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The phenotypic trait of high bone mass (HBM) is an excellent example of the nexus
between common and rare disease genetics. HBM may arise from carriage of many ‘high
bone mineral density [BMD]’-associated alleles, and certainly the genetic architecture of
individuals with HBM is enriched with high BMD variants identified through genome-wide
association studies of BMD. HBMmay also arise as a monogenic skeletal disorder, due to
abnormalities in bone formation, bone resorption, and/or bone turnover. Individuals with
monogenic disorders of HBM usually, though not invariably, have other skeletal
abnormalities (such as mandible enlargement) and thus are best regarded as having a
skeletal dysplasia rather than just isolated high BMD. A binary etiological division of HBM
into polygenic vs. monogenic, however, would be excessively simplistic: the phenotype of
individuals carrying rare variants of large effect can still be modified by their common
variant polygenic background, and by the environment. HBM disorders—whether
predominantly polygenic or monogenic in origin—are not only interesting clinically and
genetically: they provide insights into bone processes that can be exploited
therapeutically, with benefits both for individuals with these rare bone disorders and
importantly for the many people affected by the commonest bone disease worldwide—
i.e., osteoporosis. In this review we detail the genetic architecture of HBM; we provide a
conceptual framework for considering HBM in the clinical context; and we discuss
monogenic and polygenic causes of HBM with particular emphasis on anabolic causes
of HBM.

Keywords: high bone mass (HBM), osteopetrosis, SOST, LRP5, dual-energy X-ray absorptiometry (DXA), bone
mineral density (BMD), genome-wide association studies (GWAS)
INTRODUCTION

Most people are first introduced to genetics through the gardening career of Gregor Mendel and his
observations regarding various features of the pea plant (flower color, pod shape, etc.). Mendel’s
studies led him to conclude that individual characteristics (i.e., phenotypes) were determined by
discrete units of information (i.e., genes) that came in pairs (i.e., alleles), with one of each pair
inherited by each offspring randomly and independently of the genes determining other
characteristics (1). He also concluded that at any particular locus one allele would be dominant
and the other recessive.
n.org October 2020 | Volume 11 | Article 5956531

https://www.frontiersin.org/articles/10.3389/fendo.2020.595653/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.595653/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:celia.gregson@bristol.ac.uk
mailto:emma.duncan@kcl.ac.uk
https://doi.org/10.3389/fendo.2020.595653
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.595653
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.595653&domain=pdf&date_stamp=2020-10-29


Gregson and Duncan Genetic Architecture of High Bone Mass
Mendel’s laws certainly explained the phenotypes observed in
his multigenerational plant breeding experiments; and they
provided an explanation for the inheritance of autosomal
monogenic disorders (2). However, they appeared not to explain
the inheritance of many traits that exhibit continuous distribution
in the population (e.g., height, weight). Initial attempts at
reconciliation proposed that continuously distributed phenotypes
might still be determined by a single locus but with a ‘blending’ of
each parent’s characteristics rather than a pure dominant/recessive
model of inheritance (e.g., a tall mother and a short father would
have children of average height); but ultimately this question was
resolved by the demonstration that continuously distributed (or
quantitative) traits arise from the effect of multiple genetic loci,
each of which individually exhibits Mendelian inheritance (3),
which combine, both additively and interactively, and within a
given environment, to produce the final phenotype.

These concepts are not just of historical interest but highly
relevant when considering the genetic architecture of high bone
mass (HBM)—or indeed any other heritable disease.
WHAT IS GENETIC ARCHITECTURE?

To quote Gratten et al., “genetic architecture refers to the number
of genomic loci contributing to risk, the distribution of their allelic
frequencies and effect sizes, and the interactions of alleles in and
between genes, all of which contribute to the relationship between
genotype and phenotype. Understanding genetic architecture is
the foundation on which progress in dissecting etiology is built
because it dictates which study designs for identifying risk variants
are likely to be most successful.” (4) It is hard to improve upon this
elegant definition and its clear consequences regarding gene
mapping strategies [for an in-depth discussion of this topic, the
reader is referred to an excellent recent review (5)].

In considering the genetic architecture of HBM specifically,
the simplest question that can be asked is whether HBM is
monogenic (due to carriage of a rare variant of large phenotypic
effect) or polygenic (arising from the cumulative effect of
multiple variants, each individually of small effect). However,
even answering this apparently simple question is not straight-
forward, as these are not necessarily mutually exclusive options,
whether considering either the HBM population as a whole or a
particular affected individual.

Monogenic diseases, whether dominant or recessive, autosomal
or X-linked, are due to rare highly penetrant alleles affecting a
single gene. Monogenic diseases generally follow classical
Mendelian inheritance such that the presence or absence of
disease is mathematically predictable, with some leeway for
variable penetrance and expressivity from genetic and/or
environmental modifiers (6). Although individually rare, the
World Health Organization (WHO) estimates that monogenic
disease affect 1% of the worldwide population (7); and there are
many skeletal dysplasias that display classic Mendelian
inheritance, with either high (e.g. osteopetroses) or low (e.g.
osteogenesis imperfecta) bone mineral density (BMD) (8).
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However, this does not mean that all heritable dichotomous
disease states are monogenic. Many common diseases (e.g.,
ankylosing spondylitis, osteoarthritis, breast cancer) are defined
as present or absent according to particular characteristics,
whereas other common diseases (e.g., hypertension, type 2
diabetes) are defined using a threshold value along a
continuously distributed phenotype (i.e., blood pressure and
glycemia). It is perhaps easier to understand how quantitative
disease states may be polygenic in inheritance (3), compared with
qualitative (i.e., dichotomous) common disease states. However,
qualitative diseases may also be polygenic: it is the underlying risk
of disease that is quantitative, with disease manifest once a
particular genetic threshold is reached (3, 9). Indeed, a priori
even diseases that might appear monogenic are more likely to be
polygenic (10). The validity of this concept has been demonstrated
comprehensively by the enormous success of genome-wide
association studies (GWAS), which have identified thousands of
variants associated with a host of common quantitative and
qualitative diseases as diverse as type 1 diabetes to schizophrenia
to prostate cancer (11). The polygenic common variant
‘background’ can also modify the phenotype of persons carrying
rare highly penetrant monogenic variants—such as BRCA1
mutations in breast cancer or carriage of HLA-B27 in
ankylosing spondylitis (12–14). Here, it is worth highlighting
that extreme HBM populations are enriched with common
variant ‘high BMD’ alleles (discussed further later in this
article) (15).

In considering the translational applications of GWAS, it
would be fair to say that at least initially the clinical utility of
polygenic (or genomic) risk scores (PRS) calculated using
genome-wide associated SNPs was underwhelming—certainly
in bone disease. At the time of publication of the second GEnetic
Factors in Osteoporosis Study [GEFOS-2], a study involving tens
of thousands of cases and controls, the PRS derived from variants
associated with femoral neck BMD at genome-wide significance
(i.e., p <5 × 10−8) performed less well in predicting BMD than age
and weight alone (area under receiver-operator characteristics
curve: 0.59 vs. 0.75) (16). This was not really surprising: despite
the large sample size, the identified variants still explained only a
small proportion (<6%) of overall BMD heritability (16). Over
time, ever larger GWAS have been performed (17, 18); and
certainly increasing GWAS population size strongly correlates
(on a log scale) with the number of SNPs identified at genome-
wide significance to be associated with disease (11), capturing a
greater proportion of heritability, and improving PRS utility.
Additionally, adopting a less stringent threshold for SNP
inclusion in PRS also increases the proportion of genetic
variance captured—at the cost of more noise and inclusion of
more false-positive results. There is no fixed formula for the sweet
spot between sensitivity and specificity for PRS (i.e., maximizing
AUCs in ROC analyses or similar statistic). It is disease-specific
(19); and for maximal clinical utility the PRS must also be
interpreted in the context of other disease-specific factors
including disease heritability, prevalence, and prior probability
(19–23). [For further discussion on the calculation and clinical
utility of PRS, the reader is referred to two recent review articles
October 2020 | Volume 11 | Article 595653
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(19, 23)]. However, despite these caveats, PRS have reached the
point whereby, to quote Khera et al., “for a number of common
diseases, polygenic risk scores can now identify a substantially
larger fraction of the population than is found by rare monogenic
mutations, at comparable or greater disease risk” (24). For
example, at a population level, the proportion of individuals
who carry a sufficient burden of common variants to place them
at three-fold risk of coronary artery disease is twenty-fold that of
individuals carrying rare highly penetrant LDL-R mutations of
equivalent risk (24). Moreover, common variants can be easily and
cheaply genotyped, without needing whole population whole-
genome sequencing, noting that the choice of technology in this
area is sometimes a political rather than a strictly scientific decision.
USE OF BMD TO DEFINE DICHOTOMOUS
DISEASE STATES OF OSTEOPOROSIS
AND HIGH BONE MASS

Defining a disease state by use of a particular threshold value
within the normal population distribution of a quantitative trait is
a concept extremely familiar to the bone community. The most
commonly employed measure of bone strength is BMD, usually
assessed using dual-energy X-ray absorptiometry (DXA). The
result is then compared against an age, ethnicity and sex-specific
reference population, allowing calculation of T- and Z-scores (the
number of standard deviations (SDs) by which the result differs
from the mean BMD of a young adult or age-matched population,
respectively). Individuals with lower BMD are at higher risk of
fracture, particularly low trauma fractures (25). Reflecting this risk,
in 1999 the WHO used DXA BMD to define osteoporosis and
osteopenia (for osteoporosis, a T-score of ≤−2.5; for osteopenia, a
T-score between −1 and −2.5) (26). These threshold definitions do
not account for other major risk factors for fracture—such as age
and prior fragility fracture, both of which independently increase
future fracture risk (27)—and use of BMD in isolation to define
the real clinical issue (i.e., bone fragility and fracture risk) can lead
to apparent paradoxes, e.g., a woman with osteopenia (according
to BMD) and a previous low trauma fracture is at higher risk of a
fracture than a women with BMD-defined osteoporosis who has
not yet fractured (28). Nevertheless, such thresholds are useful in
identifying a high-risk group of clinical relevance, in whom
intervention might be most clinically- and cost-effective. Further,
fracture risk calculators [e.g., FRAX, Garven (29)] have been
developed to account for key clinical risk factors, as well as
BMD, to circumvent the limitations of BMD alone.

At the other end of the normal distribution for BMD are
individuals with HBM. It is tempting to regard these individuals
simply as phenotypic outliers, with their BMD results of little serious
clinical consequences unless such individuals unexpectedly find
themselves in deep water (non-metaphorically). However,
studying individuals with HBM is of relevance both for their own
sake and for the community more broadly. Firstly, HBM may
indicate an underlying and hitherto-unsuspected skeletal dysplasia
with specific clinical needs (e.g., monitoring of cranial nerve
function, therapeutic choices, and genetic counseling) (30).
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Second, these individuals provide novel insights into the regulation
of bone mass: such discoveries may inform not only therapeutic
approaches to their own HBM condition but also for the opposite,
andmore prevalent, bone phenotype of osteoporosis. In considering
this last point, an important caveat applies.While lowBMD is closely
related to increased fracture risk (25), the converse is not necessarily
true (31). For example, individuals with high BMD due to disorders
of bone resorption (e.g., osteopetroses) or disturbed bone turnover
(e.g., Paget’s disease), can manifest high fracture rates.
HOW HIGH IS HIGH BONE DENSITY?

Epidemiological studies of high BMD are few and definition
thresholds are variable (32, 33). Indeed, the absence of an upper
limit to define ‘normal’ BMD risks those with a pathological
cause for high BMD being missed and labeled as “normal.” In
2005, Michael Whyte proposed a high BMD definition of a Z-
score >+2.5, to alert clinicians to this issue (30). However, until
more recently publications around high BMD were still the
purview of case reports and small case series.

To address this question, we conducted the first systematic
analysis of patients undergoing routine clinical DXA scanning,
encompassing 335,115 DXA scans across 15 UK centers. We first
used a screening threshold T or Z-score ≥+4 at any lumbar/hip
site to identify those with extreme high BMD, in whom we
investigated the potential underlying causes for a high BMD,
trying to identify within this heterogeneous population with high
BMD, a sub-group with unexplained generalized HBM (identified
using a Z-score threshold ≥+3.2) (discussed in detail later) (34).
Overall, within this UK population, scanned by DXA over a
retrospective 20 year period for a wide variety of more-or-less
clinically justifiable indications, we found the prevalence a T or Z-
score ≥+4 to be 0.5%, and within that of unexplained generalized
HBMwith Z-score ≥+3.2 to be 0.18% (34). Interestingly, reflecting
on the mathematics of a normal distribution, four standard
deviations (SDs) would be expected to identify just 0.003% of a
population, while 3.2 SDs equates to 0.069% (35). Taken together,
it seems BMDmight have a marginally bimodal distribution at the
upper tail of its distribution.

While this study was the first to assess the prevalence of high
BMDwithin the general population, the—albeit large—population
composed of individuals referred for DXA scanning for clinical
reasons, rather than selected to represent the general population.
Thus, selection bias is possible. However, as most individuals are
referred for DXA due to a pre-test suspicion of low BMD and/or
osteoporosis (e.g., a history of steroid use), if anything the true
prevalence of high BMD may have been underestimated to date.
Thus, this study provides a minimal prevalence for this condition.
DETECTING HIGH BMD IN CLINICAL
PRACTICE

Incidental high BMD results in clinical practice are relatively
common (34), and we have previously published an approach to
October 2020 | Volume 11 | Article 595653
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guide their assessment and investigation (36). The commonest
causes for a high BMD are artefactual, with osteoarthritic
degeneration explaining half of all high BMD measurements
(34) (see Table 1 for list of artefacts). Importantly, identifying the
presence of artefact in someone with apparently high BMD on
DXA does not mean fracture risk is necessarily low; and artefact
is important to recognize as it may mask osteoporosis. For
example, an osteoporotic vertebral fracture with vertebral
collapse will reduce measured bone area while maintaining
bone mineral content, and thus increase calculated BMD.

Interestingly, many artefactual causes of high BMD are
themselves heritable. The most common example is spinal
osteoarthritis with osteophytosis (Table 1). The heritability of
osteoarthritis is approximately 50%, and two large GWAS
published in the last two years have identified association with
96 loci (37, 87). As another example, ankylosing spondylitis [AS] is
highly (>90%) heritable (88), and associated with over 100 loci, in
addition to HLA-B27 (42). AS artefactually elevates BMD through
Frontiers in Endocrinology | www.frontiersin.org 4
syndesmophyte formation at vertebral margins, anterior
longitudinal ligament ossification, and scoliosis (43). It is also
associated with increased fracture risk (89), which may be due to
the rigidity of the axial skeleton, the presence of inflammation, or a
combination of both. A further example is diffuse idiopathic
skeletal hyperostosis (DISH), most commonly seen in older men
and characterized by widespread spinal calcification (38), which is
also heritable (39), though as yet no causative variants have been
published (90). The relationship between DISH and abnormal
phosphate handling, may also carry implications for bone
mineralization, bone strength, and fracture risk, though this has
not been formally assessed. The closely related disease ossification
of the posterior longitudinal ligament (OPLL) is also heritable
(91), with both common and rare susceptibility variants identified
(92, 93)—though as this condition most commonly affects the
cervical spine, a site not routinely screened by DXA, OPLL is less
likely to cause clinical conundrum as an artefactual cause of high
BMD in daily practice.
TABLE 1 | Causes of a high BMD measurement on a DXA scan.

Artefactual causes of raised BMD—no true increase in bone mass Genetic Contribution Refs.

Monogenic Polygenic

Osteoarthritis a Yes (34, 37)
DISH: Diffuse idiopathic skeletal hyperostosis Yes Yes (38–41)
Ankylosing spondylitis Yesb (42, 43)
Vertebral fractures Yesb Yes (17, 34)
Vascular calcification Yes Yes (44–48)
Thalassemia major Yes (49, 50)
Gaucher’s disease (splenomegaly overlies the lumbar spine DXA field) Yes (34, 51)
Abdominal abscesses (52)
Gallstones (53, 54)
Renal calculi Yes (54, 55)
Gluteal silicon implants (56)
Intestinal barium
Surgical metalwork (34)
Laminectomy (57)
Vertebroplasty & kyphoplasty
Acquired causes of true increased bone mass and/or density
Localised Tumors Primary malignanciese.g. osteoblastoma, Ewing’s sarcoma, carcoinoid, hemangioma,

plasmocytoma, Hodgkin’s diseaseSecondary osteosclerotic metastasese.g. prostate,
breast, gastric, colonic, cervical carcinoma

Yes Yes (58)

Chronic infective osteomyelitis
SAPHO (Synovitis Acne Pustulosis Hyperostosis and Osteitis) syndrome Yes (59–61)
CKD-MBD (Chronic Kidney Disease-Metabolic Bone Disorder)c Yes Yes (62–64)
Paget’s disease of Bone (PDB) Yes Yes (34, 65, 66)
Early onset Paget’s like syndromes Yes (67)
X-linked hypophosphatemia (XLH) Yes (68)
Osteogenesis imperfecta associated with mutations affecting the carboxy-terminal-propeptide
cleavage site of the type 1 procollagen chain

Yes (69)

Gnathodiaphyseal dysplasia Yes (70, 71)
Generalized Fluorosis (72–74),

Acromegaly Yes Yes (75, 76)
Hepatitis C-associated osteosclerosis (77–79),
Myelofibrosis Yes Yes (80–82),
Mastocytosis Yes (83–85),
Oestrogen replacement implants (86)
October 2020 | Volume 11 | A
aWhile there are no forms of monogenic OA, there are many monogenic skeletal dysplasias with degenerative joint disease—e.g. spondyloepiphyseal dysplasia tarda, achondroplasias.
bvertebral fractures occur in osteogenesis imperfecta.
cCKD-MBD increases in BMD can also be generalized.
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Calcification of structures anterior to the spine but within the
DXA field can artefactually elevate BMD measurements (Table
1). Although vascular calcification of the abdominal aorta is
common, reported in 43% of patients having lumbar DXA
assessment (mean age 68 years), it is surprising how little
evidence there is regarding the effect of this on lumbar spine
BMD measures (94–97). The relationship between vascular
calcification and low BMD is of particular interest (98), most
evident (though not exclusively) in the chronic kidney disease
population. Abdominal aortic calcification is associated with lower
BMD and vertebral fractures (99); and the extent to which genetic
pleiotropy underpins vascular calcification [itself heritable (44)]
and osteoporosis is the source of active investigation. There are
also monogenic forms of vascular calcification (for example,
pathogenic variants in ABCC8 causing pseudoxanthoma
elasticum (MIM264800) [45–47)].

Beyond artefact, there are a number of other conditions,
usually acquired through life, that cause true increases in bone
mass and density, which may be localized or generalized.
LOCALIZED INCREASES IN BMD

From a clinical perspective, the most important question when
faced with a localized increase in BMD is whether this might
represent a tumor. Tumors causing local increases in BMD may
be benign or malignant, primary or secondary (Table 1); in this
context special mention must be made of breast and prostate
cancer, both of which are associated with osteosclerotic
bony metastases.

Paget’s disease of the bone (PDB) explains 1.4% of incidental
high BMD results (34)—though this figure may fall given the
declining population prevalence of PDB (current UK age-
adjusted prevalence of 2.5% and 1.6% for men and women
respectively) (100). Excessive and disorganized woven and
lamellar bone expands bone size and raises density, causing
focal increases in BMD but also increasing deformity and risk
of fracture. PDB commonly affects the lumbar spine and hips
[after the pelvis, the commonest sites of involvement are lower
lumbar vertebrae (101)] and may be monostotic (e.g., affecting an
isolated vertebra) or polyostotic. PDB is often asymptomatic and
may be present for years before diagnosis. PDB also displays both
monogenic and polygenic inheritance. Mutations in SQSTM1
(p62) account for 40% of familial and 10% of sporadic PDB
(MIM167250) (65); and other monogenic forms of PDB include
the more severe and/or early onset PDB caused by mutations in
ZNF687, FKBP5, and TNFRSF11A (which codes for RANK).
Common variants in loci harboring the genes CSF1, OPTN,
TM7SF4, and RIN3 have also been implicated (65). It is thought
that environmental triggers interact with this genetic architecture
to predispose to disease, with one hypothesized environmental
trigger being zoonotic infections (102).

In additional to classical PDB, a number of rarer Paget’s-like
syndromes have been described with onset early in life that can
also cause localized increases in measured BMD. These include
expansile skeletal hyperphosphatasia, familial expansile osteolysis
Frontiers in Endocrinology | www.frontiersin.org 5
(FEO) (MIM174810), Juvenile Paget’s disease (MIM239000),
early-onset familial Paget’s disease (MIM602080), and
panostotic expansile bone disease (67). Children present with
deafness, dental disorders and on occasion, active focal bone
lesions; and as in PDB alkaline phosphatase levels tend to be
raised. These conditions are due to genetic mutations in the
RANK-NFkappaB signaling pathway [comprehensively reviewed
in (103)].

Mutations affecting the carboxy-terminal-propeptide cleavage
site of the type 1 procollagen chain (COL1A1) cause an unusual
form of osteogenesis imperfecta in which individuals manifest
marked bone fragility while having high BMD, due to
hyperosteoidosis and hypermineralization. Patchy sclerotic
lesions are often evident in the spine and elsewhere; in
particular, these individuals develop unusual fibro-osseous
lesions in the jaw (“cementoma”) (69). There is a clinical
overlap of this condition with gnathodiaphyseal dysplasia (70),
which features also include bone fragility, irregular sclerotic BMD,
and fibro-osseus lesions in the skull and jaw. Gnathodiaphyseal
dysplasia is associated with mutations in ANO5 (71), a gene not
known to be involved in collagen production or processing; and
the overlap in phenotype between these conditions is not fully
understood. However, recent studies have suggested that ANO5
may be involved in osteoclast regulation (104).

SAPHO syndrome (Synovitis, Acne, Pustulosis, Hyperostosis
and Osteitis) is a rare and poorly understood condition, in which
about half the cases manifest spinal involvement including
patchy osteosclerosis, hyperostosis, and para-vertebral
ossification (59, 60). Clustering within families is reported and
a genetic etiology (including an HLA contribution) has been
suggested (61).

Chronic kidney disease-mineral bone disorder (CKD-MBD,
previously referred to as renal osteodystrophy) causes
osteomalacia, secondary hyperparathyroidism, and fracture.
Radiological features of CKD-MBD include bony sclerosis,
particularly of the vertebral body endplates, leading to a ‘rugger-
jersey’ spine appearance (an appearance distinctive for
hyperparathyroidism); or it can be more diffuse (62–64). CKD-
MBD is associated with markedly increased fracture risk (64).
GENERALIZED HIGH BMD

A number of causes of generalized high BMD may be acquired
through life (Table 1). For example, fluoride causes diffuse axial
osteosclerosis with ligamentous calcification, periostitis and
vertebral osteophytosis, and has been associated with excessive
tea and toothpaste consumption (72–74). The increase in BMD led
to fluoride being historically trialed as an osteoporosis therapy—
but it resulted in a higher fracture risk, emphasizing that high
BMD per se does not necessarily equate to stronger bones (105,
106). Other rare acquired causes of generalized high BMD are
listed in Table 1.

However, rarer still, but fascinating are the monogenic causes
of generalized high bone density, known as high bone mass
(HBM) syndromes; these we discuss next.
October 2020 | Volume 11 | Article 595653
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MONOGENIC CAUSES OF GENERALIZED
HIGH BMD

Several rare genetic disorders with skeletal effects, collectively
termed osteopetroses and sclerosing bone dysplasias, are
associated with generalized increased BMD. The most recent
(10th) edition of the Nosology and Classification of Genetic
Skeletal Disorders (2019 revision) lists 462 genetic disorders of
the skeleton among which are 45 conditions characterized by
osteosclerosis or osteopetrosis, with the underlying gene(s)
identified in 40 conditions at the time of going to press (8). As
suggested previously (36), and per a recent review paper of de
Ridder et al. (107), an intuitive biological separation can be made
into disorders in which bone formation is enhanced, those in
which bone resorption is depressed, and those with a disturbed
balance between bone formation and resorption. Importantly,
the associated changes in bone structure and quantity in the
various sclerosing bone disorders can have quite different—
indeed, completely opposite—effects on fracture risk (8).

It is not our intention to discuss all 45 osteosclerotic and
osteopetrotic conditions listed in the current edition of the
Nosology (8). Rather, we will focus on cases illustrative of the
differences between types of monogenic high BMD, with a
particular focus on anabolic HBM.
GENETIC CAUSES OF INCREASED BONE
FORMATION AND HIGH BMD

A common feature of anabolic HBM is activation of the Wnt/b-
catenin signaling pathway, with increased signaling through this
pathway underlying the phenotype of sclerosteosis, van
Buchem’s disease, LRP4 HBM, LRP5 HBM, and LRP6 HBM
(all discussed below). For a detailed discussion of Wnt signaling
in bone, the reader is referred to the excellent review of Baron
and Kneissel (108). A brief—and, acknowledged, simplistic—
description of the canonical Wnt/b-catenin signaling pathway is
provided here. Wnt ligands bind to the dual receptor complex
comprising Frizzled and LRP5 or LPR6 [LRP5/6], resulting in
b-catenin escaping phosphorylation by being released from a
multiprotein b-catenin “destruction complex”, leading to
b-catenin accumulation in the cytoplasm and ultimately
translocation to the nucleus to activate target genes. In the
absence of Wnt binding, b-catenin is phosphorylated by GSK-
3b (a component of the “destruction complex”) leading to its
degradation and, consequently, loss of downstream signaling.
Sclerostin inhibits Wnt signaling, by binding to LRP5/6 and
preventing LRP5/6 from forming the dual receptor complex with
Frizzled. LRP4 anchors sclerostin, enhancing sclerostin’s
interaction with LRP5/6, thus facilitating sclerostin’s inhibition
of Wnt/b-catenin signaling (108, 109).

Several human diseases characterized by HBM are associated
with mutations of components of the Wnt/b-catenin signaling
pathway (see Figure 1 and text below). As a corollary, mutations
of other components of this pathway may also cause HBM, with
several such examples evident from mouse genetic studies (108).
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Thus, sequencing efforts in human populations may lead to the
identification of other anabolic HBM conditions in humans.

Sclerosteosis and van Buchem’s Disease
Sclerosteosis (MIM269500) and van Buchem’s disease
(MIM239100) are rare, clinically similar conditions of excessive
bone growth. Loss-of-function SOST mutations cause sclerosteosis,
generally thought the more severe of the two disorders; in contrast, a
52-kb intronic deletion downstream of SOST, thought to disrupt
post-transcriptional sclerostin processing, results in the milder
phenotype of van Buchem’s disease (110, 111). In both disorders,
reduced osteocytic production of sclerostin permits activation of
osteoblastic Wnt signaling, leading to enhanced bone formation,
increased bone strength, and resistance to fracture (110, 112) (Table
2). Understanding the molecular biology of sclerosteosis and van
Buchem’s disease has led to the development of monoclonal
antibodies against sclerostin, which act to suppress the inhibitory
action of sclerostin on Wnt signaling, allowing gains in bone
formation (147, 148). Thus, anti-sclerostin antibodies represent a
new class of anti-osteoporosis therapy; and recently the first-in-class
agent (romosozumab) was approved by the United States Food and
Drug Administration and the European Medicine Agency
(discussed further below).

Sclerosteosis causes a large skeleton (sometimes termed
‘gigantism’, though this term is more usually reserved for
children with excess long bone growth due to growth hormone
excess prior to epiphyseal closure), mandible enlargement, and
torus palatinus and mandibularis which can complicate tooth
extractions (113, 149). Calvarial overgrowth compresses cranial
nerves, particularly facial nerves, sometimes from infancy; in one
series 83% of 63 adults had recurrent facial nerve palsies (113).
Hearing loss and headaches are common; as is raised intracranial
pressure—to the point that craniotomy may be required to
prevent sudden death by coning (113, 150). Cutaneous
syndactyly of fingers (present in 76%) and toes is an important
defining feature, often accompanying dysplastic or absent nails
and camptodactaly (113, 150, 151). Sclerosteosis is progressive,
which may cause bone and back pain, with bony overgrowth
requiring spinal and cranial decompression (113).

Van Buchem’s disease is milder than sclerosteosis,
importantly without syndactyly or “gigantism” (110, 150);
however, cranial nerve impingements and hearing loss remain
common (152). Management is generally limited to surgical bone
removal. However, as tried in Camurati-Engelmann disease
(progressive diaphyseal dysplasia, MIM131300) glucocorticoids
have been used with the aim of reducing high bone turnover, in
an isolated case report (153).

LRP5 High Bone Mass
In 1997, a family with HBM but an otherwise normal phenotype
was reported with the genetic abnormality localized by linkage
analysis to chromosome 11q12–13 (120). The 18-year-old
proband had presented following a road traffic accident,
without bone injury, but with consequent back pain. In the
initial publication, 28 family members were phenotyped, aged 18
to 86 years. Inheritance of the HBM phenotype was autosomal
dominant. Affected individuals were asymptomatic and had never
October 2020 | Volume 11 | Article 595653
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fractured; their biochemistry was normal (measured in a subset of 5
affected individuals); and their radiology showed dense bones with
thick cortices and reduced medullary cavity but without consequent
reduction in hemopoietic capacity. Affected individuals had spinal
BMD Z-scores ranging from approximately +3.2 to +7.9; authors
used a case definition threshold of Z-score > +3.0. They concluded
that as HBM affected individuals aged as young as 18 years of age,
the mutation has a role to play in the acquisition of peak bone mass;
similarly, the clinical evaluation of older members of the pedigree
supported a persistent influence throughout life without consequent
disability (120, 121).

Interestingly, around the same time, osteoporosis pseudoglioma
syndrome (OPPG) (MIM259770), was mapped to the same region
(154). OPPG is characterized by osteoporosis, extreme bone
fragility, fracture, and deformity; and although initially considered
autosomal recessive, obligate carrier parents usually have low BMD.
OPPG is due to inactivating mutations in LRP5 (155). OPPG also
leads to visual deterioration at birth or soon after, due to
vitreoretinal degeneration, with multiple consequences including
retrolental masses, retinal detachment, cataract, phthisis bulbi,
microphthalmia, vitreous hemorrhage, secondary glaucoma and
blindness (156). Inactivating LRP5 mutations have also been
associated with familial exudative vitreoretinopathy type 4
(FEVR-4) (MIM601813), with low BMD a common feature of
affected individuals also (157); and it is now recognized that FEVR-4
and OPPG are allelic disorders with overlapping phenotypes.
Notably, other forms of familial exudative retinopathy are
associated with mutations in other genes that affect Wnt
signaling, including LRP4 and FZD4.
Frontiers in Endocrinology | www.frontiersin.org 7
Further genetic analysis of the original HBM family, with
extension of the pedigree to 38 members, identified a mis-sense
LRP5 mutation (c.512G>T, p.Gly171Val), in exon 3. All affected
individuals were heterozygous for this mutation, consistent with
autosomal dominant inheritance (121). HBM affection status in
this kindred-based study was then defined as sum of hip and
spine Z-score > +4.

In contrast to inactivating LRP5 mutations associated with
OPPG, the HBM phenotype results from activating LRP5
mutations which stimulate osteoblastic bone formation (158).
LRP5 has 23 exons, coding for a 1615 amino acid protein, an
essential cell membrane co-receptor key to the Wnt signaling
pathway which regulates osteoblastic bone formation (122). The
majority of the protein constitutes the extracellular b-propellor
which has four domains (1180 amino acids in length). All HBM-
associated LRP5mutations identified to date lie in exons 2, 3 and
4, which collectively code for the 1st b-propellor domain (Figure
1; Table 3); and protein modeling suggests they all lie at the top/
central region of the extracellular protein (163). It is thought that
these mutations reduce binding affinity with sclerostin and Dkk1,
negative regulators of LRP5 signaling (163, 164). No inactivating
mutations in this 1st b-propellor domain have been identified to
date; instead, OPPG-associated mutations have been located
within the 2nd and 3rd b-propellor domains, the binding
domain, and the terminal signaling peptide (123, 165, 166). A
hallmark of increased Wnt signaling in many organs, other than
bone, is the development of malignant tumors (167, 168).
However, fortunately this has not been reported as a feature of
LRP5 HBM.
FIGURE 1 | Schematic diagram of reported mutations affecting osteoblastic Wnt signaling. (1) LRP4 mutations coding for the 3rd b-propellor impair sclerostin
binding; (2) LRP5 and LRP6 mutations coding for the 1st b-propellor impair sclerostin binding; (3) SOST mutations inhibit sclerostin production by osteocytes.
Reductions in the inhibitory effects of sclerostin allows LRP5/6 to interact with Wnt and its co-receptor Frizzled, which prevents phosphorylation of b-catenin allowing
it to accumulate in the cytoplasm of the osteoblast. Translocation of b-catenin to the nucleus activates transcription of target genes. This activation of canonical Wnt/
b-catenin signaling increases osteoblastic bone formation. The intracellular consequences of LRP4-sclerostin binding are less well characterized; however, reductions
in LRP4-sclerostin binding have a similar effect to increase osteoblastic bone formation. LDLR, low-density-lipoprotein receptor. LRP, LDLR related proteins; PPPSP,
Proline, Proline, Proline, Serine, Proline; EGF, epidermal growth factor; NPxY, Aspartate, Proline, any amino acid, Tyrosine; YWTD, Tyrosine, Tryptophan, Threonine,
Aspartate.
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TABLE 2 | Inherited HBM conditions due to enhanced bone formation: gene defects, function, and clinical characteristics.

Function Clinical Features Ref

oblast Wnt signaling
itor

Cutaneous digital syndactyly excessive height. Skull/mandible
thickening, toria, CN palsies (incl. neonatal),. Headaches, raised
ICP, coning. Back/bone pain. Fracture resistance

(110, 113–115)

oblast Wnt signaling
itor

No syndactyly, no excess height. Skull/mandible thickening, toria,
CN palsies. Headaches, back/bone pain. Fracture resistance

(110, 116, 117)

ired sclerostin-
interaction

Syndactyly, dysplastic nails, gait disturbance, facial nerve palsy,
deafness

(118, 119)

oblast cell
brane co-receptor
ating Wnt signaling

Asymptomatic or toria, skull/mandible thickening, CN palsies,
neuropathy, neuralgia, headaches, back/bone pain, spinal
stenosis, reduced buoyancy, craniosyntosis, increased height.
Fracture resistance

(120–139),

oblast cell
brane co-receptor
ating Wnt signaling

Mandible thickening, torus palatinus, teeth encased in bone,
absence of adult maxillary lateral incisors, inability to float.
Fracture resistance. Increased height

(138)

its BMP dependent
tgene transcription
duce osteoblast
ity

Mandible enlargement, broad frame, torus palitinus/mandibularis,
pes planus, increased shoe size, inability to float

(140)

oclast-reactive
olar proton pump

Macrocephaly, cranial hyperostosis CN palsies, wide nasal
bridge, dental overcrowding, craniofacial hyperostosis &
sclerosis, metaphyseal flaring, and high BMD

(141–143),

pholipid
nthesis

Mandible enlargement, generalized hyperostosis, proximal
symphalangism, syndactyly, brachydactyly, cutis laxa,
developmental delay, hip dislocation, marked hypertelorism, and
enamel hypoplasia

(144, 145)

ic protein.
ian population (146).

G
regson

and
D
uncan

G
enetic

A
rchitecture

ofH
igh

B
one

M
ass

Frontiers
in

Endocrinology
|
w
w
w
.frontiersin.org

O
ctober

2020
|
Volum

e
11

|
A
rticle

595653
8

Condition MIM Inheritance Gene Mutation Protein
Increased bone formation

Sclerosteosis 269500 AR SOST Loss of function Sclerostin Oste
inhib

Van
Buchem’s
Diseaseb

239100 AR SOSTc Reduced function Sclerostin Oste
inhib

LRP4 HBM 604270 AD & AR LRP4 Loss of function LRP4 Impa
LRP

LRP5 HBM 603506 AD LRP5 Gain of function LRP5 Oste
mem
regu

LRP6 HBM awaited AD LRP6 Gain of function LRP6 Oste
mem
regu

SMAD9 HBM awaited AD SMAD9 Loss of function SMAD9 Inhib
targe
to re
activ

Cranio-
metaphyseal
dysplasia

123000218400 AD ANKH Gain of function Homolog of mouse
ANK

Oste
vacu

AR GJA1 Loss of function Gap junction
protein alph‐1

Lenz‐
Majewski
hyperostotic
dysplasia

151050 SP PTDSS1 Gain of function Phosphatidylserine
synthase 1

Phos
bios

MIM®, Online Mendelian Inheritance in Man; CN, Cranial Nerve; ICP, Intracranial pressure; BMP, bone morphogenet
aTori: Oral exostoses which include torus palatinus & mandibularis; found in approximately 25% of a general Caucas
bInitially known as hyperostosis corticalis generalisata familiaris (116, 117).
cA 52-kb intronic deletion downstream of SOST.
4
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TABLE 3 | LRP5 mutations and associated clinical and radiological characteristics reported to date.

res other than
ted in at least
in the kindred)

Radiology Biochemistry Refs

NDG NDG (159)

hes, extremity Dense cranium, loss of
diploe, enlarged mandible,
increased cortical
thickness of long bones

NDG (127)

after
ding in the

Increased density of
calvarium, mandible &
endosteal surface of long
bones

Calcium, PO4, bALP
normal

(123)

nt, migraine.
cipital bone in

ropic
.

Increased calvarial and
cortical thickness.
Foramen magnum
stenosis

Osteocalcin normal.
CTX normal in
mother, raised in
daughter

(160)

hes in one
ual

Dense skull bones,
cortical thickening of the
vertebrae and long bones
with normal development

NDG (127)

ne pain, Calvarial thickening.
Restriction of auditory and
optic canals

Calcium, PO4, ALP
normal. PTH mildly
raised.

(161)

All bones of skeleton
radiologically dense, thick
cortices, reduced
medullary cavity, normal
shape

bALP, osteocalcin,
deoxy- & pyridinoline
X-links normal in
subgroup of 5
affected

(120,
121)

other than
g

Thickened mandibular
rami, marked cortical
thickening of long bones,
dense vertebrae but
shape normal

bALP Ca, PO4, PTH,
OPG, RANKL, &
urinary NTX
normal.Osteocalcin,
elevated. All in
subgroup of 4
affected

(124)

dotumor
Chiari

Dense skeleton, marked
thickening of skull, and
skull base, cortical
widening that narrowed
medullary cavity of the
long bones

bALP and
osteocalcin normal

(125)

dividual
ry for spinal
er underwent
t, with difficult
ted to unusual
ne

NDG NDG (126)

had hydromyelia
of type 1 Chiari

NDG NDG (126)

alpable
at tibial tubercle

NDG NDG (159)

teroids. Ear
ression surgery.
ck pain

Severe cortical thickening
of cranial and long bones

P1NP increased.
Calcium, PO4, ALP,
PTH normal

(162)

NDG NDG (126)

(Continued)
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No. of
reported
individualsa

LRP5 base change Amino acid change Exon Country Ethnicity Tori TP
& TM

Mandible Neurological
complications

Fracture
History

(#)

Clinical Feat
HBM (repor
one person

1 c.266A>G p.Gln89Arg 2 UK Caucasian No No Carpel tunnel
syndrome

None Osteoarthritis

1 c.331G>T p.Asp111Tyr 2 Argentina NDG NDG Enlarged
mandible.
Mandibular
pain

Headaches NDG Severe headac
pain

6 of 15 c.461G>T p.Arg154Met 2 USA from
Lithuania

Caucasian Yesb Enlarged
mandible

None None Pain in right hi
prolonged sta
index case

2 of 2 c.509_514dupGGGGTG p.G171_E172insGG 3 Austria NDG No NDG Congenital
deafness, VII
palsy

None Cochlear impla
Removal of oc
one individual.
Hypergonadot
hypogonadism

3 c.511G>C p.Gly171Arg 3 Belgium NDG NDG NDG Headaches NDG Severe headac
affected individ

1 c.511_516delGGTGAG g.69547_69552delGGTGAG 3 NDG Caucasian NDG Thickened
mandible

Hearing
impairment.
Sudden sight
loss aged 16

None Generalized bo
headaches

19 of 38 c.512G>T p.Gly171Val 3 USA Caucasian NDG NDG None Resistant
to #

Asymptomatic

7 of 16 c.512G>T p.Gly171Val 3 Connecti-
cutUSA

Caucasian Yes Wide, deep
mandible,
decreased
mandibular
angle

None None Asymptomatic
difficulty floatin

1 c.512G>T p.Gly171Val 3 Colorado
USA

NDG Yes Wide deep
mandible

Strabismus,
Bells’ palsy,
trigeminal
neuralgia,
headaches,
paraesthesias

NDG Bone painPse
cerebri, type 1
malformation

6 of 13 c.512G>T p.Gly171Val 3 NDG NDG TP in all
but 1
case

Wide deep
mandible

Deafness,
sensorimotor
neuropathy,
dysphonia,
spinal stenosis

None One affected i
required surge
stenosis, anot
hip replaceme
surgery attribu
hardness of b

2 of 2 c.512G>T p.Gly171Val 3 NDG NDG Yes Wide deep
mandible

No detail given None One individual
(a complicatio
malformation)

1 c.518C>T p.Thr173Met 3 UK Caucasian No No Ulna nerve
decompression

2 high
impact

OsteoarthritisP
enthesophyte

1 of 4 c.592A>T p.Asn198Tyr 3 NDG NDG Yes NDG No None HBM despite
canal decomp
Headaches, b

2 of 6 c.593A>G p.Asn198Ser 3 NDG NDG Yes Wide deep
mandible

Deafness,
sensorimotor
neuropathy, &
spinal stenosis

None NDG
u

p
n

u

n

h
n

o

n

s
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TABLE 3 | Continued

Clinical Features other than
HBM (reported in at least
one person in the kindred)

Radiology Biochemistry Refs

Individuals affected differently
Chest wall prominence Fixed
flexion at elbows Osteotomy of
tibial tubercle (for tendonitis)..:.
HBM despite steroids

Increased calvarial
thickness

Low bone turnover
on Alendronic acid

(159)

Similar phenotype to that
described by Boyden et al.,
2002.

Increased density of
calvarium, mandible and
endosteal surface of long
bones

NDG (127,
134)

Craniosynostosis,
developmental delay, tinnitus,
headaches, prominent
forehead present in >1
member of pedigree

Increased density of
calvarium, mandible,
pelvis & endosteal surface
of long bones

Calcium, PO4, bALP
normal

(129)

Similar phenotype to that
described by Boyden et al.,
2002

Similar to Boyden et al.,
2002.

NDG (127,
130)

NDG Increased density of
calvarium. Mandible and
endosteal surfaces of long
bones

NDG (127,
133–
135)

Osteomyelitis of the jaw,
hearing difficulties due to small
auditory canals in 2 affected
individuals

Increased density of
calvarium, enlargement of
cranial vault

NDG (136)

Renal calculi (in one individual)
Dental overcrowding

NDG Increased bone
turnover at age 21

(159)

Widespread arthralgia, shin
pain & headaches

Increased calvarial
thickness with tightly
packed brain gyri on MRI.
Anterior lumbar
syndesmophytes

NDG (159)

Osteoarthritis NDG NDG (159)

NDG Generalized sclerosis
including calvarium
(obliteration of frontal
sinuses & mastoids),
pelvis & long
bones.Enlargement of
cranial vault

NDG (127,
128,
131,
132)

HBM despite steroids NDG Normal bone turnover (159)

Knee pain, chondrocalcinosis
& OA. Cervical spine pain.
Developed breast cancer

Thickened skull and long
bones on MRI and
phalanges on X-ray.
Increased density of
vertebral bodies without
OA

Calcium, PO4, bALP,
CTX all normal

(137)

rmone; CTX, NTX, C and N-telopeptides cross-links of bone Type I collagen; UK, United
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No. of
reported
individualsa

LRP5 base change Amino acid change Exon Country Ethnicity Tori TP
& TM

Mandible Neurological
complications

Fracture
History

(#)

3 c.593A>G p.Asn198Ser 3 UK Afro-
Caribbean

Yes Enlarged
mandible

None None

? c.640G>A p.Ala214Thr 3 Portland
USA

NDG Yes Elongated
mandible

NDG Resistant
to #

13 of 24 c.640G>A p.Ala214Thr 3 Holland NDG None Prominent
mandible

CN VII palsy in
2 cases

None

1 c.641C>T p.Ala214Val 3 UK NDG NDG Enlarged
mandible

NDG NDG

Family 1:1
of 1Family 2
& 3
unknown

c.724G>A p.Ala242Thr 4 Portland
USA, &
Sardinia

NDG Yes Enlarged
mandible

None in one
case (393). No
detail given in 2
families

Resistant
to #

? c.724G>A p.Ala242Thr 4 France NDG Yes Enlarged
mandible

NDG Resistant
to #

2 of 10 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

None None

1 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

CN V & VII
mildly impaired

None

2 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

Conductive
deafness

None

Family 1:13
of 32Family
2:7 of 16

c.758C>T p.Thr253Ile 4 Fyn,
Denmark

NDG NDG NDG NDG No
increased
# rate

1 c.796C>T p.Arg266Cys 4 UK Caucasian Yes Enlarged
mandible

None None

1 c.844A>G p.Met282Val 4 Belgium NDG Yes None None NDG

# fracture CN Cranial nerve; TP, torus palitinus; TM, torus mandibularis; bALP, bone specific alkaline phosphatise; PO4, phosphate; PTH, parathyroid ho
Kingdom; NDG, No detail given.
aNo. of reported individuals (with pedigree size where reported).
b3 requiring surgical debulking of TP & TM.
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Gregson and Duncan Genetic Architecture of High Bone Mass
Comprehensive description of the clinical phenotype of LRP5
HBM was reported by Boyden et al., in 2002 (124). Seven
individuals from a family of 16 were analyzed after routine
DXA screening detected two related individuals with high
BMD, again due to LRP5 c.512G>T, p.Gly171Val. Again,
radiographic thickening of cortices of otherwise normal bones
was reported, without history of fracture. However, all cases had
deep wide mandibles and torus palitinus. Two of 7 cases reported
difficulty floating; the first-time buoyancy was reported in
association with bone density in humans. Serum calcium,
phosphate, ALP, nf-kB and osteoprotegerin (OPG) were
normal, as was urinary NTX-1. However, unlike the first
family, osteocalcin was elevated threefold (mean 32.3 (SD 7.4)
vs. 9.8 (1.8) ng/mL). This finding was suggestive of a stimulatory
effect on periosteal bone formation, leading to an increase in
cortical thickness, as has been previously reported in transgenic
mice expressing the p.Gly171Val mutation (169).

While Boyden et al.’s large family were asymptomatic of their
HBM trait, in a letter of response two years later Whyte et al.
reported a 37 year old woman with the same pathogenic variant
(LRP5 c.512G>T, p.Gly171Val) but a more severe phenotype,
including congenital strabismus, childhood Bells’ palsy,
trigeminal neuralgia, life-long headaches, bone pain, and
paresthesias (125). She also had a widened and enlarged
mandible; and her osseous tori had required dental
intervention and removal as they had encased her teeth from
an early age. Interestingly, this more extreme case had a normal
osteocalcin level.

In their letter of response Boyden et al. detailed a further three
unrelated families with LRP5 HBM, two with the same LRP5
c.512G>T, p.Gly171Val variant and one with a novel variant in
LRP5 c.593A>G (p.Asn198Ser), also in exon 3 (126) (Table 3).
Among these families, some affected individuals had also reported
deafness, sensorimotor neuropathy and spinal stenosis, all likely due
to bone overgrowth and nerve compression. Contemporaneously,
van Wesenbeeck et al. identified a further six novel LRP5mutations
spread through exons 2, 3 and 4 (127). Cases generally had similar
features of mandible enlargement, fracture resistance, increased
skull thickness and oral tori.

Sixteen activating LRP5 mutations affecting 29 families have
now been reported globally, all in exons 2, 3 and 4 and affecting
the 1st b-propeller domain (Table 3) (120, 121, 123–137, 159–
162). Almost all are missense mutations, with two indels
reported. Half of all cases report osseous tori (see below); and
only one case has experienced fractures (notably, after high
impact). As increasing numbers of individuals are reported, it
is apparent that LRP5 HBM may not be as benign as first
thought, and indeed shares many features with sclerosteosis
and van Buchem’s disease (Table 2)—which is not particularly
surprising given they share a common pathway. In addition to
the adverse clinical features reported by Whyte et al. (detailed
above) (125), Kwee et al. reported a multi-generation family with
an LRP5 c.640G>A, p.Ala214Thr mutation, in whom the
phenotype extended beyond HBM to include craniosynostosis,
developmental delay, and multiple dysmorphic features
including macrocephaly and hypertelorism (129). Premature
Frontiers in Endocrinology | www.frontiersin.org 11
closure of cranial sutures in one infant reportedly caused raised
intracranial pressure, optic nerve atrophy and visual impairment
(this child also manifest a ventriculoseptal defect); two other
individuals had required craniotomy. Foramen magnum
stenosis, in one case ultimately requiring craniotomy, has also
been reported in association with the only HBM-associated LRP5
insertion reported to date (c.509_514dupGGGGTG,
p.G171_E172insGG) (160). The p.Gly171Val mutation has been
reported twice in association with a type 1 Chiari malformation
(125, 126). Headaches and bone pain are common; bony
compression of the optic and auditory nerves causing loss of
sight and hearing respectively are frequently reported; and
mandibular osteomyelitis, renal calculi and spinal stenosis have
also been reported (126, 136, 159). However, joint disease does not
appear to be a common feature, with osteoarthritis reported only
in some older individuals (159).

Certainly, there will be a bias toward identification of more
severe HBM phenotypes associated with LRP5 mutations, as
these are more likely to be identified clinically and thus reported.
In our own study mentioned earlier, in which we screened
335,115 DXA scans across 15 UK centers, we identified seven
families with LRP5 HBM; two with novel and five with
previously reported mutations (159). The two novel mutations
had milder phenotypes than those reported previously, and
arguably would have been less likely to have been identified
without gene screening. Our findings suggested that the clinical
variability in LRP5 HBM cases may arise from genotype-
phenotype correlation, with our protein modeling suggesting
the severity of high BMD corresponds to the degree of predicted
LRP5 protein disruption (159).

LRP4 High Bone Mass
To date, four cases of HBM associated with pathogenic variants
in LRP4 have been published, with both autosomal dominant
and recessive inheritance reported (109, 118, 119, 170, 171).
Mutations causing LRP4 HBM occur in the central cavity of the
third b-propeller domain of the LRP4 protein, impairing the
interaction between sclerostin and LRP4 (119) (of note
mutations elsewhere in LRP4 are associated with Cenani-Lenz
Syndactyly Syndrome, MIM212780) (Figure 1). In addition to
HBM, clinical features of LRP4 HBM include syndactyly,
dysplastic nails, gait disturbance, facial nerve palsy and hearing
loss (of note, no osseous tori have been reported to date) (Table
2) (119). As the phenotype of LRP4 HBM is very similar to
sclerosteosis, it has been termed sclerosteosis type 2 (118)—
though the clinical course is less severe and arguably more
similar to van Buchem’s disease.

LRP6 High Bone Mass
In 2019 Whyte et al. reported two multi-generational families
with LRP6-associated HBM, identifying two different
heterozygous missense mutations both affecting the first b-
propeller of LRP6 (homologous to LRP5 HBM mutations)
(Figure 1) (138).

The clinical features of LRP6 HBM are highly reminiscent of
LRP5 HBM: generalized osteosclerosis and hyperostosis,
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mandible enlargement, torus palitinus, teeth encased in excessive
bone, resistance to fracture, and an inability to float in water
(Table 2), with an additional phenotypic feature of absence of
adult maxillary lateral incisors in some individuals (observed in
both families). Of note, no signs of osteoarthritis were detected.

Interestingly, not only was LRP6HBM associated with above-
average height, this paper also highlighted increased height in
individuals with LRP5 HBM (who were studied for comparison
with the LRP6 families) (138). Taken together, the phenotypes
suggest increased Wnt signaling seen in all three conditions
affects not only bone density but also skeletal growth in
childhood and adolescence.

Other Forms of High BMD With Increased
Bone Formation, Not Associated With Wnt
Signaling Pathways
SMAD9 High Bone Mass
In 2019 we reported the first pedigree with a segregating SMAD9
mutation, with replication in two further unrelated individuals
with HBM. Based our population size (34), we estimated the
prevalence of SMAD9 HBM as approximately 1 in 100,000, less
common than LRP5HBM (159). As with LRP5HBM, the clinical
phenotype included mandible enlargement, a broad frame and
tall stature, torus palatinus, and a tendency to sink when
swimming; and no adult fractures were reported (Table 2). A
further characteristic, not reported in LRP4, LRP5, or LRP6
HBM, was pes planus. Reassuringly, unlike sclerosteosis and
some cases of LRP5HBM, nerve compression was not seen (159).

SMAD9 (also known as SMAD8, MADH6, and MADH9)
encodes a downstreammodulator of the BMP signaling pathway.
BMPs are members of the TGF-b superfamily, and induce both
bone and cartilage formation (172). Our in-silico protein
modeling predicted the mutation severely disrupted the
structure of the MH1 DNA binding domain of SMAD9,
leading to loss-of-function, such that this inhibitory SMAD
could no longer repress BMP receptor activation and
downstream signaling (173). Our novel findings support the
SMAD9-dependent BMP signaling pathway as a potential novel
anabolic target for future osteoporosis therapeutics.

Craniometaphyseal Dysplasia
Craniometaphyseal dysplasia (MIM123000), which may be
autosomal dominant or recessive, is caused by a mis-sense
mutation in ANKH, which encodes the inorganic pyrophosphate
channel ANK. The phenotype includes macrocephaly, cranio-
facial hyperostosis and sclerosis with cranial nerve palsies, wide
nasal bridge, dental overcrowding, metaphyseal flaring and
marked HBM (the latter predominantly in AR disease) (141–143).

Lenz‐Majewski Hyperostotic Dysplasia
Autosomal dominant gain of function mutations in PTDSS1 are
responsible for Lenz–Majewski syndrome (LMS) (MIM 151050)
(174). This very rare syndrome is characterized cutis laxa, facial
dysmorphism, severe short stature, brachydactyly, intellectual
disability and hyperostotic skeletal dysplasia. Skeletal
characteristics include calvarial thickening, marked sclerosis of
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the skull base and facial bones, a markedly enlarged mandible
(much more so than is seen in the Wnt signaling HBM
syndromes), dense vertebral bodies, shortened broad ribs,
hyperostotic clavicles, scapulae and iliac wings (144, 145).
Progressive osteosclerosis with “massive thickening of long
tubular bones” is described by the age of 30 years (144).
Bilateral hip dislocation has been reported. PTDSS1 codes for
phosphatidylserine synthase 1 (PSS1), an enzyme involved in
phospholipid biosynthesis, although the mechanism by which
this affects bone metabolism is not yet fully understood (174).

Osseous Tori
Oral exostoses include torus palatinus (TP), torus manibularis
(TM) and, less commonly, torus maxillaris. Their site determines
their nomenclature (with TP lying in the midline of the hard
palate and TM usually in the premolar region of the lingual side
of the mandible). The size and number of tori an individual may
have is highly variable. They are each made up of dense
cancellous bone with a surrounding rim of cortical bone;
occasionally they contain hemopoietic tissue (175). The only
apparent clinical problem associated with tori per se is
obstruction to dentition (including denture fitting); and tori
rarely require surgical de-bulking. Notably, tori are not present
in all cases of LRP5 or LRP6 HBM (Table 3).

Although prevalence estimates have varied widely (between 1
and 64% depending upon the study, definition and population),
overall tori appear to be relatively common (approximately 25%
of a Caucasian population, clearly much higher than the
prevalence of HBM) and appears similar across all ages (146).
Interestingly, two separate studies (one among US (90%
Caucasian) postmenopausal women and another in elderly
Japanese women) have found an association between tori and
higher BMD (176, 177). The US study graded tori size (0 to 5)
and found a strong correlation with BMD Z-score among 469
women; however, they did not find a similar correlation between
age and torus size (176).

Taken together, these data suggesting that torus may reflect
acquisition of peak bone mass in early adult life rather than a
progressive skeletal change. Moreover, tori do not appear to be
sensitive or specific indicators of a monogenic form of HBM but
may simply reflect a general association with higher peak
bone mass.
UNEXPLAINED HBM—A NEW ENTITY?

Mutations in the genes mentioned above are extremely rare within
the general population, and the vast majority of HBM cases
(~97%) remain genetically unexplained (159). Based on our UK
study, LRP5 HBM mutations have an estimated prevalence of
approximately 5 per 100,000 (159). We identified only one
sclerosteosis carrier, who manifested moderately high BMD due
to a novel heterozygous nonsense SOST mutation predicted to
either prematurely truncate sclerostin or cause nonsense-mediated
decay (159). No cases of autosomal recessive sclerosteosis, LRP4
HBM or LRP6HBM have been identified in the UK to date (159).
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Thus there remains a population with generalized raised BMD
(Z-score ≥+3.2 at either L1 or hip), usually identified incidentally
on routine DXA scanning (34, 159), in whom fracture risk is not
increased, with clinical characteristics suggestive of a mild skeletal
dysplasia (associated features of mandible enlargement, extra bone
at the site of tendon and ligament insertions, broad skeletal frame
and larger shoe size, poor buoyancy, as well as an increased BMI)
(34). The population is characterized by increased trabecular BMD
and by alterations in cortical bone density and structure, leading to
substantial increments in predicted cortical bone strength (178).
Neither trabecular nor cortical BMD appear to decline with age in
the tibia of HBM individuals, suggesting resistance to age-related
bone loss in weight-bearing limbs may contribute to their bone
phenotype (178). Furthermore, body composition assessment
suggests that HBM is associated with a marked increase in fat
mass, particularly android fat, in women but not men (179). This
clinical appearance of a mild skeletal dysplasia explains 35% of
incidental identified high BMD on routine DXA scanning, such
that unexplained generalized HBM has a prevalence of 0.18%
among a UK DXA-scanned adult population (34).

Within our cohort with unexplained HBM, 41% have a first-
degree relative with a similar phenotype; thus unexplained HBM
appears to be heritable though this figure has not been formally
calculated (34). As mentioned above, mutations of other
components of the Wnt/b-catenin pathway have been associated
with HBM in murine genetic studies; and it may be these HBM
individuals carry rare variants in genes yet to be identified through
further sequencing efforts. However, this population with
unexplained HBM is enriched for ‘high BMD alleles’ of loci
identified through BMD GWAS in the general population. Thus,
the genetic architecture of unexplained HBM is, at least in part,
explained by common variants (15, 16). This does not exclude the
possibility of rare variants of large effect in other genes in some (or
all) of this cohort; rather, the effect of such variants with large effect
may be modified by their background polygenic architecture.

As higher (i.e., non-artefactually elevated) BMD is associated
with prevalent osteoarthritis in the general population (180–183),
it is perhaps not surprising that individuals with unexplained
HBM have a greater prevalence of radiographic osteoarthritis than
their unaffected family members and general population controls,
along with a higher incidence of joint replacement (184–186).
Interesting, when assessing the individual radiographic sub-
phenotypes of osteoarthritis, be it at the hip, knee or hand,
osteophytes predominate, with some increased subchondral
sclerosis, rather than joint space narrowing (185–187). Taken
together this suggests HBM might be associated with a
hypertrophic ‘bone-forming’ osteoarthritis phenotype (188).
While increased adiposity is also a clinical feature of HBM (with
weight a major contribution to the development of degenerative
joint disease), there remains an association between BMD and
osteophytes, even after adjusting for BMI, at both weight-bearing
(e.g. knee) and non-weight-bearing (e.g. distal interphalangeal
[DIP] and carpometacarpal [CMC] joints of the hand) joints
(186, 187).

More recently, we have been able to follow-up a proportion of
our original HBM cohort eight years after initial assessment. We
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have observed increases in knee osteophytes and joint space
narrowing, as well as knee pain and functional limitation (189);
findings at the hip are similar (A Hartley et al., submitted for
publication). Taken together, these insights from the study of an
extreme HBM population suggest that raised BMD may
contribute to pathogenesis of osteoarthritis.
OSTEOPETROSES AND OSTEOSCLEROTIC
CONDITIONS WITH DISTURBED
FORMATION AND RESORPTION

High BMD due to Osteoclast Dysfunction
The osteopetroses (Greek etymology: “petro”—to turn to stone)
are rare genetic conditions of reduced osteoclastic bone
resorption. Defective bone remodeling during growth induces
skeletal sclerosis and abnormally dense but brittle bones. First
described by the German radiologist Albers-Schönberg as
“marble bone disease,” (190, 191) osteopetrosis is now
classified by clinical severity (Table 4). The worst prognosis is
seen in severe neonatal or infantile forms; a number of
intermediate forms have been identified; and later-onset forms
characterise the other end of the clinical spectrum (8, 237).
Autosomal dominant osteopetrosis (ADO) was historically
subdivided into ADO type I and type II. However, ADO type I
was subsequently identified as high bone mass due to LRP5 (low-
density lipoprotein receptor-related protein 5) mutations (128)
(discussed earlier). As LRP5 HBM is not primarily a disease of
osteoclasts, and is not characterized by bone fragility, we agree
with the most recent edition of the Nosology [compared with the
2015 Nosology (237)] that LRP5 HBM should not be considered
an osteopetroses. LRP5 HBM has now been reclassified within
the group of “other sclerosing bone dysplasias” (8).

Osteopetrosis, Late‐Onset Form Type 2
(OPTA2), Previously Known as Autosomal
Dominant Osteopetrosis II (ADOII)
OPTA2 (MIM166600, eponymously known as Albers-Schönberg
disease) is caused by CLCN7 mutations. CLCN7 functions as a
voltage-gated Cl-/H+ ion channel, and is found in lysosomes and
on the ruffled boarder of osteoclasts. By acid efflux, it facilitates
inorganic bone matrix dissolution (238). Mutations in CLCN7,
therefore, result in decreased osteoclastic bone resorption.
Multiple mutations have been identified throughout the gene, in
association with a range of osteopetrotic phenotypes (239–241).
The prevalence of OPTA2 is estimated between 0.2 and 5.5/
100,000 (242, 243); however, it exhibits both variable penetrance
(60–80%) and expressivity, results in a varied clinical phenotype
including detection as an incidental radiographic finding (244).
The phenotype can include facial nerve palsy, visual loss (in 5–25%),
carpal tunnel syndrome, hip osteoarthritis (in 7%), increased
fracture risk and delayed fracture healing, osteomyelitis (in 10–
13%, particularly in the mandible), dental abscesses (10%) and deep
decay (36%) and, in extreme cases, bonemarrow failure (≈3%) (192,
203–206).
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TABLE 4 | Osteopetrotic conditions and osteosclerotic conditions with disturbed formation and resorption.
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tal complications, fractures, maintained
nction.

(190, 192)

, severe infections, no teeth, skin
early death

(193)

ions, bleeding, osteopetrosis,
egaly

(199)

(200)

delay, seizures, metaphyseal
diaphyseal osteopenia of long bones.
ures. Skull unaffected.

(201, 202)

aphic features, fractures, nerve
steomyelitis, dental complications.
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TABLE 4 | Continued

n Protein Function Symptoms Ref

Kinase Kinase 1SMAD Family
Member 3

changes (hypertrichosis, fibromas, hemangiomas and
pain): associated with radiographic features in
sclerotome. Contractures can develop

tion Wilms tumor gene on the X
chromosome/APC Membrane
Recruitment Protein 1

Wnt signaling
suppression

Macrocephaly, CN compression, cleft palate, skull/long
bone sclerosis in females. Usually lethal in males

(162, 215)

tion Solute carrier family 29
(nucleoside transporter)
Colony Stimulating Factor 1
Receptor

Osteoclast
differentiation and
function

Neurodevelopmental deterioration, platyspondyly,
cranial nerve compression, abnormal dentition

(216–219)

in of TGFb Cell proliferation,
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migration and
apoptosis

Variable phenotype. Thickened diaphyseal cortices, limb
pain, fatigability, muscle weakness, waddling gait.
Variably raised ALP, hypocalcemia & anemia
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tion Thromboxane synthase Modulates RANKL &
OPG expression

Impaired platelet aggregation (steroid-sensitive),
anemia. Similar to Camurati-Engelmann syndrome but
metaphyses also involved
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development

Sparse curly hair, severe dental abnormalities, defective
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(229)

Nuclear Factor-Kb Ligand; OPG, Osteoprotegerin; XL, X-linked; ADOII, Autosomal dominant type 2 osteopetrosis.

e Paget’s-like diseases (familial expansile osteolysis, expansile skeletal hyperphosphatasia and early-onset Paget’s disease); (230, 231)
termed Buschke-Ollendorff syndrome (192, 210, 232)
, syndactyly, ocular defects and fat herniation through skin and is known as Goltz Syndrome (233–236).
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Radiographs feature (a) vertebral end-plate thickening
(another cause of ‘rugger-jersey spine’), (b) ‘bone-within-bone’
particularly in the pelvis, and (c) transverse sclerotic bands
within the distal femorae (203, 206). However, the radiological
phenotype is not ubiquitous (≈60–90%) (233, 242). DXA BMD
Z-score ranges from +3 to +15 (203, 205).

OPTA2 highlights that high BMD does not necessarily equate
to lower fracture risk. In one case series of 94 CLCN7 mutation
cases, almost every adult (98%) had experienced a fracture
(including, in half of carriers, their hip), with a third having
fractured more than once (five had >15 fractures) (205). Among
another 42 cases from 10 families, age range 7 to 70 years, the
mean number of fractures per person was 4.4 (205). However,
these case series are not performed systematically; thus, patterns
are difficult to generalise.

Pycnodysostosis
First described in 1962 and said to be the malady of both
Toulouse-Lautrec and Aesop (known for his fables) (234–236),
pycnodysostosis (MIM265800) is caused by defective enzymatic
degradation of organic bone matrix, due to an autosomal
recessive mutation in CATK (coding for cathepsin K) (207). To
date approximately 30 mutations have been reported among
fewer than 200 cases globally (207–209). Secreted by osteoclasts,
cathepsin K cleaves type I collagen (245). The characteristic bone
dysplasia includes skull deformities, under-developed facial bones
with micrognathia, beaked nose, short stature and phalanges,
dental caries, persistence of deciduous teeth and abnormally
dense but brittle bones (192, 207–209, 246). Affected individuals
may also manifest hip fractures indistinguishable clinically from
atypical femoral fractures associated with antiresorptive therapy
(247). Interestingly, particularly in light of the previous statement,
the molecular understanding of pycnodysostosis underpinned
development of a novel class of anti-resorptive therapy (248),
although ultimately this agent did not make it to market
(see below).

b3-Integrin Disorders Associated With
Platelet Dysfunction and Osteopetrosis
b3-integrins act with filamentous actin to facilitate podosome
attachment of osteoclasts to bone. b3-integrin double knock-out
mice develop osteosclerosis, with increased cortical and
trabecular mass, as well as hypocalcemia, due to defective
osteoclast function (249). ITGB3 encodes glycoprotein IIIa
which is the b subunit of the glycoprotein IIb/IIIa cell
adhesion complex. Interestingly this IIb/IIIa complex acts as a
fibrinogen receptor and mediates platelet aggregation; it is this
complex which the widely used cardiological drugs tirofiban and
abciximab target in their anti-platelet action as glycoprotein IIb/
IIIa inhibitors, used at the time of percutaneous coronary
interventions. Hence unsurprisingly, dysfunction of b-integrins
appears to cause defective platelet aggregation and HBM in mice
models (250). Autosomal recessive mutations in ITGA2B lead to
reduced production of either glycoprotein IIb or IIIa, resulting in
Glanzmann thrombasthenia (MIM273800) which is characterized
by excessive bleeding (251). Only one case of Glanzmann
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thrombasthenia has been reported with a bone phenotype, with
generalized and skull base osteosclerosis observed on plain
radiographs of a 5 day old baby (252), termed osteopetrosis and
thought due to impaired osteoclast function (253). A similar
platelet phenotype has been associated with osteopetrosis
(reported in three cases) in the presence of mutations in
Kindlin-3 (MIM612840), coding for Kindlin-3 which also
interacts with b-integrins. The resulting condition is termed
leukocyte adhesion deficiency-3 (LED-3) and predisposes to
bacterial infections and bleeding despite normal platelet counts,
as well as a bony phenotype (199).
OTHER OSTEOSCLEROTIC DISORDERS

Osteopoikilosis and Melorheostosis
Osteopoikilosis (MIM166700; Greek etymology: poikilos-
various) is benign, usually incidental finding characterized
radiographically by multiple small round osteosclerotic foci,
which can cause concern for metastases. When associated with
connective tissue naevi, (dermatofibrosis lenticularis disseminate)
it is termed Buschke-Ollendorff syndrome (BOS) (192, 210, 232).
Melorheostosis, an asymmetric radiographic appearance of
‘flowing hyperostosis’ described as ‘dripping candle wax’ down
the bone, can co-occur with osteopoikilosis. Approximately 200
cases have been described to date. Soft tissue signs and symptoms
(see below) are associated with the radiographic features in a
sclerotome distribution. Hypertrichosis, fibromas, hemangiomas
and pain are sometimes a feature; and contractures and deformity
can develop if limbs can become unequal in length (192,
210–212).

Osteopathia Striata
Osteopathia striata can occur in combination with cranial
sclerosis (MIM300373) or focal dermal hypoplasia (known as
Goltz Syndrome; MIM305600)); both are X-linked dominant
diseases and cause striations visible on bone radiographs,
together with learning difficulties. In the former, which is due
to mutations in AMER1, cranial osteosclerosis can lead to cranial
nerve compression (215). In Goltz syndrome, caused by
mutations in PORCN, the bone features are associated with
skin pigmentation, hypoplastic teeth, syndactyly, ocular defects,
and fat herniation through skin (254–256).

Camurati-Engelmann Disease
Camurati-Engelmann disease (progressive diaphyseal dysplasia)
(MIM131300) results from a gain-of-function mutation in
Transforming Growth Factor Beta-1 (TGFB1), resulting in
thickened diaphyseal cortices, increased BMD, limb pain,
fatigability, muscle weakness and a waddling gait (220). TGF-b
controls cell differentiation, proliferation and apoptosis in many
tissues; and its pivotal role in bone regulation is highlighted by
the number of skeletal diseases associated with abnormal TGF-b
signaling, which include Marfan’s syndrome, Loey-Dietz
syndrome, acromesomelic and geleophysic dysplasias and even
osteogenesis imperfecta (257).
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Ghosal Syndrome
Ghosal syndrome (MIM231095) is a rare autosomal recessive
disorder caused by a mutation in TBXAS1, which encodes
thromboxane synthase, resulting in HBM, impaired platelet
aggregation, and anemia. The phenotype is not dissimilar from
Camurati-Engelmann disease; however, here metaphyses are also
affected (227, 228). This condition has linked platelet function
with the RANKL/OPG pathway in vitro as thromboxane
synthase modulates both RANKL and OPG expression in
osteoblasts (228).

X-Linked Hypophosphatemia
X-linked hypophosphatemia (XLH) (MIM307800), caused by
phosphate-regulating endopeptidase homolog (PHEX)
mutations, has also been reported as a cause of modestly
elevated axial, though not appendicular, BMD, in both children
(258) and adults (68). However, given the high prevalence of
ligamentous calcification and degenerative joint disease in adults
with XLH, interpreting a DXA BMD result is complex.
Individuals with XLH have a high prevalence of pseudo- and
complete fractures, with mean age at first fracture of 26 years
(259). However, pertinent to the point regarding fracture vs.
BMD, these fractures typically affect the lower limbs, noting that
appendicular BMD is not usually increased in XLH; and are
usually attributed to the combination of osteomalacia and
mechanical stress (from rickets and joint mal-alignment).

Neonatal Osteosclerotic Dysplasias
A handful of rare mutations can cause osteosclerosis in the
neonate. Caffey disease (MIM114000), also known as infantile
cortical hyperostosis, is a highly unusual bone disease causing
excessive bone overgrowth (two-three times normal width—to the
point of bone fusion with neighboring bones (e.g. ribs, radius and
ulna)), along with joint and soft tissue swelling—which then
resolves over the following months. To date all cases carry a
single point mutation in COL1A1 (c.3040C>T; p.Arg836Cys)
(260). Mutations in COL1A1 usually cause osteogenesis
imperfecta; and the reason for the differing phenotype in
Caffey’s disease is not known – nor is it known why this
condition settles down over time. Interestingly, a COL1A1
mutation has been identified in an Australian terrier with
canine hyperostosis (261), and mutations in various solute
carrier genes have been described in other cases of canine
calvarial hyperostosis and craniomandibular osteopathies
(which are likely overlapping conditions) (261). Whether
mutations in these genes contribute to human diseases similarly
is unknown.

Other forms of neonatal osteosclerosis include Blomstrand
dysplasia (MIM215045), due to autosomal recessive inactivating
mutations in PTHR1 which codes for the PTH/PTHrP receptor 1,
and which is usually lethal; desmosterolosis (MIM602398), due to
autosomal recessive mutations in DHCR24 which codes for 3‐
beta‐hydroxysterol delta‐24‐reductase, with mutations resulting in
impaired sterol‐metabolism; and Raine dysplasia (MIM259775),
due to autosomal recessive FAM20Cmutations coding for Dentin
matrix protein 4, which can also be lethal.
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POLYGENIC INHERITANCE OF HIGH BMD

GWAS in populations selected due to their high BMD have
identified novel BMD-determining loci relevant not only in the
extreme population but also in the general population. In 2011,
we performed the first extreme truncate selection GWAS of
BMD (33), as the use of extreme cases and/or “super controls,”
drawn from opposite ends of the same population distribution,
maximizes statistical power (262). This was one of the first such
extreme truncate selection GWAS for any phenotype; and such
augmentation of statistical power through analysis of extreme
phenotypes has since been shown to be advantageous in a range
of clinical phenotypes (263–266) and is now an established
approach to investigate the genetic architecture of complex
disease (262, 267). In addition to replicating associations for 21
of the then 26 known BMD loci (identified from analyses of
populations with normally distributed BMD) (268), we identified
six new genetic associations in loci near CLCN7, GALNT3, IBSP,
LTBP3, RSPO3, and SOX4 (33), which subsequently replicated in
larger general population GWAS (17, 18). This project
highlighted the efficiency of extreme-truncated selection for
quantitative trait GWAS design (33).

More recently, we conducted a GWAS of arguably the most
extreme BMD population to date, identifying further two genome-
wide significant SNPs, rs9292469 (48.5kb 3′ of NPR3 with the LD
block including part of this gene) and rs2697825 (within an intron
of SPON1) associated with lumbar spine and hip BMD respectively.
NRP3 regulates endochondral ossification and skeletal growth (269–
272), while SPON1 modulates TGF-b-regulated BMP-driven
osteoblast differentiation (273). SPON1, coding for an extracellular
matrix glycoprotein, had not previously been associated with a bone
phenotype in humans; however interestingly, Spon1 knockout mice
have a skeletal HBM phenotype (274). These novel loci are now
under active investigation as future therapeutic targets.
TRANSLATIONAL POTENTIAL OF
DISSECTING THE GENETICS OF HBM

The working assumption underlying the efforts of ourselves and
others in this field is that understanding the genetic architecture
of skeletal diseases characterized by HBM will elucidate critical
pathways involved in bone growth and regulation, and aid
development of novel therapeutics to increase bone mass
(275). Successful drug targets (i.e., those for whom drugs have
successfully passed through all development steps to an approved
drug indication) are enriched with genes known to be involved in
human disease, whether identified through common or rare
variant analysis (276). Inspiringly for those of us who study
bone, the concordance between disease indication and disease/
pathway association (whether identified through rare or
common variant studies) is strongest for drugs targeting the
musculoskeletal system, compared with all other systems
(including diabetes, autoimmunity, cardiovascular disease and
oncology). Importantly, there is no relationship between
genomic effect size and approved drug status, emphasizing the
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role of studying both rare variants of large effect and common
variants of small effect (276).

The definitive proof-of-concept for this working hypothesis has
been the development of antibodies to sclerostin, a protein only
identified through analysis of HBM families with sclerosteosis and
van Buchem’s disease (110–112), with completion of phase 3 clinical
trials (147, 277) and the first-in-class agent (romosozumab)
approved for clinical use by the US Food and Drugs
Administration. Similarly, genetic dissection of pycnodysostosis
led to the development of Cathepsin K inhibitors and the first-
in-class agent (odanocatib) (207), successful in phase 3 and
extension trials but disappointingly not taken forward into clinical
practice (248). Although we acknowledge wholeheartedly that many
medications currently used in osteoporosis, were not developed as a
direct consequence of genetic studies, it is interesting to reflect that
bisphosphonates, selective estrogen receptor modulators, estrogen,
cathepsin K inhibitors, denosumab, anti-sclerostin antibodies and
PTH and its analogs all target proteins associated with a monogenic
bone condition; and, with the exception of bisphosphonates and
cathepsin-K inhibitors [but with the potential addition of DKK-1
inhibitors, which have shown promise in murine models (278,
279)], all target genes in loci with common variant association with
BMD. We await news of further Wnt pathway agonists, also in
development, as novel anabolic treatments for osteoporosis
(278–281).
CONCLUDING COMMENTS: THE VALUE
OF STUDYING EXTREME PHENOTYPES

In the 17th century William Harvey acknowledged the potential
benefits of studying the natural, but rarely occurring, extreme
cases, in order that they might elucidate systems pertinent to the
general population: “Nature is nowhere accustomed more openly
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to display her secret mysteries than in cases where she shows
traces of her workings apart from the beaten path; nor is there
any better way to advance the proper practice of medicine than
to give our minds to the discovery of the usual law of Nature by
careful investigation of cases of rare forms of disease” (282).

These words summarise the rationale that we (and others)
have used in considering and investigating individuals with high
BMD (15, 33). The genetic revolution—both sequencing and
high-throughput microarray genotyping—has contributed
greatly to the understanding of both common (17, 18) and rare
(8) bone pathologies, with identification of multiple genes and
critical pathways, leading already to the development of novel
therapeutics. We would particularly like to highlight that
progress in this field has been greatly enabled by collaboration
and co-operation between centers and within consortia around
the globe. However, as discussed above, the most common form
of sclerosing dysplasia appears to be the currently unexplained
HBM phenotype, with features suggestive of a mild skeletal
dysplasia. Given past history in this field, it is highly likely that
further genetic dissection of HBM cases will yield further novel
insights into bone regulation; and it is our hope that this work
will contribute to improved health for individuals with HBM and
for other individuals with metabolic bone diseases.
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