroquinolone (24). These compounds were
tested subsequently for their capacity to inhibit E2-mediated
calcium mobilization in human SKBR3 breast cancer cells that
express endogenous GPER but lack ERo. and ERf. G15 emerged
from this screen based on its: i) structure and presumed ability to
interact competitively with E2, ii) ability to block E2-dependent
calcium signaling, and iii) measured binding affinity (K4 = 20
nM) for GPER, which was assessed using I'**-labelled G-1 as
radiotracer. G-15 displays relatively low binding affinity for ERo
and ERP as measured in a competition assay employing an Alexa
633-estradiol conjugate as fluorotracer (K; > 10 nM). In vivo
testing has shown that G15 blocks a proliferative response in
uterine epithelial cells (117). A G15 derivative, named G36 was
subsequently synthesized by Dennis and Prossnitz, with even

TABLE 2 | IC50 for GPER antagonists.

Ligand Affinity Reference
IC50 (NM)

G15 4190 (117)
b185

G36 112 (118)
b165

CIMBA °60-90 (119)

MIBE 1,750 (120)

PBX1 “250 (121)

PBX2 €300 (121)

C4PY °900 (122)

CPT 5,000 (123)

ab |Gy, was measured by competition binding assay to GPER between antagonist and
fluorescent estrogen, iodinated G1 analog and [°H] E., respectively.
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lower affinity interactions with ERot (118). G36 inhibits E2 and
G-1-dependent calcium mobilization as well as erk-1/2
activation in SKBR3 cells (IC5, = 200 nM) and blocks the
growth of transplanted estrogen-dependent type II endometrial
cancer cells (63). Recently, Chris Arnatt and David Wang have
collaborated to report a new GPER antagonist that protects
ovariectomized ERo null mice from estrogen-induced
cholesterol gallstones (119). Using a receptor-ligand interaction
computational screen, a novel series of GPER-selective
antagonists were generated, including one new compound, 2-
cyclohexyl-4-isopropyl-N-(4-methoxybenzyl) aniline (CIMBA).
that shows strong antagonism with selectivity for GPER.
Specifically, CIMBA inhibits G-1 dependent calcium
mobilization in HL60 cells (IC5, = 75 nM), with a binding
activity for ERo. or ERP <10 UM in fluorescence polarization
assays. Some differences were noted by Arnatt and colleagues
with regards to the efficacy of G15, G36 and CIMBA to inhibit
calcium mobilization, although all three GPER antagonists each
showed inhibitory capacity for G-1 induced cAMP accumulation
by homogenous time resolved fluorescence (HTRF). Thus, while
the computational algorithms that yielded the G-series based and
methoxybenzyl aniline based GPER antagonists were inherently
distinct, both show similar capacity to inhibit G-1 induced GPER
signaling, with each showing efficacy for reducing estrogen-
induced pathology in mice.

Targeting G Proteins
An alternative approach to developing selective agents that block
GPER action is to employ pharmaceutical compounds that
directly target G proteins (124, 125). This strategy has the added
benefit that although GPER is a driving force in the genesis of
metabolic disorder and cancer, these are complex diseases in
which multiple GPCRs are involved. Primary examples include
chemokine receptors (CXCR1, CXCR2, CXCR4, CCR5, CCR?7)
that drive chronic inflammatory responses common to both
obesity and cancer. The premise by which G protein blockade is
effective as a therapeutic is the ability of these agents to
preferentially inhibit signaling pathways shared by more than
one GPCR. Towards this end, cell permeant pharmacological
agents have been developed that interfere with conformational
activation of the GPCR-Go}y complex following ligand binding.
To date, pharmacological compounds that specifically inhibit Goi-
GTPase have been limited to the Goq proteins and include YM-
254890 (126) and FR900359 (127). Goq inhibitors show good
preclinical success in thrombosis (128), asthma (129) and
melanoma (130). In contrast, GBy inhibitors, which were
initially based upon the carboxyl terminal domain structure of
G-protein receptor kinase 2 but now also include M119 and
gallein, show efficacy in preclinical models of opioid analgesia,
chronic inflammatory disease, heart failure (124). Blockade of
GPER-dependent EGFR transactivation in breast cancer cells is
effective using a GPy-sequestrant peptide (131), and further study
is needed to evaluate whether GBy-inhibitors are effective in
mouse models of metabolic disorder and cancer.

“Biased” agonists that stabilize a GPCR conformation that
preferentially activates one signaling pathway over another (132)

represents a related approach towards selective inhibition of G
protein dependent signaling. Oliceridine, a biased agonist for p-
opioid receptor was developed to favor Goui-inhibition of
adenylyl cyclase over GPy-dependent activation of B-arrestin
(133) and has been evaluated in clinical trials for chronic pain.
Although recent reports indicate that low agonist efficacy, rather
than receptor bias, may explain the low side effect profile of
oliceridine (134). Similarly, biased agonists have been developed
and characterized for angiotensin I receptors that preferentially
recruit B-arrestin for their potential use in reducing hypertension
(135). Biased agonists have yet to make their way into the clinic.
However, it is unclear at the moment whether the biased agonist
conformation is unique to certain GPCRs or whether it has broad
application. Still, our environment is replete with compounds
that function as estrogen mimetics, and it may be possible by
high throughput analysis of synthetic and nutraceutical
compounds to identify biased GPER agonists that may have
therapeutic value.

Targeting Downstream Signaling Effectors
of GPER

Via GPER, estrogens trigger an epidermal growth factor (EGF)-
autocrine loop (22) that holds significance for breast carcinoma,
and potentially other malignancies that arise from epithelial
tissue. In breast cancer this holds particular significance due to
the reciprocal relationship that is often observed between ER and
epidermal growth factor receptors (EGFRs) in primary tumors.
This relationship has fostered the dichotomous categorization of
breast cancers as either estrogen responsive or growth factor
responsive. While GPER disrupts this simple binary scheme,
GPER holds potential diagnostic value in selecting patients that
may best benefit from either erbB1 or erbB2/her2/neu targeted
therapy, particularly among premenopausal women. Assessment
of GPER expression also may suggest the appropriate
combinatorial assignment of AI or GPER antagonist with
EGEFR targeted antibody treatment. As discussed in section 3,
GPER is expressed in a majority of TNBC, an aggressive subtype
of breast cancer with no known molecular targets. erbB1/EGFR
is also commonly overexpressed in TNBC, although results from
numerous clinical trials reveal low response rates to anti-EGFR
therapy for patients with TNBC (136). However, some patients
do respond well, which may suggest a need to stratify patients for
EGEFR responsiveness and to develop combinatorial therapies. In
both regards, GPER may have value. First, as a theranostic index.
Second, GPER targeted therapeutics may fit well as part of a
combinatorial anti-EGFR therapy for patients with erbBl
overexpressing TNBC.

Phosphoinositide 3 (PI3) kinase/AKT signaling lies
downstream of erbBl/erbB2, and is activated following GPER
stimulation (137). Activation of PI3K/AKT signaling occurs
commonly in breast cancer and is associated with endocrine
resistance and worse prognosis (138). Pan-PI3K inhibitors have
fared poorly in clinical trials due to their toxicity, while the
isoform-specific PI3K inhibitor, alpelisib, has been approved by
the FDA as co-therapy with fulvestrant for patients with ER-
positive, PI3Kalpha mutated advanced breast cancer (139). FDA
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approval of alpelisib with fulveestrant followed the results of the
SOLAR-1 trial that showed that patients receiving alpelisib with
fulvestrant showed a median increase of 6 months of progression
free survival. Future studies that include a more comprehensive
view of patients which are estrogen responsive by including
analysis of GPER, may lead to similarly designed clinical trials
that combine either Als or GPER targeted therapy with alpelisib.

Antibodies

Traditionally, small molecules have dominated as the preferred
means to target GPCRs but recent pharmaceutical trends that
favor immunotherapeutic approaches have led to the
development of GPCR-targeted antibodies for clinical use
(Table 3). The most significant progress has been made in the
development of antibodies that block the binding of chemokines
to their cognate GPCRs in cancer and inflammatory disease (144,
145). Notably, mogamulizumab/Poteligeo, an anti-CCR4
targeted therapy for refractory adult T cell leukemia and
mycosis fungoides has received FDA approval (146). Likewise,
the FDA has also approved erenumab/Aimovig, targeting
Calcitonin Gene-Related Peptide Receptor (CGRPR) as a
prophylactic treatment for migraine headaches (141). In
addition, the angiogenesis/tumor metastasis-associated
receptor, CXCR4, targeted by ulocuplumab (Bristol Myers
Squibb), a fully humanized antibody that blocks binding of
stromal-derived factor 1 (SDF-1) in adult myeloid leukemia
has entered phase II trials (143). The CCR5-targeted antibody,
leronlimab is currently under phase III investigation as an HIV
therapy and has entered phase II testing to relieve chronic lung
inflammation that accompanies COVID 19 infection (142).
CCR2 targeted mAB, MLN1202/plozalizumab (Millenium/
Takeda Oncology) has been evaluated in multiple clinical trials
for cancer and other indications (147).

Once considered difficult to target via antibody-based
approaches, the combined use of lipid-enriched GPCR
preparations and the development of recombinant phage
display technology has allowed for the rapid growth and
development of antibodies that target GPCRs. The fact that
GPCR heterodimerization is a widely accepted paradigm that
adds diversity and complexity to GPCR functionality is an
additional reason why antibody-based therapeutic approaches
have gained traction relative to small molecule antagonists.

Antibodies that target GPCRs could also be used to deliver
anti-cancer agents by conjugating the antibodies to nanoparticles
(148). Such nanoparticles can be formed from biodegradable
polymers and can physically entrap the anti-cancer agent

throughout the nanoparticle (149). Through diffusion and
degradation of the polymer, the drug can be released in a
controlled manner to the target cancer (149). Polymers used to
prepare these particles include but are not limited to poly lactic-co-
glycolic acid (149), polysulfenamides (150), and polyanhydrides
(151). Agents that can be loaded into the particles include proteins
such as cancer antigens (152), nucleic acid based molecules like
plasmid DNA (153) and CpG (154) and small molecule drugs like
paclitaxel and doxorubicin (149, 155).

CONCLUSIONS

Anti-estrogen therapies are successfully employed for the
treatment of breast cancer and anovulatory infertility. Still, at
present, decisions regarding the appropriate assignment of anti-
estrogen therapy in breast cancer are limited strictly upon the
detection of ER in tumor biopsy specimens. This ER-centric
perspective ignores the fact that 20% of breast cancers express
GPER and in the absence of ER (73), and that GPER is expressed
in a majority of TNBCs (74). Despite the relative success of ER
antagonists, aromatase inhibitors and ovarian ablation/
suppression strategies for postmenopausal women with early
stage ER- positive cancer, resistance occurs. A further
confounding variable for the assignment of anti-estrogen
therapy is the fact that ER antagonists (both SERMS and
SERDs) function as GPER agonists, which aligns with the
finding that GPER is associated with tamoxifen resistance in
breast cancer patients (103). The realization that daidzein (156)
and environmental bisphenols (35) potently activate GPER
further alters our perspective regarding the appropriate
assignment of anti-estrogen therapy. In addition, recent clinical
trials evaluating Al or TAM with ovarian suppression have
shown a median increase in progression free survival
suggesting that some patients may respond favorably to
tandem anti-estrogen blockade. However, these studies did not
include patients whose tumors are GPER- positive and ER-
negative. Our current perspective for determining which
patients may respond to anti-estrogen therapy is evolving, and
is bolstered by findings that show that GPER associates with
cancer progression variables (48, 52, 53), activates cellular
receptors that facilitate cancer cell survival (54), promotes the
survival of patient-derived breast cancer stem cells (59), and acts
in the tumor microenvironment to drive cancer metastasis (62).

The development of GPER targeted therapies holds the
promise of expanding our existing arsenal of estrogen-targeted

TABLE 3 | Status of GPCR therapeutic antibodies.

GPCR Drug name Brand name Status Indication References
CCR4 mogamulizumab Poteligeo Approved, 2018 mycosis fungoides (140)
Sezary syndrome
CGRPR erenumab Aimovig Approved, 2018 migraine prophylaxis (141)
CCR5 leronlimab Phase Il HIV (142)
Phase Il COVID-19

CXCR4 ulocuplumab Phase Il multiple myeloma (143)
CCR2 plozalizumab Investigational diabetic nephropathy

Frontiers in Endocrinology | www.frontiersin.org

November 2020 | Volume 11 | Article 591217


https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

Rouhimoghadam et al.

Therapeutic Perspectives on the Modulation of GPER

therapies. GPER is a therapeutic target that holds particular
promise for the treatment of several critical health concerns
facing Western society, including obesity, diabetes, vascular
pathology and advanced cancer. In the preclinical setting,
chronic administration of G1/Tespria restores fat, lipid, and
glucose homeostasis in obese and diabetic mice without
uterotropic effects (44). Analysis of human cancer and in mice
suggest that GPER is linked to advanced cancer, and chronic
estrogen exposure and metabolic syndrome are independent risk
factors for many cancers. Thus, GPER provides a likely
mechanism by which metabolic disorder may be part of the
landscape for estrogen-driven malignancies. The selective GPER
antagonists, G15 delays the growth of endometrial cancer (63)
and exciting new data indicates that a new GPER antagonist,
CIMBA, can prevent estrogen-induced gallstones (119).
Additional methodologies for targeting GPER may also include
direct blockade of G-proteins, the development of biased
agonists and therapeutic antibodies. Collectively, these
approaches may complement existing anti-estrogen therapies
and improve our approach towards treating patients suffering
from estrogen-driven malignancies and disease.
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