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Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant
in mammals. This is due to both production of local estrogens and signaling by these
ligands, particularly in an interconnected set of nuclei called the social behavioural network
(SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is
thought to underlie the display of social behaviour in mammals. Signalling by the
predominant endogenous estrogen, 17b-estradiol, can be either via the classical
genomic or non-classical rapid pathway. In the classical genomic pathway, 17b-
estradiol binds the intracellular estrogen receptors (ER) a and b which act as ligand-
dependent transcription factors to regulate transcription. In the non-genomic pathway,
17b-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to
rapidly signal via kinases or calcium flux. Though GPER1’s role in sexual dimorphism has
been explored to a greater extent in cardiovascular physiology, less is known about its role
in the brain. In the last decade, activation of GPER1 has been shown to be important for
lordosis and social cognition in females. In this review we will focus on several
mechanisms that may contribute to sexually dimorphic behaviors including the
colocalization of these estrogen receptors in the SBN, interplay between the signaling
pathways activated by these different estrogen receptors, and the role of these receptors
in development and the maintenance of the SBN, all of which remain underexplored.

Keywords: social behavior network, estrogen receptor isoforms, sex differences in brain, neuroestrogens,
aromatase, mood, behavior
INTRODUCTION

The steroid hormone 17b-estradiol (E2) is the most physiologically relevant estrogen, with a myriad of
effects that is dependent on signaling from a receptor. The classical genomic mode of estrogen
signaling is via nuclear estrogen receptors (ER) a and b, which translocate to the nucleus upon ligand
binding to act as transcription factors, regulating transcription over hours to days (1). Nongenomic
signaling is a second mode of estrogen signaling which employs membrane-limited forms of ERa and
ERb, as well as the novel G protein-coupled estrogen receptor (GPER)1, to activate second messenger
pathways resulting in rapid outputs within seconds to minutes. In the brain, E2 acts via both signaling
mechanisms to facilitate spinogenesis and dendrite growth (2, 3), cell survival (4), and neuroprotection
(5). All these processes contribute to the sexual differentiation of the brain, a process that is restricted
to critical periods of development in conserved nuclei of the brain referred to as the social behavior
network [SBN; (6)]. After development, the SBN remains responsive to E2 acting via the ERs,
n.org October 2020 | Volume 11 | Article 5958951

https://www.frontiersin.org/articles/10.3389/fendo.2020.595895/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.595895/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:n.vasudevan@reading.ac.uk
https://doi.org/10.3389/fendo.2020.595895
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.595895
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.595895&domain=pdf&date_stamp=2020-10-30


Dovey and Vasudevan GPER1 in Sexual Dimorphism
integrating information about external and internal stimuli to
drive sexually dimorphic expression of behaviors including
reproductive behaviors, aggression and anxiety, and to some
extent neuroprotection. In this review, we detail the contribution
of the various ERs to the formation of the sexually dimorphic SBN
and to the local production of estrogens, with areas of future
exploration highlighted.
THE SOCIAL BEHAVIOR NETWORK

The social behavior network (SBN) is a conserved set of
hypothalamic and limbic nuclei that contribute to the expression
of sex-typical social behaviors (6) via sexually dimorphic nuclei
(SDN). These are structures within the SBN that differ in volume,
cell type, and receptor expression between sexes. The
neuroanatomical connections, and the contribution of each SBN
nuclei to social behavior has been reviewed in detail in (7).

E2 in the critical developmental period organizes the SBN
(Figure 1) via molecular mechanisms that include neurogenesis
(10, 11), programmed cell death (12), and synaptogenesis (13) and
pruning (14). Following reproductive maturation, E2 then activates
the SBN. Which ERs regulate these processes? In the female
hippocampus, both ERa and GPER1 increase spinogenesis via
ERK and JNK pathways (15) to consolidate spatial memories.
Moreover, GPER1 activation leads to rapid increases in
hippocampal spine density and promotes social cognition (16,
17). In neocortical cultures, GPER1 activation increases apoptosis
mediated by the endocrine disrupter benzoquinone (18) while
GPER1 activation can increase the migration of stem cells in the
subventricular zone (19). Presumably, these processes are required
forGPER1modulationof sex-typical behaviors suchas lordosis and
social cognition. For details of theGPER1 including pharmacology,
subcellular distribution and signaling, its role in behavior including
itsmodulationofERa function, the reader isdirected toboth (9, 20).

Preoptic Area of the Hypothalamus
The sexually dimorphic nucleus of the preoptic area (SDN-POA)
has a larger volume in the male due to increased cell density (21).
The perinatal androgen surge at E18 and subsequent aromatization
to E2 protects dopaminergic cells in the male SDN-POA from
apoptosis (22). The receptor for preserving the volume of the SDN-
POA is ERa, since WT and androgenized female rats treated with
antisense oligonucleotides against ERa show a significantly smaller
SDN-POA volume compared to their respective controls (23)
though ERa expression levels are not significant between the
sexes (Table 1). Non-genomic signaling is critical since male mice
with a mutation that destroys the tethering of the ERa to the
membrane and its ability to initiate non-genomic signaling showed
decreased calbindin-immunoreactive (amarker for the SDN-POA)
neurones (37).KnockdownofGper in zebrafish resulted in a greater
number of cells stainedwith acridine orange, amarker for apoptosis
(38). However, specific brain regions were not identified, and it is
not known if this role forGPER1exists in rodent species. Indeed, the
localization of GPER1 within the SDN-POA has not been directly
investigated, though efferents from the mPOA to the VTA do
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express GPER1 (39). Yet, despite its role in non-genomic signaling,
the establishment of sexual dimorphisms by GPER1 in the POA
is unknown.

Anteroventral Periventricular Nucleus of
the Hypothalamus
The anteroventral periventricular nucleus (AVPV) contrasts from
the neighboring SDN-POA as females harbor greater cell volumes
(40), greater numbers of glia (41), and greater numbers of
dopaminergic neurones (40) compared to males. The surge of E2
availability in the perinatal male brain upregulates caspase activity
and cell deathwhilst newcells are added to the femaleAVPVduring
puberty (11) though the ER that mediates this is not clear.

Adult females express greater amounts of ERa than males
(Table 1) and levels are not affected by gonadectomy (GDX)
(32), which suggests that differences in expression occur prior to
adulthood. ERKOamale mice have a greater AVPV volume (24)
and a greater number of tyrosine hydroxylase (TH)-positive cells
(42) than WT males. However, ERaKO males still have
significantly less dopaminergic neurones than WT females
(42), suggesting that another receptor contributes to the
masculinization of the AVPV. ERb may be a candidate since it
is coexpressed with both ERa and TH in the female AVPV (43)
and ERKOb males have increased TH-ir compared to their WT
counterparts (44). Together, this suggests that the sexual
dimorphism in dopaminergic cell populations in the AVPV is
driven by high levels of E2 in the male brain acting through both
ERa and ERb to drive cell death. Interestingly, in cultured
dopaminergic neurones shown to express both ERa and
GPER1, E2 is neuroprotective (5), suggesting that GPER1 may
have a modulatory effect on ERa signaling. Though knockout of
both a and b ERs (ERKO) has no effect on glial cell numbers in
the male AVPV (24), the death of glial cells is an E2-dependent
process since aromatase KO (ArKO) mice have increased
numbers of glial cells (24). This suggests that another ER, such
as GPER1, that is abundant in glia, may contribute to the
masculinization of the AVPV. Indeed, in an oxygen-glucose
deprivation model, GPER1 increases apoptosis of cortical
astrocytes (45). Neither expression of the GPER1 protein, nor
its colocalization with other ERs in the AVPV, have been
characterized in the male or female rodent.

The Medial and Extended Amygdala
The medial amygdala (MeA) is a major source of input to the
medial (m)POA, responsible for relaying olfactory information
that underlies social recognition. Similar to the AVPV, new cells
are added to the MeA during puberty albeit solely in the male
(11). Targeted knockdown of ERa in the MeA in pubertal male
mice feminizes the volume of the MeA by reducing neuron
numbers (46), suggesting ERa-mediated signaling is important
in the establishment of volumetric sex differences.

Aromatase is strongly expressed in the MeA of male mice,
particularly in nerve fibers (34) and may contribute to the
modulation of synaptic properties of the female MeA across
the estrous cycle (47), as E2 inhibits neural transmission from the
MeA (48). Indeed, administration of the GPER1 agonist G-1
October 2020 | Volume 11 | Article 595895
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attenuates the upregulation of NMDA receptors in the female
basolateral amygdala and blocks the downregulation of GABAA

receptors to increase inhibitory synaptic transmission (49).
The bed nucleus of the stria terminalis (BNST) is part of the

extended amygdala and plays a key role in stress and anxiety-
denoting behaviors (50), expressing both ERa and ERb during
developmental periods (Table 1). A subregion of the BNST, the
principal nucleus of the BNST (BNSTp) is larger in males than
Frontiers in Endocrinology | www.frontiersin.org 3
females (51). Administration of testosterone propionate (TP) to
females at P1 increases volume, although not to a level comparable
with males (52–54). This may be a reflection of greater aromatase
expression within the male BNST (34), allowing the brain to
generate more estrogen to produce a greater magnitude of
masculinization. In addition, it could be a reflection of less
androgen receptor (AR) expression in the female brain (55), since
masculinization of the BNSTp requires both E2 signaling and
A

B

FIGURE 1 | Organizational-activational hypothesis. (A) The testes are active during perinatal development providing testosterone for central aromatase (Aro) to
produce estrogen (E) within the brain. Estrogen organizes the brain by binding to ERs, leading to the masculinization and defeminization of the brain. By contrast, the
perinatal ovary is quiescent. In utero, the brain is protected from estrogens that may enter via maternal circulation by the presence of a-fetoprotein that binds
estrogen. The role of the GPER1 in this organizational period is largely unknown. For a detailed review, the reader is referred to (8) and references therein. (B) The
organized neural substrate is activated following puberty when the gonads become active. Estrogen is released from the ovaries and testosterone (T) from the testes,
which is then aromatized to estrogen in the brain. The availability of cholesterol (Ch) and presence of steroidogenic enzymes within the brain also allows for the de
novo production of neuroestrogens. Estrogens activate neural circuits to express behaviors through activating second messenger pathways such as MAPK acutely
and recruiting transcriptional coactivators such as fos and jun to regulate non-ERE containing promoters. This could be via multiple ERs, including GPER1 (9).
Alternatively, the classical nuclear hormone receptors, ERa/b can translocate to the nucleus to directly bind estrogen-response-elements in DNA to regulate gene
transcription. Both these pathways result in modulation of behaviors in both males and females.
October 2020 | Volume 11 | Article 595895
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testosterone signaling via the AR (24). Similar to the AVPV, both
ERa and ERb are required for complete masculinization of the
BNSTp, since PPT and DPN (ERa and ERb agonists respectively)
given in the perinatal period increase cell number of the female
BNSTp, but neither completely mimicked the effects of E2 alone
(56), suggesting that synergy between ERs, including GPER1 may
maintain sexual dimorphism.

The pattern of expression of the ERs (Table 1) and the use of
pharmacological and genetic studies to target them suggest that the
development of the SBN frequently depends on a combination of
ERa and GPER1 though it often appears that the role of ERa is
predominant.This suggests that bothmembrane-initiated signaling
and classical transcriptional signaling might be important for sex-
typical behaviors that are responsive to external stimuli over longer
time frames. The idea thatGPER1may facilitate or antagonize ERa
signaling has been reviewed in (20) with examples givenwithin and
outside the brain. Given that the male brain expresses more
aromatase and has more neuroestrogens (Section 3), we speculate
that inmost instances, neuromorphological organizational changes
are driven by these ERs in the male, rather than the female brain.

A number of caveats exist to the localization data. First, most
studies have compared the longitudinal dynamics of ER expression
in the SBN of wildtype (WT) animals, focusing largely on sexual
dimorphisms within one particular age window and/or nucleus.
Unusually, a recent study showed thatERa andGPER1were higher
in the striatum of both male and female rats during development
andperinatal life but then declined ina sexuallydimorphicmanner as
development proceeded (57); however, they did not explore such
developmental dynamics in the SBN. Secondly, due to antibody issues,
colocalization studies of GPER1 with the other ERs have not
been performed.
LOCAL ESTROGEN SYNTHESIS WITHIN
THE SBN

Apart from the contribution of the ERs, another mechanism that
affects SBN nuclei is the provision of local estrogens. The brain
Frontiers in Endocrinology | www.frontiersin.org 4
expresses the enzymes required to synthesize estrogens de novo
(neuroestrogens) (58, 59). Developmentally, central aromatase
may be important for allowing specific regions to access higher
concentrations of E2 to maintain cell numbers or drive apoptosis,
although more evidence is required to support this idea. In an
activational context, aromatase may be important for maintaining
stable concentrations of neuroestrogens when systemic
concentrations fluctuate across the estrous cycle, as seen in female
baboons (60).

Regulation of Aromatase: Substrate
Availability and Development
Is the regulation of aromatase sexually dimorphic? In limbic areas,
aromatase activity appears to be constitutive (61). Therefore, the
regulation of aromatase activity is proposed to rely on two different
systems: a gonad-sensitive hypothalamic system and a non-gonad-
sensitive limbic system (62, 63). Though there are no sex differences
in aromatase mRNA expression in the BNST or AVPV during
perinatal development (24), male rodents have greater levels of
aromatase gene expression than females by adulthood (25). In line
with this, prepubertal GDX in males reduces aromatase activity in
adulthood (64), suggesting that aromatase expression is pubertally
organized by pubertal gonadal hormones.

The regulation of central aromatase may also be determined
by estrogens themselves. In MCF-7 cells, aromatase activity is
upregulated by estrogens in a positive autocrine feedback loop
via either ERa or GPER1 (65, 66). In transgenic mice that
express EGFP in aromatase-positive neurons, EGFP is more
highly co-expressed with ERa, ERb and AR in the male BNST
and MeA than in the adult female though co-expression of the
ERs and AR with EGFP was prevalent in other nuclei of the SBN
of both sexes (34). In contrast, aromatase is mostly co-expressed
with ERa during the perinatal period (67), highlighting the
potential to investigate developmental change in co-expression,
which may be partly explained by the sexually dimorphic
addition of new cells during puberty (11). How GPER1
regulates aromatase in the SBN is a question that is currently
being investigated by us.
TABLE 1 | Sexual dimorphisms in central ER and aromatase expression across development.

Area ERa ERb GPER1 Aromatase

Pn Pb A Pn Pb A Pn Pb A Pn Pb A

Hypothalamus
ARH = 7,8 = 7 X 3 = 3 = 13 = 11

VMH = 7,8 F 7 F 6 = 6 =* 12 = 13 =* 4

PVH = 7 =* 12 = 11

LS = 7 = 7 = 13

AVPV F 1,9 F 9 X 1 X 10 = 13

mPOA = 7,8 F 7,8 = 3 F 3 M* 12 = 13 X* 4 M 2,11

Extended amygdala
BNST F 1,9 = 7,9 F 9 = 1 M* 12 = 13 = 1 M* 4 M 2

MeA = 7 F* 12 = 13 =* 4 M 2

Bird song areas M 5 M 5
October 20
20 | Volume 11
 | Article 5
Relative expression of receptors and aromatase during perinatal (Pn), pubertal (Pb), and adult (A) periods. “F” denotes a greater expression in females, “M” a greater expression in males,
“=“ an equal expression between males and females, and “X” indicates undetectable expression. All referenced research uses mouse or rat (*) models, apart from one study which used
zebra finches to study GPER1 expression in song areas. References 1–5 measured mRNA expression; references 7–12 measured protein expression; reference 6 measured both mRNA
and protein. 1. (24). 2. (25). 3. (26). 4. (27). 5. (28). 6. (29). 7. (30). 8. (31). 9. (32). 10. (33). 11. (34). 12. (35). 13. (36).
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DISCUSSION: THERAPEUTIC POTENTIAL
FOR GPER1

Why is the contribution of GPER1 to a sexually dimorphic SBN
important? A sexually dimorphic brain results in sexually
dimorphic disorders that are important to consider clinically.
For example, neurodegenerative diseases disproportionately
affect women (68), whereas learning difficulties such as those
associated with autism spectrum disorder and dyslexia are more
commonly observed in males (69). Females have a greater risk of
developing depression, anxiety, or panic disorders (70) which are
correlated with hormonal changes in puberty and menopause
(71). E2 can elicit anxiogenic or anxiolytic effects in the amygdala
(72). ERa knockdown in the medial posterodorsal amygdala
(MePDA) resulted in female rats spending more time in the light
chamber in the light-dark test (LDT), implicating ERa as
anxiogenic (73). On the other hand, there is a general
consensus that ERb is anxiolytic (72) while the role of GPER1
is less clear. Chronic administration of G-1 was anxiolytic in the
open field test (OFT), but not the elevated plus maze (EPM) (74)
in females while acute administration of G1 was anxiolytic in the
EPM within 30 min of administration in males but not females
(75). On the contrary, another study found that agonism of
GPER1 produced anxiogenic effects in both the OFT and EPM
(76) in male and female mice. In this study, G-1 was injected 2h
before behavioral testing. Thus, the timeframe of administration
may be an important factor in determining the roles of ERs in
anxiety. The actions of GPER1 may also depend on the context of
anxiety, i.e. whether the animal is previously stressed. Acute
stress (imposed by restraint or forced swim tests) significantly
decreased the time spent in the open arms and central area of the
EPM, but this is ameliorated with G-1 treatment (49) in
ovariectomized females. Moreover, acute stress significantly
increased the levels of GluR1-containing AMPA receptors and
NR2A-containing NMDA receptors, thus increasing small
excitatory postsynaptic currents (sEPSCs). However, G-1
treatment reversed these effects, enhancing small inhibitory
postsynaptic currents (sIPSCs) instead (49). Thus, GPER1 may
be important in mitigating stress-induced anxiety, with little-to-
no role in inhibiting behaviors that denote anxiety in the
absence of stress. This specificity might allow for the
development of personalized medications for anxiety.
Furthermore, targeting GPER1 over ERa or ERb may be
preferable given the possible sexual dimorphism in anxiety
modulation (75), involvement of the classical ERs in
reproductive development and function, and the role of ERb
the in estrogenic modulation of GnRH (77)
FUTURE PERSPECTIVES

Clearly, understanding how GPER1 functions both
independently and as a putative modulator of classical ERs in
both sexes is imperative for uncovering its therapeutic potential
in hormone-associated mood disorders. GPCRs such as the
serotonin 1A receptor have been associated with the
Frontiers in Endocrinology | www.frontiersin.org 5
development of depression. SSRIs function by desensitizing
serotonin 1A receptor signaling to decrease plasma levels of
oxytocin and adrenocorticotropic hormone (ACTH) (78). The
efficacy of SSRIs in attenuating serotonin 1A receptor mediated
signaling and consequent oxytocin and ACTH release can be
accelerated with G-1 treatment. Dual treatment targeting GPER1
means that symptoms of depression can be alleviated earlier, as it
takes up to 12 weeks to reach clinical efficacy with SSRIs alone
(79). Furthermore, a recent study has implicated GPER1 as a
diagnostic tool for GAD and MDD. Drug-naïve patients with
anxiety or depressive disorders exhibit increased serum levels of
GPER1, which correlate with anxiety scores (80). This result was
found to be independent of sex although mouse models suggest
that the role of GPER1 in regulating anxiety is slightly more
pronounced in males (76, 81). Though there is a general lack of
sexual dimorphism in GPER1 expression with moderate to high
distribution of GPER1 in the adult SBN (36), a recent study has
shown that GPER1 concentrations decrease with approaching
adulthood and the distribution shifts from multicompartment to
predominantly cytoplasmic or membrane distribution in the
striatum (57). This suggests that GPER1 expression is capable
of being developmentally regulated though the significance of
such regulation remains unknown. Moreover, the effects of
GPER1 activation in adulthood on molecular mechanisms
linked to sexual dimorphism raise the possibility that GPER1
may have similar effects in the perinatal and pubertal critical
periods. This could be investigated by determining a) the
expression of GPER1 in development versus adulthood in the
SBN and its colocalization with ERa, ERb; and aromatase; b)
the effect of GPER1 agonism with G-1 and antagonism with
specific antagonist G-15 and G-36 during the critical periods on
sex differences in morphology, neuroestrogen production, and
molecular signaling prevalent in the SBN; c) the nature of
modulation of ERa action in the SBN. Some of this may be
explored with the use of a conditional, regional GPER1KO
model, though this is yet to be generated. Therefore, the
distinct roles of GPER1 within specific limbic vs SBN nuclei in
adulthood versus developmental periods need to be better
understood to produce a targeted medication to alter mood
without changing the expression of sex-typical organized
behaviors involving GPER1, such as reproduction.
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