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Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver
Disease (NAFLD), the main cause of chronic liver complications. The development of
NASH is the consequence of aberrant activation of hepatic conventional immune,
parenchymal, and endothelial cells in response to inflammatory mediators from the liver,
adipose tissue, and gut. Hepatocytes, Kupffer cells and liver sinusoidal endothelial cells
contribute to the significant accumulation of bone-marrow derived-macrophages and
neutrophils in the liver, a hallmark of NASH. The aberrant activation of these immune cells
elicits harmful inflammation and liver injury, leading to NASH progression. In this review, we
highlight the processes triggering the recruitment and/or activation of hepatic innate
immune cells, with a focus on macrophages, neutrophils, and innate lymphoid cells as well
as the contribution of hepatocytes and endothelial cells in driving liver inflammation/
fibrosis. On-going studies and preliminary results from global and specific therapeutic
strategies to manage this NASH-related inflammation will also be discussed.
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INTRODUCTION

Non Alcoholic Fatty Liver Diseases (NAFLDs), recently renamed Metabolic Associated Fatty
Liver Diseases (MAFLDs) to better reflect the pathogenesis (1, 2), are the most common
chronic liver diseases, with a worldwide prevalence of 25% (3, 4). NAFLDs covers the full
spectrum of fatty liver disease from hepatic steatosis to Non-Alcoholic Steatohepatitis (NASH),
fibrosis/cirrhosis and hepatocellular cancer. The overall prevalence of NAFLD is growing in
parallel with the global epidemic of obesity (5). Weight gain, insulin resistance, type 2 diabetes
mellitus, and hypertension are risk factors for NAFLD progression (6, 7). Reciprocally, NAFLD
is a risk factor for many metabolic diseases, including cardiovascular disease (8) and type 2
diabetes (9). NAFLD occurrence appears to be higher in men (10, 11), while postmenopausal
women display an increased risk of severe fibrosis compared to men, which can probably be
attributed to the loss of the protective effects of estrogen against fibrogenesis (11). Age also
impacts the NAFLD prevalence and liver disease stage (12). NASH, which is considered to be
the progressive form of the hepatic disease, is the second principal indication for hepatic
n.org December 2020 | Volume 11 | Article 5976481
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transplantation and the growing etiology for hepatocellular
carcinoma (HCC) in patients being listed for the liver
transplantation (16.2% of all liver transplantations) in USA
(13, 14). Finally, specific pharmacological therapies are not yet
approved for advanced NASH (Figure 1).

In addition to genetic and environmental factors, the
interactions of the gut and adipose tissue with the liver
enhance liver metabolic disorder (steatosis and insulin
resistance), chronic inflammation and injury-mediated fibrosis
(15). Adipose tissue plays an important role in the development
of insulin resistance and NAFLDs. Trunk fat was found to be
indicative of elevated ALT supporting the potential involvement
of the metabolically active intra-abdominal fat in increased liver
injury (16). Obesity is associated with an increase in adipose
tissue lipolysis, and secretion of inflammatory and fibrotic
mediators which can reach the liver. The accumulation of
inflammatory/immune cells and the modification of the
activities of these cells in the adipose tissue contributed to
chronic low grade inflammation during obesity (17–24). This
sustained inflammation mediates insulin-resistance and provides
a contributing link between its development and NAFLD (25).
The gut-liver axis is also a critical actor in the development of
NAFLD. Gut dysbiosis is associated with the modulation of local
immune systems and altered mucosal barrier integrity which, in
turn, promotes the translocation of bacterial products (26). In
concert with the local action, gut metabolites (decreased choline
availability, increased trimethylamine, ethanol production,
Frontiers in Endocrinology | www.frontiersin.org 2
changes in short-chain fatty acids, secondary bile acids, and
branched-chain ramified amino acids, etc.) and pathogen-
associated molecular patterns (PAMPs) modulate the
metabolic and immune responses within many organs
including adipose tissue, muscle and liver (27, 28). In addition
to endotoxemia (circulating LPS), changes in microbiota in
blood are associated with hepatic fibrosis in obese patients and
liver tissue contains substantial amounts of bacterial DNA
correlating with the histological disease severity in NAFLD
subjects (29, 30).

In liver with NAFLD, a large amount of innate and adaptive
immune cells including resident and recruited monocytes,
macrophages, neutrophils and ILCs but also parenchymal
hepatocytes and liver sinusoidal endothelial cells (LSECs) are
involved in the onset of chronic inflammation (24, 31–36). The
hepatocytes, LSECs, resident macrophages (Kupffer cells) are
able to sense excessive levels of metabolites, damage-associated
molecular patterns (DAMPs), and PAMPs and in turn elicit
inflammatory events associated with metabolic dysfunction (31,
36). Recruited monocyte-derived macrophages and neutrophils
are also key players in the NAFLD onset and progression, and
new roles for ILC subsets have recently been described for
NAFLD/obesity (24, 31–33). The immunological functions of
several conventional immune cells and liver cells (hepatocytes,
LSECs) in the context of obesity and NAFLD will be described in
this review, which will also provide insights into the potential
approaches to target these responses as therapies against NASH.
FIGURE 1 | Hepatic complications associated with obesity. The NAFLD development and progression are influenced by environmental, genetic, and individual
features. The main predictors of disease progression are the presence of type II diabetes, metabolic syndrome, hypertension, and dysbiosis. NAFLD progression is
also influenced by genetic, epigenetic, gender, and age components. The dysregulation of extra-hepatic organ functions such as adipose tissue, gut, and muscle, as
well as intra-hepatic events (inflammation, cell death, cellular stresses), have been reported in NAFLD. Cardiovascular disease (25–43%) is the primary cause of death
in NAFLD patients, while liver-related disease (9–15%) is also substantial. NAFL, non-alcoholic fatty liver; NAFLD, non-alcoholic fatty liver diseases; NASH, non-
alcoholic steatohepatitis.
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LIVER CELLS THAT PROMOTE THE
IMMUNOLOGICAL RESPONSES
ASSOCIATED WITH NASH

The main hepatic blood supply come from the gut via the portal
vein (~80%). This blood supply is rich in toxins, food antigens and
bacterial products from the environment. The hepatocytes, the most
abundant liver cells (~70%), achieve the detoxifying and metabolic
needs of the body. The remaining liver cells comprise the non-
parenchymal cells (NPC), counting liver stellate cells (HSCs),
sinusoidal endothelial cells (LSECs), and a variety of immune
cells. The most abundant immune cells in the liver are resident
macrophages, referred to as Kupffer cells (~20% among NPC). The
liver also contains mucosal-associated invariant T (MAIT) cells, T
cells, dendritic cells, natural killer cells (NK), neutrophils, iNKT, and
ILCs. The inter-species variations in liver-resident immune cell
populations need to be noted and taken into account for
translational studies. For example, MAIT cells are one of the
major liver populations of T cells in human (20–50% in human
liver versus 0.4–0.6% in mouse liver) (37) and mouse liver contains
less NK cells than human liver (5–10 versus 25–40% of total
intrahepatic lymphocytes) (34). In addition to its detoxifying and
metabolic roles, the liver is also a key immunological organ in the
response to exogenous antigens, metabolites and pattern molecules
(31, 38, 39). In the case of obesity, the liver sentinel cells such as
monocyte-derived macrophages and resident Kupffer cells rapidly
sense the local and persistent increase in pattern molecules,
metabolites, and exogenous antigens. The liver then “transits”
from an immune-tolerant state to an immune-active phenotype,
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with a shift in production of anti-inflammatory cytokines such as
transforming growth factor-b (TGF b) and interleukin-10 (IL10)
and to pro-inflammatory cytokines such as IL1, IL6, and tumor
necrosis factor (TNF-a). In turn, the interplay between innate and
adaptive immune cells and hepatocytes drives the chronic low grade
inflammation in NASH liver (31). Without underestimating the
important role played by the adaptive immune system [reviewed in
(34, 35)], the immunological functions of hepatocytes and sentinel
cells including LSECs, macrophages, ILCs, and neutrophils
according to liver steatosis development and its progression to
fibrotic-NASH, which will be debated in the following section
(Figure 2, Table 1).

Hepatocytes Have an Important Role
in Local Inflammation
The mechanisms involved in the steatosis-NASH transition are
multifactorial and not completely elucidated. In hepatocytes, the
accumulation of triglycerides in lipid droplets is a protective
mechanism and prevents lipotoxicity by buffering the toxic free
fatty acids (47). However, it is always a question of equilibrium and
this protective mechanism can be overwhelmed. To illustrate that,
the inhibition of the triglyceride synthesis through the targeting of
diacylglycerol acyltransferase 2 (DGAT2) improves liver steatosis
but exacerbates the liver injury and fibrosis in obese mice with
steatohepatitis (48). In contrast, appropriate regulation of DGAT2
activity has been shown to have a protective effect against NASH
(49). Altered lipid droplet remodeling or lipid mobilization can
enhance hepatocyte lipotoxicity and drive NAFLD progression. In
line with this, genetic variants in transmembrane 6 superfamily
FIGURE 2 | Cellular interplay during chronic liver diseases. Liver resident and recruited immune cells, stressed hepatocytes and liver sinusoidal endothelial cells
contribute to development of the chronic inflammation associated with NAFLD. Inflammatory mediators reaching the liver are key contributors of disease progression
as they influence hepatic cell functions. Full arrow, confirmed effect; dotted arrow, putative effect.
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member 2 (TM6SF2) and patatin-like phospholipase domain-
containing protein 3 (PNPLA3) genes, resulting in loss-of-
function and decreased VLDL secretion and lipid droplet
remodeling, respectively, were robustly linked to NAFLD
development and its progression (50, 51). Furthermore, proteins
involved in hepatic lipid homeostasis can be differentially expressed
and mediate de novo NAFLD progression. For example, members
of the CIDE family, which can regulate lipid droplet synthesis,
hepatic lipid homeostasis and cell death, are differentially regulated
according to NAFLD development and severity in mouse and
human studies. The gradual increase in FSP27b/CIDEC2
expression with hepatic steatosis and then steatohepatitis could
reflect the transition from the synthesis of protective lipid droplets
to detrimental hepatocyte death. Indeed, the strong increase in
FSP27b expression in NASH liver is more narrowly related to liver
injury and its over-expression sensitized hepatocytes to cell death
induced by TNFa and palmitic acid (52). The vulnerable fatty and
stressed hepatocytes then release danger signals such as DAMPs,
alarmins and apoptotic bodies. This activation of “sterile”
inflammation contributes to the initiation of a vicious cycle,
where inflammation enhances the death of hepatocyte and
vice versa.

Different types of hepatocyte death have been associated with
NASH-driven hepatic inflammation and NAFLD progression such
as apoptosis, necrosis, necroptosis, pyroptosis, and ferroptosis (40,
41). Apoptotic hepatocytes can directly initiate inflammation such
as the activation macrophage after engulfment of apoptotic bodies.
Furthermore, hepatocyte apoptosis frequency and the levels of a
circulating surrogate biomarker of hepatocyte apoptosis (caspase-
generated keratine-18 fragments) increased with NASH and fibrosis
(53, 54). Lytic forms of hepatocellular death, including necrosis,
pyroptosis, necroptosis, and ferroptosis also cause strong
inflammatory responses through the cellular components release
such as DAMPs. These cellular components contribute to the
recruitment and activation of inflammatory cells and hepatic
stellate cells (41). In addition, the release of pro-inflammatory
vesicles by stressed cells may also promote angiogenesis and
activation of hepatic stellate cells. The release of a C-X-C motif
chemokine ligand-10 (CXCL-10) and ceramide-enriched
Frontiers in Endocrinology | www.frontiersin.org 4
extracellular vesicles regulate liver trafficking and infiltration of
monocytes and macrophages. Moreover, mitochondrial DNA and
tumor necrosis factor-like apoptosis inducing ligand (TRAIL)-
enriched extracellular vesicles promote macrophage activation
(41). In addition, the senescence of hepatocytes is strongly
correlated with the fibrosis stage, type 2 diabetes and the clinical
outcome (55). While hepatocyte senescence, mainly caused by HFD
and aging, has a detrimental impact on hepatic steatosis (56), the
senescent HSCs produce less extracellular matrix components and
more matrix metalloproteinases, thereby alleviating fibrosis
advancement (57). More studies are thus required in order to
clarify the role of senescence in the different liver cells impacting
the NAFLD progression.

Hepatocytes also sense pathogens and metabolic molecules
via their membrane and cytoplasmic pattern recognition
receptors (PRRs) [Toll-like receptor -2, -4, -5, and -9 (TLR);
nucleotide-binding oligomerization domain -1 and -2 (NOD),
cGMP-AMP synthase, etc.] (31). They are strongly involved in
the regulation of the cell-autonomous innate immune responses
leading to increased local inflammation and the development of
liver complications (steatosis, insulin resistance and injury).
Deficiency of TLR-2, TLR-4, or TLR-9 in hepatocytes resolved
hepatic inflammation mediated by diet associated with decreased
insulin resistance, oxidative stress and hepatic steatosis (58, 59).
In contrast, the deficiency of TLR5 in hepatocytes (~90% of its
hepatic expression) strongly impaired bacterial clearance
(bacterial flagellin) by the liver and aggravated NAFLD
development (from steatosis to liver injury and fibrosis) upon
HFD or MCDD challenge (60). In addition to hepatocytes, other
“non-conventional immune cells” such as LSECs are key actors
in NAFLD development and hepatic inflammation.

The Dysfunction of Sentinel LSECs
Is Associated With NAFLD Progression
From Hepatic Steatosis to Fibrosis
In physiological conditions, LSECs are gatekeepers of liver
homeostasis. LSECs display anti-inflammatory and anti-
fibrogenic properties by preventing Kupffer cell and hepatic
stellate cell activation and regulating hepatic lipid metabolism
TABLE 1 | Contribution of specific liver cells in the development of inflammation associated with NASH.

Type of cell Roles in steatohepatitis References

Hepatocytes - sense PAMPs DAMPs, metabolite molecules (saturated FFA), and release inflammatory mediators (TNFa, IL1b)
- hepatocyte death (lytic cell death > apoptosis) contribute to DAMPs induced inflammation
- hepatocyte extracellular vesicles signals to immune cells

(31, 40, 41)

LSECs - orchestrate release of proinflammatory mediators (cytokines chemokines such as MCP1, IL1/6, TNFa), (adhesion
molecules such as VCAM1, ICAM)
- enhance liver inflammation, injury, and fibrosis

(36, 42)

Resident and recruited
macrophages

- sense PAMPs DAMPs and metabolites (saturated FFA),
- contribute to the recruitment and activation of other hepatic immune cells via inflammatory chemokines and cytokines
- specific subsets of liver macrophages enhance NAFLD progression

(32, 43)

NK cells/ILC1 - production of IFNg and TNFa
- regulate macrophage polarization towards a pro-inflammatory phenotype
- display an anti-fibrogenic role

(24, 43, 44)

Neutrophils - secretion of elastase, NETS
- contribute to the onset of the early stage of NAFLD
- promote hepatocyte injury

(45, 46)
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[reviewed in (36)]. Early in the course of NAFLD, LSEC
capillarization leads to the loss of LSEC fenestrae and alters the
transfer of chylomicron remnants to the hepatocytes required for
the VLDL synthesis. As a compensatory mechanism, hepatocyte
synthesis of cholesterol and triglycerides could be strongly
increased. The synthesis and release of nitric oxide (NO) by
LSECs also decreases with the dyslipidaemia and insulin
resistance, altering the protective and local role of NO in the
regulation of hepatocyte lipid content. Indeed, NO limits de novo
lipogenesis and enhances the beta-oxidation of fatty acid in
hepatocytes. During NASH, inflammation and gut microbiota-
derived signals could increase the NF-kB pathway activation in
LSECs, which coordinate the release of pro-inflammatory
mediators including MCP1, IL1, IL6, TNFa , and the
upregulation of adhesion molecules such as vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), and vascular adhesion protein-1 (VAP-
1). This source of inflammatory mediators will amplify the local
inflammation and liver injury by enhancing the hepatic recruitment
and activation of leucocytes including macrophages and
neutrophils. Altered LSECs also fail to maintain hepatic stellate
cell quiescence and release fibrogenic mediators, including
Hedgehog signalling molecules, promoting liver fibrosis. The
decreased autophagic flux in LSECs, as evaluated by the incidence
of autophagic vacuoles, has been recently associated with NASH in
patients (42). In amousemodel of NAFLD (high-fat diet), the defect
of autophagy in endothelial cells promotes liver inflammation
(upregulation of inflammatory markers such as CCL2, CCL5,
CD68, VCAM1) and injury (increased cleaved caspase-3 level) in
addition to perisinusoidal fibrosis (42). As potential therapeutic
approaches against NAFLD, activation of liver autophagy would
thus be protective in hepatocytes, liver macrophages and sinusoidal
endothelial cells, but detrimental in hepatic stellate cells (61, 62).
Liver Macrophages are Important Drivers
of Hepatic Inflammation
The role of the adipose tissue macrophages in the onset and
progression of NAFLD by regulating, for example, local
and systemic inflammation, insulin resistance, increased
lipolysis and secreted pro-inflammatory and pro-fibrogenic
adipokines has been well reported. The liver macrophages are
also key actors in NAFLD pathogenesis (32, 33, 41). Liver-
resident Kupffer cells are in close contact with LSECs in
sinusoids and with hepatocytes and hepatic stellate cells in the
parenchymal. At the early stage of NAFLD, the increased pro-
inflammatory polarization of liver-resident Kupffer cells could
contribute to hepatic steatosis and initiate inflammation and the
recruitment of other immune cells into the liver. Indeed, the IL1b
secretion by pro-inflammatory-Kupffer cells promotes
accumulation of triglyceride in hepatocytes through the
inhibition of peroxisome proliferator-activated receptor alpha
(PPARa)-mediated fat oxidation (63). The decrease in anti-
inflammatory macrophages in arginase-2 deficient mice is also
sufficient to promote the spontaneous development of liver
steatosis mainly via the increase in de novo lipogenesis and
Frontiers in Endocrinology | www.frontiersin.org 5
inflammation dependent on iNOS (64). The depletion of
Kupffer cells also attenuates hepatic steatosis and liver insulin
resistance in rats fed high-sucrose or high-fat diets (65). In line
with this, the anti-inflammatory Kupffer cells could mediate
apoptotic effects towards their pro-inflammatory counterparts
have been reported via the IL10 pathway. This could regulate the
equilibrium between anti- and pro-inflammatory macrophages
in the liver and prevent the early liver manifestation of metabolic
syndrome (66). Bacterial products, toxic lipids, and hepatocyte-
derived inflammatory mediators could amplify the pro-
inflammatory polarization of liver macrophages with the
increased chemokines secretion. In addition to resident
macrophages, stressed hepatocytes, endothelium, and/or
hepatic stellate cells contribute to this upregulation of liver
chemokines leading to the recruitment of inflammatory cells
(monocytes, neutrophils, lymphocytes) into the liver (67). The
striking accumulation of immune cells is one hallmark
characteristic of NASH and has been associated with ongoing
hepatic inflammation and NAFLD progression (68, 69). With the
NAFLD progression, it has been recently reported that the
number of resident-Kupffer cells from embryonic progenitors
is decreased causing by elevated cell death and are replaced by
monocyte-derived Kupffer cells (70). This new pool of kupffer
cells are more inflammatory and are important contributor of the
impairment of liver responses during NASH (70). Important
heterogeneity in liver macrophages from different origins thus
exist and could be modify according to the NAFLD progression.
This underlines that the regulation of the influx of bone marrow-
derived monocyte into the liver is an important event in the
onset of liver inflammation and the NAFLD progression (68, 69).
For instance, a pattern of upregulated chemokines/chemokine
receptors has been reported in NASH patients such as CCL3-5/
CCR5 and the chemokines CCL2. The hepatic expression of CD44
and CD62E (E-Selectin), which are also involved in recruitment of
leukocyte into inflammation sites, were also strongly upregulated in
NASH patients (71, 72). CD44, which interacts with extracellular
matrix components (osteopontin, E-selectin, and hyaluronan),
regulates the recruitment of macrophages into the liver but also
their activation mediated by DAMPs, PAMPs, and saturated fatty
acids (72). In human, liver CD44+ cells correlated with NASH,
NAS, and liver injury in obese patients (72). The CCL2/CCR2 pair
is also a key player in the recruitment of inflammatory monocytes
into the injured liver and drives hepatic fibrosis (73, 74).
Pharmacological inhibition of CCL2 in murine models of
steatohepatitis (MCDD) and chronic hepatic injury (chronic
CCl4 treatment) reduced monocyte/macrophage recruitment into
the liver and ameliorated hepatic steatosis development (69). CCR2
inhibition by the small molecule inhibitor CCX-872 also decreased
the infiltration of CD11b+CD11c+F4/80+ monocytes into the liver
and improved glycemic control and liver inflammation, injury and
fibrosis in murine models of NAFLD (high fat high fructose diet)
(75). Therapeutic treatment with dual antagonist of chemokine
receptor CCR2/CCR5, which is under clinical investigation for
fibrotic NASH, will be discussed later in the review.

A number of studies using single cell technologies [reviewed
in (43)] or specific markers such as C-type lectin CLEC4F, TIM4,
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and osteopontin (76–78) highlight the complexity of the NAFLD
pathogenenis and role of the liver macrophages. Interestingly, it
has been recently identified using single-cell RNA sequencing, a
common “NAFLD myeloid phenotype” in mice upon Western
diet challenge. The liver monocytes, macrophages, and dendritic
cells, as well as bone marrow precursors displayed, for example,
the downregulation of the inflammatory marker calprotectin
(S100a8/S100a9). In addition, the inflammatory capacity of
bone marrow monocytes is modified and this phenotype remains
stable and independent of the local micro environment and in vitro
stimulation with cytokine (79). Current efforts are thus focused on
dissecting macrophage heterogeneity and potential NAFLD
phenotype according to NAFLD severity to allow the development
of more specific therapeutic tools to target “detrimental”
macrophages and inflammation.
Innate Lymphoid Cells Are New
Participants in NASH
The family of innate lymphoid cells (ILC) represent subsets of
innate lymphocytes lacking the receptors of antigen encoded by
rearranged genes and expressed on T and B cells. These cells are
mainly resident cells in tissue and enriched in the epithelial
barrier. ILCs are prompted to respond to various stress signals
(pathogens, tumors, and inflammation) and secrete a wide range
of cytokines to shape immune responses (80). The ILC family is
classified into three groups and five subsets based on cell surface
markers, transcriptional factors required for their development
and the patterns of producing type 1, type 2, and Th17 associated
cytokines: the cytotoxic NK cells and helper-like ILC-1 belonging
to group 1 ILC; helper-like ILC-2, the unique group 2 ILC
member; helper-like ILC-3 and Lymphocyte Tissue Inducer
(LTi) cells belonging to group 3 cells (81). In addition to their
role in orchestrating protective immunity, ILC subsets also
regulate obesity-associated metabolic diseases and may
contribute to NAFLD pathogenesis (24, 82).

Over the last few years, it has been reported that almost all
subsets of ILC play an important role in metabolic homeostasis
by regulating adipose tissue, liver, and gut functions. Two main
studies demonstrated the importance of the IL-33/ILC2 axis in
adipose tissue to regulate obesity. Enkephalin and IL13-
producing ILC2 promote “beiging” of white adipocytes and
increased energy expenditure by regulating eosinophil/
alternatively activated macrophage differentiation (83, 84). The
IL22 expression by ILC3 subsets was impaired in obese mice.
Interestingly, IL22-producing ILC3 or IL22-producing CD4 T
cells improved insulin sensitivity, preserved the mucosal barrier
of the gut, decreased inflammatory responses, and regulated the
lipid metabolism in both adipose tissue and liver (85). The
contribution of group 1 ILC in the regulation of adipose tissue
inflammation was also established in obese patients and murine
models. The NK cells producing IFN-g were increased in adipose
tissue and the depletion of NK cells and/or helper-like ILC1
decreased the number of adipose tissue pro-inflammatory
macrophages (86–89). Most recent studies deciphered the
phenotypical and functional heterogeneity of adipose tissue
Frontiers in Endocrinology | www.frontiersin.org 6
group 1 ILC in human and mouse studies and revealed
their complexity.

In response to local IL12 and/or IL15 levels, the group 1 ILC
subsets produced IFN-g and TNF-a and regulated the pool of
macrophages into the adipose tissue during obesity (90, 91).
Interestingly, the increased susceptibility to infection and cancer
related to obesity have been associated with the decrease in anti-
cytotoxic properties of NK cells. The lipid accumulation in NK cells
and PPAR-mediated mTOR inhibition impaired the NK cells
functions (92, 93). In NASH patients, the circulating levels of
IL15 and CXCL10 increased compared to lean subjects. These
inflammatory mediators are known to trigger group 1 ILC
activation (71, 94, 95). While circulating NK cells frequency did
not change with the grade of NAFLD (NASH versus steatosis), these
cells expressed a higher level of the activating receptor NKG2D and
were thus be more sensitive to cell death signals (96).
Characterization of tissue group 1 ILC according to the hepatic
complications still needs to be improved in patients. However, the
contribution of group 1 ILC in NAFLD progression has been
established. The liver IFN-g producing NK cells enhanced
macrophage polarization towards a pro-inflammatory phenotype
with steatohepatitis (MCDD) (44). In addition, the depletion of
group 1 ILC exacerbated the NASH-fibrosis transition confirming
the anti-fibrogenic role of NK cells/ILC1 (97). Several studies also
reported that elevated CXCL10 and IL15 levels in NASH liver
contributed to the recruitment and activation of hepatic NK cells/
ILC1 (98, 99). The frequency of NK cells in liver could also be
regulated by their conversion into the less cytotoxic ILC1-like
phenotype during NASH in response to elevated TGF-b (100).
The mechanisms regulating the functions of the ILCs and their
crosstalk with the other immune cells during NAFLD/NASH
deserve more attention in the future to better understand
NAFLD pathogenesis.
Involvement of Neutrophils in
NAFLD Pathogenesis
Neutrophils have a well-established role in alcoholic liver
diseases (101), and could also be actors contributing in the
onset and progression of NASH. Indeed, it has been reported
that the targeting of neutrophils (depletion, inhibition of activity,
or recruitment) reduced liver inflammation in obesity and
steatohepatitis contexts. The depletion of neutrophils via a
specific antibody (1A8 targeting Ly6G molecule) improves
metabolic parameters and hepatic steatosis and inflammation
associated with a reduction of the body weight in HFD mice
(102). Neutrophil elastase deficiency decreases the liver steatosis
and inflammation in Western diet fed mice (103), while the
myeloperoxidase (MPO) deletion ameliorates hepatic
inflammation and fibrosis in HFD mice (104). The increased
MPO secretion by leukocytes could directly promote hepatocyte
injury and hepatic stellate cell activation (45). Neutrophil derived
peptides may also contribute to the NAFLD progression.
Transgenic mice expressing human neutrophil peptide 1
displayed an exacerbation of hepatic stellate proliferation and
fibrosis when fed a choline-deficient, L-amino acid-defined diet
December 2020 | Volume 11 | Article 597648
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(105). Furthermore, neutrophil extracellular traps (NETs), which
limit infection by entrapping pathogens, have been linked to
chronic sterile inflammation. Van der Windt et al. have recently
reported that the circulating levels of markers of NETs increase
in NASH patients and the liver NET formation occurs at the
early stage of the NAFLD (before the influx of monocyte-derived
macrophages) in mice. Finally, the inhibition of the NET
formation protects mice from hepatic inflammation and
NASH-driven HCC (46).

The development and progression of NAFLD are thus multi-
factorial and multi-organ. The chronic inflammation is a key
player and its indirect or direct targeting as therapeutic
approaches will be successively discussed.
GLOBAL APPROACHES AGAINST
NAFLD/NASH

Lifestyle changes are a promising therapeutic approach against
NAFLD and would optimize the action of the future
pharmacological treatments when they are combined. Indeed,
recent reviews summarize the benefits of nutritional management
and physical activity on NAFLDs (106, 107). Weight reductions of
≥10% has been associated with the resolution of NASH, in many
cases, and the improvement of fibrosis by at least one stage. The
modest weight loss (>5%) is also associated with benefits on some
items encompassed in the NAFLD activity score (NAS). For
example, a 5% reduction in BMI has been associated with 25%
reduction in fat in liver according to aMagnetic Resonance Imaging
(MRI) measurement (108), with up to complete correction after few
weeks under a strictly hypocaloric diet. These global approaches are
associated with the improvement of systemic inflammation, adipose
tissue inflammation, insulin-sensitivity, and gut functions (eubiosis,
integrity, metabolites, and hormones) contributing to the
normalization of the insulin-sensitivity and lipid profile. However,
the ideal diet (the Mediterranean diet has been proposed as one
such diet) and the most effective regular physical activity are yet to
be defined by long-term studies. These adapted lifestyle
modifications towards a healthy diet and habitual physical activity
would also be a therapeutic approach to reduce NAFLD and its
cardiovascular and renal complications.

Regarding the impact of the bariatric surgery on NAFLD
(109, 110), a recent meta-analysis including 32 cohort studies
with 3093 paired liver biopsies reported a resolution of steatosis,
inflammation, ballooning degeneration and fibrosis in 66, 50, 76,
and in 40% of patients, respectively. In line with this, mean
NAFLD activity score was also reduced after bariatric surgery.
The included studies in this analysis were conducted between
1995 and 2018 with 5 retrospective and 17 prospective cohort
studies employing different bariatric procedures. The median
follow-up duration was of 15 months (3–55 months), with an
absolute percentage of BMI reduction of 24.98% after surgery
(110). Recent longitudinal studies with paired liver biopsies also
reported the beneficial effects of bariatric surgery against NASH
in a long term. One study reported that Laparoscopic Roux-en-Y
Gastric Bypass surgery resulted in correction hepatic steatosis,
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inflammation, hepatocellular ballooning, and liver injury as
evaluated by alanine aminotransferase and liver activated
cleaved caspase-3 levels after a median follow-up of 55
months. Interestingly, the hepatocyte apoptosis as evaluated by
serum caspase-generated keratin-18 fragment levels already
improved one year after the gastric surgery (111). Recently, a
study evaluated the impart of bariatric surgery (including
different procedures) in biopsy-proven NASH patients at 1 and
5 years after the surgery. From the analysis of the sequential liver
biopsies, NASH resolution were observed in 84% of cases after 5
years and the reduction of hepatic fibrosis was progressively
decreased at 1 year and then 5 years after the bariatric surgery
(112). Since the efficacy of bariatric surgery on NASH in patients
with BMI ≥35 kg/m2 looks promising and efficient, the extension
of bariatric surgery indication to patients with a BMI of less than
35 kg/m2 is currently being considered. In line with this, the FDA
(Food & Drug Administration) has recently approved gastric
band indication for obese patients (BMI 30–35 kg/m2) with
severe type 2 diabetes.
PHARMACOLOGICAL TARGETS
AGAINST NASH

In the near future, pharmacological innovations may be available
for patients with fibrotic-NASH. An increasing number of pre-
clinical and clinical studies are in progress targeting
“metabolism-inflammation-fibrogenesis”. Some compounds
target hepatocyte deaths (driver of inflammation; pan-caspase
inhibitor, etc.), inflammation and/or fibrosis (CCR2/CCR5
antagonist, galectin-3 inhibitor, etc.), others the metabolism
(PPAR pan-agonists, FGF21 agonists, ACC inhibitor, etc.), or
the gut-liver axis (FXR agonists, non-tumorigenic analogues of
FGF19, etc.) (113). The combination of two or more of these
compounds is a rational strategy that is currently under
development. The impacts of some of these pharmacology
strategies on inflammation are discussed below (Figure 3).
Targeting the Liver Injury
(Hepatocyte Death)
As previously described, different types of hepatocyte death have
been associated with NAFLD progression and drive hepatic
inflammation (40). The targeting of apoptotic caspases such as
the pan-caspase inhibitor Emricasan, while effective in
preclinical studies (114), did not improve clinical aspects nor
NASH features in NASH patients with fibrosis but, to the
contrary, could aggravate fibrosis and hepatocyte ballooning
(115, 116) (ENCORE-PH and ENCORE-NF trials; Phase II).
Likewise, targeting of apoptosis signal-regulating kinase 1
(ASK1) did not prevent fibrosis in NASH patients with severe
fibrosis. It has been demonstrated that ASK1, by regulating the
sustained activation of JNK, is an important mediator of
hepatocyte death and inflammation in hepatocytes and
macrophages in preclinical and in vitro studies. The proof-of-
concept study evaluating selonsertib (an ASK1 inhibitor) after
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24 weeks also reported an improvement of hepatic fibrosis but
not ballooning or inflammation (117). However, two placebo-
controlled phase III trials in NASH patients with compensated
cirrhosis or with bridging fibrosis (STELLAR-4 and -3 trials,
respectively) recently reported that Selonsertib did not improve
fibrosis as evaluated by noninvasive tests without worsening of
NASH after 24 weeks (118). Altogether, these studies could allow
us to exclude the ASK1 inhibition strategy for burned out NASH
(severe fibrosis). Both of these strategies (inhibition of pro-
apoptotic caspases and ASK1) also indicate that prevention of
apoptosis may have caused the stressed hepatocytes to enter
alternative modes of cell death such as necrosis, necroptosis and
pyroptosis (more deleterious by generating more inflammatory
mediators). For example, the pan caspase inhibition by
Emricasan in pre-treated acute myeloid leukemia cells with an
apoptosis enhancer (birinapant) enhances necroptosis at the
expense of apoptosis (119). Decrease in caspase 8 activity by
Emricasan could explain this shift of cell death by removing the
inhibition of necroptosis by caspase 8. New inhibitors targeting
necroptosis and pyroptosis are currently being evaluated but
particular attention should also be paid to their impact on other
modes of cell death which can negate the desired therapeutic benefits.
Inhibition of Monocyte-Derived
Macrophage Recruitment
Limiting the pool of recruited monocyte-derived macrophages is
also a promising therapeutic strategy. For example, CD44
neutralization by specific antibody decreases macrophages
infiltration into adipose tissue, weight gain, fasting glycaemia,
Frontiers in Endocrinology | www.frontiersin.org 8
insulin resistance and hepatic steatosis in a dietary mouse model
of obesity (120). In addition, CD44neutralization partially corrects
liver injury and inflammation associated with decreased liver
neutrophils and macrophages in rodent model of diet-induced
steatohepatitis (72). The approaches targeting the CD44 functions
or expression inmacrophages, for example, couldbe thusbeneficial
against NASH. Regarding the CCR2/CCL2 and CCR5/CCL5
systems, an oral dual CCR2/CCR5 antagonist, cenicriviroc
(CVC), has been developed and is currently being evaluated in
NASH patients. CVC treatment decreased the recruitment of Ly-
6C+ monocyte-derived macrophages into the liver in mouse
models of steatohepatitis (MCDD or Western diet) and
ameliorated insulin resistance and liver steatosis. Moreover, CVC
treatment improved histological NASH features and liver fibrosis
without delaying fibrosis resolution after injury cessation (68).
Indeed, subsets of macrophages (Ly6Clow restorative macrophages)
are also associated with the resolution of fibrosis by secreting anti-
inflammatory cytokines and collagen degrading factors (33). In
addition, prolonged high-dose CVC therapy (14 weeks) in choline
deficient, L-amino acid-defined, high-fat diet (CDAHFD) mice,
augmented the frequency of intrahepatic anti-inflammatory
macrophages without impacting the total intrahepatic macrophage
populations anddecreased liverfibrosis. The beneficial effect ofCVC
onfibrosis has been associatedwith its direct effect onhepatic stellate
cells. Indeed, CVC treatment prevented the pro-fibrotic gene
signature mediated by transforming growth factor-b in primary
mouse hepatic stellate cells (121). In addition to CCR2 inhibition,
CCR5 inhibition by CVC could be involved in the prevention the
activation, migration and proliferation of hepatic stellate cells (74,
122).CCR5deficiency reducedhepaticfibrosismediatedbybile duct
FIGURE 3 | Therapeutic targets at different stages of liver complications. Main molecules targeting metabolic and inflammatory mediators expressed during the
progression of liver complications of obesity are listed with some of which are currently in clinical evaluation.
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ligation (122) and CCL5 inhibition displayed similar effects in the
carbon tetrachloride rodent model (123). Inhibitor of CCR5
(Maraviror) also arrested cell cycle progression and decreased the
accumulation of collagen in the human stellate cell line (124).
Among the molecules directly targeting inflammation in clinical
trials in phase 2/3 [inhibition of plasma Amine Oxidase Copper-
containing 3 (BI 1467335, Boehringer, phase 2) and Galectin 3, a
lectin familymember (GR-MD-02,GalectinTherapeutics, phase2)],
only CVC (CCR2/CCR5 antagonist, Allergan) is currently under
evaluation in aphase III trial in fribroticNASHpatients. In aphase II
trial in 289 patients with NASH, CVC therapy for one year was
associated with improvement in hepatic fibrosis without worsening
of NASH in large part of the patients compared with placebo (125).
Results of the phase IIb study of belapectin (Galectin 3 inhibitor)
assessed in 162 patients with NASH, portal hypertension and
cirrhosis has been recently published. Unfortunately, one year of
biweekly infusion of belapectin was not associated with a significant
reduction in hepatic venous pressure gradient or fibrosis compared
with placebo (126). In a rodent model of NAFLD, inhibitors of
galectin 3 prevented hepatic fibrosis, possibly via macrophages
(127). Several other compounds targeting the CCR2/CCL2 and/or
CCR5/CCL5 systems will likely be evaluated in fribrotic-NASH
patients, either alone or combined with other drugs.
When Metabolism Meets Inflammation
Over the last decade, it has been well established that the
metabolism of immune cells drives their immune responses and/
or polarizations. The modulation of the activity of peroxisome
proliferator-activated receptor (PPAR) family members has been
linked to the improvement of insulin sensitivity and reduction of
NAFLD in preclinical studies. PPARg agonists are insulin sensitizers
that act mainly in adipose tissues by increasing a pool of insulin-
sensitive adipocytes. Since agonists of PPARg also enhance the anti-
inflammatory polarization of macrophages, these agonists also
display anti-inflammatory actions in an obesity context (128–
130). Several clinical trials have suggested effective PPARg agonist
pioglitazone activity against NASH, but clinical limitations of this
drug have been reported relative to the weight gain, the risk of
bladder cancer, and potential aggravation of heart failure (131–133).

Regarding recent PPAR-g agonist, twenty-four-week treatment
of type 2 diabetes patients with NAFLD with Lobeglitazone has
been associated with a modest weight gain (compare to
pioglitazone) and the improvement of glucose homeostasis, lipid
profile but also hepatic steatosis. Unfortunately, Its efficacy against
NASH still needs to be assessed due to the absence of biopsy-
proven NASH in these studies (134–136). PPARa is significantly
expressed in liver and regulates metabolism such as bile acid
synthesis, ketogenesis, fatty acid uptake, beta oxidation, and
triglyceride turnover (137). Importantly, PPARa also displays
anti-inflammatory effects by regulating the NF-kB pathway (138).
Regarding the last isoform, PPARd is most highly expressed in
muscle but also in adipose tissue and liver. In muscle, the role of
PPARd has been mainly associated with the regulation of
mitochondrial metabolism and beta oxidation (139). Regarding
its hepatic expression, PPARd is expressed in hepatocytes but also
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in hepatic macrophages and stellate cells suggesting its potential
contribution in the regulation of liver inflammation and fibrosis
(137). Moreover, PPARd also shifts the Kupffer cells polarization
to an anti-inflammatory phenotype (140).

To target both PPARa and PPARd pathways, dual agonists
has been generated such as elafibranor (also known as GFT505).
It is important to underline that Elafibranor displays 10 times
more affinity for PPARa than PPARd. In animal models of
NASH, elafibranor treatment decreased the numbers of
macrophage in the liver (141). In a phase II trial in NASH
patients, elafibranor treatment was associated with a greater
resolution of NASH compared with placebo without worsening
the liver fibrosis (142). However, GENFIT recently reported the
intermediate results from the phase III trial (RESOLVE-IT)
evaluating elafibranor (120 mg elafibranor once daily)
compared to placebo in fibrotic NASH patients (biopsy-proven
NAS ≥4 and F2/F3) with a follow-up liver biopsy at week 72. The
response rate relative to resolution of NASH with not worsening
of fibrosis (primary endpoint) was 19.2% in elafibranor arm
(138/717patients) to 14.7% for placebo arm (52/353 patients)
without achieving statistical significance (p = 0.0659). Regarding
fibrosis improvement of at least one stage, the response rate was
24.5% in elafibranor arm (176/717 patients) and 22.4% in the
placebo arm (79/353 patients) (p = 0.4457). In addition, endpoints
related to improvement of at least one stage and changes in
metabolic parameters (triglycerides, HDL cholesterol, non-HDL
cholesterol, LDL cholesterol, HOMA-IR in non-diabetic patients,
and HbA1c in diabetic patients) did not achieve statistical
significance. While elafibranor did not exhibit a statistically
significant effect on NASH resolution, other clinical trials with
different co-agonists of PPAR are currently under investigation in
NASH patients [PPARa/g agonism (Saroglitazar, Zydus, phase II)
and PPARa/g/d agonism (Lanifibranor, Inventiva, phase II), etc.].
From recent Inventiva’s press release regarding the Phase IIb
NATIVE clinical trial in NASH patients, the pan-PPAR agonist
Lanifibranormeets a statistically significant decrease (p = 0.004) in
at least two points in the SAF activity score (combining
hepatocellular inflammation and ballooning), compared to
baseline, with no worsening of fibrosis at the dose of 1,200 mg/
day (49% in Lanifibranor arm versus 27% in the placebo arm) after
24 weeks of treatment. Lanifibranor also meets multiple key
secondary endpoints including fibrosis improvement (by at least
one stagewithoutNASHworsening), insulin resistance (decreased
in insulin, fasting glucose, Hb1Ac), lipid profiles (decreased in
insulin, fasting glucose, Hb1Ac and triglycerides and increased in
HDL), and liver injury (decreased in ALT, AST, and GGT).

Other drugs indirectly affect inflammation in NAFLD. The
agonist of farnesoid X receptor (FXR) such as obeticholic acid
improves liver lipid and glucose metabolism and dampens liver
inflammation and fibrosis in NAFLD. In addition, FXR agonists
decreases the expression of pro-inflammatory cytokines in
macrophages and hepatic inflammation in a mouse model of
NAFLD (143). FXR agonists could also enhance the anti-
inflammatory polarization of the macrophages in vitro and
in vivo (144). In The Lancet, Younossi et al. recently reported
the intermediates outcomes (after 18-month of treatment) of a
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phase III study evaluating the safety and efficacy of daily dose of
10 or 25 mg of obeticholic acid in 931 patients (with 58%
females) with F2/3 fibrosis (fibrosis evaluated on liver biopsy)
(145). In NASH patients, obeticholic acid (at 25 mg) significantly
improved liver fibrosis and some items of NASH disease activity.
Although these encouraging results of this phase III trial, some
questions persist (the long-term clinical benefits of treatment of
NASH, metabolic consequences, management of side effects
including pruritus and elevated LDL cholesterol in patients
with elevated risk of cardiovascular disease, etc.).
CONCLUSION

Our understanding of the pathogenesis of NAFLD with global and
specific outcomes is in constant progress. The advances in in vitro
and in vivo approaches are also important issues. With their own
limitations, these complementary approaches allow to better
highlight novel actors and mechanisms involved in the onset and
progression of liver complications. Novel animal models and
specific cell isolation combined with single-cell RNA sequencing
are examples (146). Liver organoids also emerge as alternative
system with multiple hepatic cell types which mimic liver
structure and diseases (147). For example, liver organoids from
human pluripotent stem cells could be used as model of NAFLD
liver when stimulated with free-fatty acids (148). Primary liver
organoids according to the severity of NASH have also been
successfully generated from mice. These different NASH
organoids also display the upregulation of TNFa and IL1b at the
early stage of NASH, for example (149). Pre-clinical studies and
some clinical trials demonstrate promising results but also underline
the complex nature of these chronic liver diseases. Combined
metabolic improvement with the regulation of specific
inflammatory responses are important clues. The impacts on
NAFLD of targeting the GLP1 and hepatic thyroid hormone
(thyroid hormone receptor-b) pathways are under clinical
Frontiers in Endocrinology | www.frontiersin.org 10
evaluation. Promising investigations are currently deciphering the
pathways that regulate both hepatocyte death (more specifically lytic
cell death) and metabolism but also control inflammation
(necroptosis). In addition, the development of new strategies to
regulate the immune system and gut microbiota interactions are
also promising therapeutic strategies.
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