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Type 2 diabetes (T2D) is a global epidemic that affects more than 8% of the world’s
population and is a leading cause of death in Mexico. Diet and lifestyle are known to
contribute to the onset of T2D. However, the role of the gut microbiome in T2D
progression remains uncertain. Associations between microbiome composition and
diabetes are confounded by medication use, diet, and obesity.

Here we present data on a treatment-naive cohort of 405 Mexican individuals across
varying stages of T2D severity. Associations between gut bacteria and more than 200
clinical variables revealed a defined set of bacterial genera that were consistent
biomarkers of T2D prevalence and risk. Specifically, gradual increases in blood glucose
levels, beta cell dysfunction, and the accumulation of measured T2D risk factors were
correlated with the relative abundances of four bacterial genera. In a cohort of 25
individuals, T2D treatment—predominantly metformin—reliably returned the microbiome
to the normoglycemic community state. Deep clinical characterization allowed us to
broadly control for confounding variables, indicating that these microbiome patterns were
independent of common T2D comorbidities, like obesity or cardiovascular disease. Our
work provides the first solid evidence for a direct link between the gut microbiome and
T2D in a critically high-risk population. In particular, we show that increased T2D risk is
reflected in gradual changes in the gut microbiome. Whether or not these T2D-associated
changes in the gut contribute to the etiology of T2D or its comorbidities remains to
be seen.
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INTRODUCTION

Type 2 diabetes (T2D) is an acquired multifactorial disease that
affects more than 8% of the worldwide population and leads to
insulin resistance and insufficient insulin production by
pancreatic islet cells (1–3). Disease onset is driven or
modulated by a variety of factors such as lifestyle, diet, and
genetics (4–7). T2D incidence is progressively increasing in the
Mexican population and has become a major burden for the
national health system and one of the leading causes of death in
Mexico (8–10). The particular vulnerability of the Mexican
population to this disease is driven by general factors such as a
sedentary lifestyle and diet but is also influenced by genetic risk
factors that are enriched in the Mexican population (11). For
instance, it has been shown that about half of all native Mexicans
carry an SLC16A11 variant that increases T2D risk by 20% for
each haplotype (12–14). Consequently, there is an urgent need
for diagnosis and treatment strategies to limit the progression of
T2D in the Mexican high-risk population.

Recently, the gut microbiome has been proposed as an
important modulator in the progression of T2D. Several
studies have reported a wide array of associations between the
gut microbiome and diabetes in European, American, and
Chinese cohorts (15, 16). Most of those have suggested that the
diabetic microbiome is less efficient in producing short-chain
fatty acids (SCFA) due to a loss of butyrate-producing genera
(17–19). However, especially when looking across different
populations, the bacterial genera associated with diabetes vary
(17), which is consistent with findings that the gut microbiome
composition varies greatly across populations (20). For example,
an increase of Proteobacteria in T2D was reported for Chinese
cohorts but was absent in a European cohort (15, 16). Finding
robust associations between the microbiome and T2D is further
confounded by treatment effects and comorbidities. Metformin,
one of the most common medications for T2D, has been shown
to modify the gut microbiome which may contribute to its
mechanism of action (21, 22). Indeed, studies comparing
diabetic treatment-naive individuals with diabetic metformin-
treated individuals showed that most of the associations initially
attributed to disease progression were a consequence of the
treatment and absent in individuals without a metformin
treatment history (23). Apart from medication, changes in
lifestyle or diet may also drive changes in the gut microbiome
in a disease-independent manner (24, 25). Thus, two major
treatment regimens for T2D, metformin treatment, and
lifestyle intervention, will likely both trigger their own changes
in the gut microbiome and need to be accounted for. Even when
isolating the disease from treatment effects, associations may be
confounded by comorbidities. The development of T2D is often
linked with obesity, a major risk factor in the development of the
disease (20, 26). Additionally, T2D increases the risk for
cardiovascular disease, which itself has been linked to changes
in the gut microbiome (27, 28). Controlling for all of these factors
(disease treatment, lifestyle and diet, and comorbidities) might
clarify the true associations between the gut microbiome and
T2D disease progression. This requires deep phenotyping of the
study participants where one measures not only clinically
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variables related to the disease of interest but also from other
groups such as obesity, cardiovascular health, lifestyle, and diet.
Even though this strategy has been shown to be successful in
healthy individuals (29), very few studies have done so in the
context of T2D.

To address these concerns and explore the relationship
between the microbiome and T2D in an understudied
population, we present a controlled study in a Mexican cohort
from a distinct geographical region that was specifically designed
to avoid those shortcomings. Except for a small control group, all
participants in the study were treatment-naive and had never
received prior prediabetes or diabetes diagnosis. We also
combined a large array of clinical variables related to diabetes
with additional phenotype measurements characterizing the
lifestyle, diet, obesity prevalence, and cardiovascular health of
each individual. This strategy provided a set of more than 200
clinical variables for each individual, allowing us to control for
lifestyle and comorbidities and tease out associations specific to
different stages of T2D progression. As a result, we identified a
set of four bacterial genera that were associated consistently with
T2D development. Our work establishes a set of gut microbiome
markers for type 2 disease progression in a Mexican population
independent of treatment effects or secondary phenotypes.
MATERIAL AND METHODS

Study Population
A cross-sectional analysis was performed in patients from
Guanajuato, México, from January 2015 to December 2016, as
part of the University Cohort Project CARE-In-DEEP Study
(Cardiometabolic Risk Evaluation and Interdisciplinary Diabetes
Education and Early Prevention). For this particular study, 470
participants who had an anthropometric, nutritional,
biochemical, and metabolic evaluation, as well as a stool
sample collection, were included; at the end, we had complete
data and microbiome composition only for 427. Based on the
oral glucose tolerance test, individuals were stratified into normal
glucose metabolism (NG, fasting glucose less than 100 mg/dl and
2 h post-OGTT glucose less than 140 mg/dl), isolated impaired
fasting glucose (iIFG, fasting glucose 100–125 mg/dl and 2 h
post-OGTT glucose less than 140 mg/dl), isolated impaired
glucose tolerance (iIGT, fasting glucose less than 100 mg/dl
and 2 h post-OGTT glucose between 140–199 mg/dl),
impaired fasting glucose plus impaired glucose tolerance (IFG
+IGT, fasting glucose between 100–125 mg/dl and 2 h post-
OGTT glucose between 140–199 mg/dl), and T2D (T2D, fasting
glucose more than 125 mg/dl and/or 2 h post-OGTT glucose
higher than 199 mg/dl). A survey was applied to collect general
information about the use of medications, family history, risk
factors, and previous diseases. The University Research Council
evaluated and approved the study protocol. All participants
signed informed consent.

Anthropometric Measurements
Weight was measured while participants were barefoot and
wearing minimal clothing with a Tanita Scale SC-240 (Tanita
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Corporation of America, USA). Height was obtained while the
participants were standing barefoot with their shoulders in a
normal position with a Tanita stadiometer (Tanita Corporation
of America, USA). BMI (kg/m2) was obtained from standardized
measurements of weight and height and was computed as the
ratio of weight (kg) over height squared (m²), defining normal
weight when BMI was between 18.5–24.9 kg/m², overweight
when BMI was between 25–29.9 kg/m2, and obesity when BMI
was ≥30 kg/m². Waist circumference was measured at the high
point of the iliac crest at the end of normal expiration to the
nearest 0.1 cm. Body composition was assessed with electrical
bioimpedance through a Tanita Scale SC-240. All measurements
were performed by personnel trained to use standardized
procedures and reproducibility was evaluated, resulting in
concordance coefficients between 0.88 and 0.94.

Nutritional and Physical Activity Evaluation
A validated semi-quantitative food frequency questionnaire
(FFQ) was applied to evaluate dietary intake (30). This
questionnaire included data regarding the consumption of 116
food items. For each food, a commonly used portion size (e.g.
one slice of bread or one cup of coffee) was specified on the FFQ
and participants reported their frequency of consumption of
each specific food over the previous year. Energy (kcal/day),
carbohydrates (g/day), proteins (g/day), fatty acids (g/day),
sucrose (g/day), and fructose (g/day) intake during the last
year were obtained from this FFQ. The PA level of participants
was assessed using a self-administered questionnaire that was
verified when the patient assisted for the metabolic evaluation.
The questionnaire has a validated Spanish translation (31),
which has been adapted for use in the Mexican population.
The questionnaire is self-administered and estimates the minutes
devoted to the practice of different recreational physical activities
during a typical week in the last year (including walking,
running, cycling, aerobics, dancing, and swimming as well as
playing football, volleyball, basketball, tennis, fronton, baseball,
softball, and squash, among other activities). Each item includes
time intervals that allow participants to detail the exact number
of minutes or hours they dedicate to each form of recreational
PA, as well as the intensity of each PA (light, moderate,
vigorous). The total duration of each recreational PA was
expressed in minutes per day. We calculated the number of
hours per week devoted to each activity, which were then
multiplied by the intensity of each activity, defined as multiples
of the metabolic equivalent (MET) of sitting quietly. We used the
Compendium of Physical Activities to assign METs to each
activity (32).

Metabolic Evaluation and Oral Glucose
Tolerance Test (OGTT)
All subjects were admitted to the Metabolic Research Laboratory
of the Department of Medicine and Nutrition, Division of Health
Sciences at the University of Guanajuato the day of the study
between 7 and 8 AM, and a catheter was placed into an
antecubital vein for all blood withdrawal. Subjects will not be
allowed to eat or drink anything after 10 PM on the night before
Frontiers in Endocrinology | www.frontiersin.org 3
until the study is completed. After the intravenous catheter was
placed and the first blood sample was drawn, the patients
ingested 75 grams of glucose. Plasma samples for glucose
measurement were drawn at -15, and 0 min and every 30 min
thereafter for 2 h, glucose was measured by colorimetric glucose
oxidase. Lipid levels were measured by dry chemistry with a
colorimetric method (Vitros 5600; Ortho Clinical Diagnostics).
According to the glucose levels at fasting and at 2 h during the
OGTT, patients were classified as following: NG = fasting glucose
<100 mg/dl and 2 h glucose <140 mg/dl, IFG = fasting glucose
between 100–125mg/dl and a 2 h glucose <140 mg/dl, IGT =
fasting glucose <100 mg/dl and 2 h glucose between 140–199 mg/
dl, IFG+ITG = fasting glucose between 100–125 mg/dl and 2 h
glucose between 140–199 mg/dl, T2D = fasting glucose >125 mg/
dl and/or 2 h glucose >200 mg/dl, and treated T2D = previous
diagnose of T2D confirmed by the medical record of the patients,
consumption of hypoglycemic drugs and fasting glucose >125
mg/dl and/or 2 h glucose >200 mg/dl. HbA1c was measured
according to the international guidelines by HPLC in a subset of
182 patients.

Insulin during the OGTT was measured by a solid-phase,
enzyme-labeled chemiluminescent immunometric assay
(IMMULITE 1000 Siemens Healthcare Diagnostics Products
Ltd). The area under the glucose and insulin curve was
calculated by the trapezoidal rule.

Insulin resistance was calculated by the homeostasis model
assessment (HOMA_IR) and insulin sensitivity (Matsuda Index)
was derived from the insulin and glucose measurements from the
OGTTaspreviously described (33). Insulin secretionwas calculated
dividing AUCinsulin_OGTT by the AUCglucose_OGTT, acute
insulin response (AIR) was calculated dividing the insulin change
from0 to 30min by the glucose change from0 to 30min during the
OGTT; pancreatic beta cell function was estimated by the
disposition index derived from the OGTT (34).

Faecal Sample Collection
Fecal samples were collected from volunteers in a sterile
container, each sample was homogenized and three aliquotes
placed in sterile 1 ml screw-cap tubes which were stored at -80°C
before DNA extraction.

DNA Extraction
DNA extraction was performed using MoBio PowerSoil DNA
Isolation kit (Mo Bio Laboratories, Inc. Carlsbad, USA)
according to the manufacturer’s instructions with the following
modifications. After adding the C1 solution and mix, 25 μl of
proteinase K solution was added and mixed by vortexing.
Samples were incubated at 65°C for 10 min, during the
incubation tubes were mixed by inversion every 3 min. Tubes
were secured horizontally in a vortex adapter tube holder, and
vortexed at 3,000 rpm for 15 min. Samples were incubated at
95°C for 10 min, during this time samples were mixed as
mentioned above. Total DNA was eluted in 100 μl of sterile
water. DNA concentration was quantified spectrophotometrically
with a Qubit (Thermo Scientific, USA) and validated by Nanodrop
(ND 2000, Thermo Scientific, USA).
January 2021 | Volume 11 | Article 602326
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16S rRNA Gene Amplification and
Sequencing
DNA templates were used in a two-step PCR method to sequence
the V4 hypervariable region of the bacterial 16S rRNA gene.
Fusion primers contained a sequence complementary to the v4
region, as well as Nextera Illumina adapter sequences to allow
multiplexing of pooled libraries.

In the initial PCR, we employing primers that were comprised
of partial Nextera adapter and the V4 targeting forward or
reverse primer sequence in agreement with (35).

NEXT_16S_V4_U515_F

5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG
TGCCAGCMGCCGCGGTAA-3′

NEXT_16S_V4_E786_R

5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGG
ACTACHVGGGTWTCTAAT-3′

For each sample, we used approximately equal amounts of
DNA template (up to 12.5 ng per reaction) and the reactions
were carried out with a 3 min denature step at 94°C, followed by
25 cycles of denaturation at 94°C for 45 s, annealing at 50°C for
60 s, and extension at 72°C for 90 s, with a final extension at 72°C
for 10 min. In all reactions were used 2x KAPA HiFi HotStart
ReadyMix to generate the amplicons.

The amplicons were purified using Agencourt Ampure XP
beads (Beckman Coulter) with a proportion of 1.25x (v/v). The
PCR products were checked using electrophoresis in 2% (w/v)
agarose gels in TAE buffer (Tris- acetate-EDTA) stained with
SYBR Gold and visualized under UV light.

For each amplicon, a second PCR was carried out with a
3 min denature step at 95°C, followed by 8 cycles of denaturation
at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C
for 30 s, with a final extension at 72°C for 5 min with 5 ul of
previous purified DNA template and using primers that attaches
dual indices and Illumina sequencing adapters employing the
Nextera XT kit. The PCR products were also purified equal to the
first PCR reactions and the DNA concentration of each PCR
product was determined using a Qubit® 2.0 Broad Range Assay
(Life Technologies™). An Agilent TapeStation (Agilent, Santa
Clara, CA) with DNA High Sensitivity kit was used to verify the
size of the PCR product only to 23 amplicons.

All samples were random distributed in similar proportions
in five pools and then mixed in equal amounts (to 10 nM). The
final concentration of each pool was again determined using a
Qubit® 2.0.

Pools were diluted to a concentration of 9 pM for sequencing
using 2x250 bp paired-end sequencing chemistry v2 on an
Illumina MiSeq platform. All samples were distributed
according to the consecutive number assigned by the
experimental laboratory in similar proportions in five pools
and then mixed in equal amounts (to 10 nM). The final
concentration of each pool was again determined using a
Qubit® 2.0. Amplicons were denatured with 0.2 N NaOH and
further diluted according to the MiSeq user guide, then
combined with denatured PhiX control library. PhiX was
spiked into the amplicon pool at 10% relative concentration.
Frontiers in Endocrinology | www.frontiersin.org 4
Image processing and base calling was performed on the
BaseSpace cloud from Illumina (http://basespace.illumina.com).

Processing of 16S Sequencing Data
Demultiplexed MiSeq FASTQ files were analyzed using the
DADA2 workflow (36). High read quality was ensured by
filtering and trimming reads before further processing. In brief,
thefirst 5’ 10bpof all readswere trimmedand readswere truncated
on 3’ to a maximum length of 240 and 200 bp for forward and
reverse reads respectively as a dip in sequence quality was observed
after that length. Furthermore, all reads with more than two
expected errors under the Illumina base model were removed as
well. The filtered and trimmed reads were grouped by sequencing
run and the error model was fit for each run separately using the
DADA2 default parameters. Sequence variants were obtained for
each run separately using the previously calculated error models
and the dereplicated input sequences. The sequence variants and
countswere then joinedacross all runs in a complete sequence table
and de novo bimera removal was run on the entire table.

Taxonomy for the final sequence variants was called using
DADAs’s RDP classifier and using the SILVA database (version
132) (37). Species were identified separately by exact sequence
matches where possible (again using SILVA version 132). The
final data set was joined with clinical metadata and saved in a
phyloseq object for all downstream analyses (38).

In order to identify additional biases or batch effects. We
checked whether particular sequence variant read counts were
associated with DNA extraction order, DNA extraction date or
the scientist that extracted the sample. We could not identify any
bias visually and the distribution of correlations between the
extraction date and individual sequence variant abundances was
similar to one obtained from a random Poisson model. Finally,
we also verified that there were no run batch effects by PCoA
plots where we observed no particular separation of samples by
sequencing run. a notebook for those quality control steps can be
found in the study repository as described in “Data availability”.

Association Tests
Association tests were run using DESeq2 with some custom
adjustments (39). First, the input count matrix was filtered by a
“rule of 10” where we only tested those taxa with an average count
of at least 10 reads and which appeared in at least 10% of all
samples. Thiswas necessary to avoid bimodal p-value distributions
during multiple testing. The count matrix was normalized across
samples using the DESeq2 size factors and the “poscounts”
correction for zero read counts. This ensured that associations
were not driven by library size and was also expected to counteract
the compositionality of the data since that normalization scheme is
similar to the centered log-ratio transform (40). All continuous
clinical variables were standardized (subtraction of mean and
division by standard deviation). All tests used sex as a
confounding variable. Age did not show major associations with
any clinical variables in this study and including it as a confounder
did not have any effect. Consequently, we did not include age as a
default confounder in our analysis.

Association tests were then run for all combinations between
taxa and clinical variables and only for those individuals with non-
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missing measurements. Here, significance was evaluated based on a
chi-squared likelihood-ratio test testing for a difference of deviance
between the model containing only the confounder variables and a
model containing the confounder variables and the tested clinical
variable (39). All associations discussed in detail in this manuscript
were validated manually to confirm the lack of extreme outliers in
the scatter plots. P-values were adjusted for false discovery rate using
independent hypothesis weighting to avoid biases for tests with low
abundance taxa (41).
RESULTS

The Microbiome of Treatment-Naive
Individuals Associates With a Wide Range
of Clinical Variables
We recruited a cohort of treatment-naive subjects from the
Guanajuato region of Mexico as part of the CARE-In-DEEP
Study (Cardiometabolic Risk Evaluation and Interdisciplinary
Diabetes Education and Early Prevention) of the University of
Guanajuato. This cohort consisted of 405 individuals with no
previous diabetes diagnosis and a control group of 25 subjects
with previously diagnosed T2D or a history of metformin
treatment (see Figure 1A). Each of the participants in the
study underwent extensive clinical characterization consisting
of direct measurements as well as a set of validated
questionnaires, forming a data set of 226 clinical variables
spanning the areas of diabetes, obesity, general health, lifestyle,
and diet (Figure 1B). Based on an oral-glucose tolerance test,
Frontiers in Endocrinology | www.frontiersin.org 5
subjects were stratified into five metabolic groups ranging from
normoglycemia and normal glucose tolerance (NG, n = 214), to
different types of prediabetes (impaired fasting glucose, IFG n =
52, impaired glucose tolerance IGT n = 42, and IFG+IGT n = 57),
and T2D (new T2D n = 48, and treated previous T2D n = 17)
(see Methods and Figure 1C). As shown in Table 1, clinical
phenotype varied widely between metabolic groups, with a
progressive increase in weight, body fat, glycated hemoglobin
(HbA1c), glucose levels, and deteriorating insulin sensitivity and
pancreatic beta cell function from the NG group to the T2D
group (see Figures S1A–C). Table 2 also shows the frequency of
T2D risk factors between the study groups. As shown, only age
>45 years, overweight, dyslipidemia, and high blood pressure
were significantly different between groups.

To identify links between the microbiome and the
progression of T2D, we sequenced the 16S rDNA V4 amplicon
from stool samples of the cohort. Sequencing data was analyzed
using DADA2 which identified 17,059 exact amplicon sequence
variants across all samples (see Methods). These sequence
variants mapped to 378 bacterial genera, however only 629
sequence variants and 125 genera were appreciably frequent
across samples (found in >10% of individuals).

Previous studies have found metformin treatment to lower
Intestinibacter abundances and to increase Escherichia
abundances (23). We found similar trends in our data, albeit not
significant (Mann-Whitney p = 0.05 and 0.07 for Instestinibacter
and Escherichia, see Figure S1D). In general, T2D could only be
weakly predicted from microbiome composition (Random Forest
area under ROC = 0.69, see Figure 1D).
A
B

DC

FIGURE 1 | Study design. (A) 405 Individuals were recruited from Guanajuato state and classified into normoglycemic (NG), impaired fasting glucose (IFG), impaired
glucose tolerance (IGT), impaired fasting glucose, and impaired glucose tolerance (IFG+IGT), and type 2 diabetes (T2D). Twenty-five individuals under treatment for a
previous T2D diagnosis or with previous metformin history were added as controls (T2D treated). (B) Correlations (Spearman r) between bacterial genera in the
study (intra-microbiome) are shown in the left correlation matrix whereas correlations between clinical variables are shown in the right correlation matrix. (C) Blood
glucose curves for all individuals in the study colored by classification. (D) Receiver-Operator curves for predictions from a Random Forest model. Individual cross-
validation curves are shown along with the mean trend and standard deviations.
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We identified potential links between the microbiome by
exhaustive testing of all combinations between bacterial genera
and clinical variables, including alpha diversity (Shannon index).
This required careful modeling of the sequencing counts which
often do not follow normal distributions. Here we chose negative
binomial models as they model the high prevalence of zero read
counts and have been shown to represent amplicon sequencing
data well (42). Consequently, associations between the
microbiome and clinical variables were identified by a robust
normalization and testing strategy based on DESeq2 (see
Materials and Methods). In summary, read abundances were
normalized for library size, regressed against clinical variables
with negative binomial models, and significance was judged by a
chi-squared likelihood-ratio test on model deviances (LRT) (39).
Of the 30,780 tests, 208 were deemed significant under an FDR
cutoff of 0.05 (Figures 2A, B). Clinical measurements related to
obesity had the most significant associations with microbiome
features, while diet-related variables were the least likely to yield
a significant association (Figure 2A). The relative paucity of
associations between the microbiome and diet may be a
consequence of the homogeneous geographical location and the
long time-frame covered by the food questionnaire. Additionally,
dietary changes usually induce large short-lived shifts in the
microbiome which are commonly studied using beta-diversity
(43). Those global changes may affect many genera which may
conflict with the normalizationmethod used here that required the
majority of taxa to be non-differential across individuals.
Frontiers in Endocrinology | www.frontiersin.org 6
The genera associated with the most clinical variables was the
facultative anaerobe Escherichia and the obligate anaerobe
Veillonella, which had 36 and 23 significant associations
respectively (Figure 2B). Escherichia was associated mostly
with variables related to diabetes and obesity whereas
Veillonella was associated with variables from many categories.
Ruminococcaceae genera were the most positively correlated with
alpha diversity (Shannon index) whereas Fusobacterium,
Flavonifractor, and Parasutterella were the most negatively
associated with alpha diversity (Shannon index, Figure 2C).

The gut microbiome of the treatment-naive cohort was
associated widely with T2D-related clinical variables. A set of 14
bacterial genera associatedat leastweaklywith25of the 31diabetes-
related measures (FDR-corrected LRT p-value < 0.05). However,
we observed large differences in how those associations distributed
across genera (Figure 3A).Whereas some genera associated with a
wide array of T2D measures (for instance Escherichia) other
associated only with a single measure (e. g. Ezakiella with T2D
family history), or exclusively with glucose-related measures, but
not insulin-related measures (e. g. Romboutsia, Figure 3A). In
general, we observed more associations with glucose metabolism
than insulin levels. Escherichia showed by far themost associations
with T2D measures and notably associated with all glucose
measures included in the study. Given the observed genus-
specific patterns of association with T2D, this raised the question
of how one could identify a subset of genera that were consistent
markers of overall disease progression.
TABLE 1 | Cohort characteristics.

Variable NG IFG IGT IFG+IGT new T2D treated T2D p value
(n = 430) (n = 214) (n = 52) (n = 42) (n = 57) (n = 48) (n = 17)

Age (y)
Sex (M/F)

38 ± 14
49/165

45 ± 14a

23/29
45 ± 12
13/29

49 ± 12a

18/39
51 ± 9a

17/31
55 ± 11a

2/15
<0.001
0.019

PP (mmHg) 38 ± 9 41 ± 10 42 ± 8 45 ± 11a 45 ± 12a 44 ± 12 <0.001
Weight (kg) 70 ± 15 77 ± 17 76 ± 15 85 ± 17a 85 ± 20a 74 ± 23 <0.001
BMI 26.5 ± 5.4 28.2 ± 5.1 29.3 ± 5.3a 32.4 ± 6.2ab 32.5 ± 7.0ab 31.0 ± 9.0a <0.001
Body fat% 33 ± 8 32 ± 7 35 ± 8 39 ± 8ab 39 ± 10ab 37 ± 9 <0.001
Visceral fat % 6.6 ± 4.1 9.3 ± 3.9a 9.3 ± 3.9a 11.8 ± 4.3a 12.2 ± 5.6a 10.3 ± 4.2 <0.001
WC (cm)
Glucose (mg/dl)

84.7 ± 13.4
88 ± 7

90.3 ± 11.2
105 ± 4a

92.0 ± 10.3a

94 ± 4
98.4 ± 13.3a

108 ± 5a
97.7 ± 18.5a

154 ± 60abcd
95.4 ± 10.5
190 ± 74abcde

<0.001
<0.001

HbA1c % 5.3 ± 0.3 5.4 ± 0.3 5.4 ± 0.4 5.6 ± 0.4 6.6 ± 1.6abcd 7.5 ± 1.2abcd <0.001
Total cholesterol (mg/dl) 181 ± 37 189 ± 36 190 ± 32 196 ± 42 188 ± 30 218 ± 30a <0.001
TG (mg/dl) 131 ± 62 173 ± 93a 171 ± 78a 181 ± 80a 200 ± 85a 202 ± 66a <0.001
January 202
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P value column denotes p values of ANOVA with Bonferroni correction. Superscript letters denote the following: (a) p < 0.01 vs NG (b) p < 0.01 vs IFG (c) p < 0.01 vs IGT (d) p < 0.01 vs IFG
+IGT (e) p < 0.01 vs treatment-naive T2D.
TABLE 2 | T2D risk factors between the study groups.

NG IFG IGT IFG+IGT new T2D treated T2D p value
(n = 430) (n = 214) (n = 52) (n = 42) (n = 57) (n = 48) (n = 17)

T2D risk factors (%)
Physically inactive 61.2 59.6 80.0 71.9 66.0 64.7 0.211
Age >45y 39.2 57.7 47.5 68.4 80.9 76.5 <0.001
T2D Family history 73.7 75.0 77.5 80.7 83.0 100.0 0.160
Overweight 41.8 50.0 64.3 80.7 81.3 64.7 <0.001
Dyslipidemia 69.7 84.6 85.7 89.5 87.2 100.0 <0.001
HBP 25.2 46.2 45.2 54.4 64.6 58.8 <0.001
HBP, high blood pressure.
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A Group of Distinct Bacteria Mark the
Gradual Progression of Type 2 Diabetes
and Modulate Persistent Inflammation
To identify bacterial genera that were strong markers for disease
progression, we asked whether some of the 18 genera associating
with diabetes measures would do so in a gradual manner across
disease progression and risk.Disease progressionwasquantifiedby
ordering the metabolic groups by severity ranging from
normoglycemic (NG) to fully developed T2D. Disease risk was
assessed by a set of manually chosen binary indicators (absent/
present) for known risk factors and counting their occurrences for
each individual (see Materials and Figure S2). Thus, an individual
Frontiers in Endocrinology | www.frontiersin.org 7
with 8 risk factors would be considered at higher general risk for
developing T2D than an individual with only 2 risk factors.
Metabolic groups and the number of risk factors did only
moderately correlate with each other (Spearman rho = 0.45),
confirming that they described different aspects of the disease.
Treating themetabolic groups as well as the number of risk factors
as continuous descriptors we identified a set of 4 bacterial genera
that associated at least weakly with both of them (Escherichia,
Veillonella, Blautia andAnaerostipes, FDR-corrected LRT p < 0.1).
It should be noted that those gradual changes do not reflect
longitudinal changes within individuals but rather continuous
associations with severity across the entire population.
A B C

FIGURE 3 | Associations between microbiome composition and disease progression. (A) Significant associations (FDR corrected LRT p < 0.05) between bacterial
genera and T2D clinical variables. White boxes denote a lack of significant associations (p > 0.05) and fill denotes regression coefficient between genus and variable
(log2 fold change in genus abundance if the variable is increased by one standard deviation). (B) Associations between disease state and selected bacterial genera.
Blue lines indicate regression lines and light gray bands denote the standard error of the regression. (C) Overall T2D risk was evaluated by the number of T2D risk
factors associated with the same genera as observed earlier. This relationship was gradual across the number of risk factors.
A B C

FIGURE 2 | Associations between the microbiome and phenotype. (A) The number of significant associations between the microbiome and clinical variables
grouped by category (FDR corrected LRT p < 0.05). The positive test rate denotes the significant tests/total tests for the category. (B) Significant tests per genus
(FDR corrected LRT p < 0.05). Color denotes the category of the clinical variables the genus associates with. (C) Significant associations (FDR corrected LRT p <
0.05) between bacterial genera and alpha diversity (Shannon). Points denote the log fold change (DESeq2 regression coefficient) of a genus when the diversity
increases by one standard deviation. Error bars denote the standard error of the coefficient. Fill color denotes the mean of normalized reads across all samples.
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We found that Escherichia and Veillonella were positively
associated with the diabetic state, increasing in abundance with
disease progression from normal to T2D (Figure 3B). Conversely,
Blautia and Anaerostipes abundances declined with disease
progression (Figure 3B). Whereas Escherichia and Veillonella are
both associated negatively with alpha diversity (Shannon index),
Anaerostipes and Blautia did not (compare Figure 2C). Therefore,
the protective association between these genera andT2Dcannot be
explained by an increased diversity alone. Intriguingly, more than
99% of the Anaerostipes sequence variants with unique species
assignments belonged to the speciesAnaerostipes hadrus, a known
butyrate producer. The four identified genera showed a
continuously increasing or decreasing trend with disease
progression, with only the prediabetes group (IGT) showing
some deviation from this trend (Figure 3B).

For all of the identifiedgenera, thenumber of risk factors aligned
linearlywith the log-transformed counts.MedianEscherichia levels
increased by almost 2 orders of magnitude between individuals
with 2 and 8 risk factors respectively andAnaerostipes decreased by
one order of magnitude (Figure 3C). Notably, individual binary
risk factors did show only very few associations with the identified
genera (Figure S2). Thus, the accumulation of T2D risk factors
across the entire cohort, including healthy individuals, is gradually
linked to changes in the microbiome.

All of the 4 presented genera were also associated with the
primary clinical indicators for T2D. Higher levels of Escherichia
and Veillonella accompanied higher area under the glucose curve
and diminished beta cell function (FDR adjusted LRT p < 0.05,
see Figure 4). However, Escherichia was the only genus that was
significantly associated with glycated hemoglobin (log2 fold
change 0.5, FDR-adjusted LRT p = 0.04), and insulin
Frontiers in Endocrinology | www.frontiersin.org 8
sensitivity (Matsuda index, FDR adjusted LRT p = 7e-5).
Higher levels of Blautia and Anaerostipes on the other hand
were associated with lower areas under the glucose curve and
normal beta cell function (FDR adjusted LRT p < 0.05, see Figure
4). Thus, the associations with markers of metabolic health were
consistent with the results of oral glucose tolerance tests.

We then asked whether the patterns of these four microbiome
markers of the diseasemight be reversed by treatment. In a control
group of subjects that had already received T2D treatment, we
noted that type 2 diabetes treatment (mostlymetformin alone or in
combinationwith other drugs) led to an approximate return of the
4 genera to normal levels (Mann-Whitney test p values between
0.4–0.9, see Figure 4C). This behavior was not observed for all
genera. For instance, Romboutsia levels were not affected as
strongly by diabetes treatment (Mann-Whitney test p = 0.07,
Figure 4C). Thus, anti-hyperglycemic treatment for glucose
control was sufficient to return the identified genera close to
normal levels and this was not the case for other bacterial genera.

Because invasion with Proteobacteria such as E. coli is often a
sign of intestinal inflammation we also investigated the
association with the identified taxa with inflammation markers.
We found that Veillonella increased with higher concentrations
of C-reactive protein (CRP) whereas Blautia and Anaerostipes
decreased with higher concentrations of interleukin 6 (IL-6) in
treatment-naive individuals (all FDR-corrected LRT p < 0.1,
Figures 5A, B). Strikingly, both of the identified inflammation
markers were increased in treatment-naive diabetic individuals
compared to healthy individuals and remained elevated in
treated individuals (Figures 5C, D). Thus, in contrast to
microbial shifts, the increase in inflammation markers is not
ameliorated by T2D treatment.
A B C

FIGURE 4 | Associations between bacterial genera and the primary T2D-related clinical measurements. (A) The identified genera associated with the area under the
glucose curve (AUC glucose). AUC values were rank-transformed in the panel to make the regression independent of outliers. The blue line denotes a linear model
between log-transformed normalized counts and rank transformed AUC values. (B) Bacterial abundances stratified by beta cell function (“affected” meaning beta cell
function was negatively affected). Normal beta cell function was identified by a beta cell disposition index larger than 2 (see Figure S1B). Stars denote significance
under the likelihood ratio test. (C) T2D treatment restored some of the altered bacterial genera (Anaerostipes, Blautia, Escherichia, Veillonella) to their normal levels
but this was not true for all of them (Romboutsia remained at low levels). Stars denote significance under a Mann-Whitney test. For B–C “*” denotes p < 0.05,
“**” denotes p < 0.01, and “***” denotes p < 0.001.
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A Confounder Analysis Across Variable
Classes Identifies Diabetes-Specific
Associations
As mentioned before, T2D shows comorbidity with many other
clinical conditions such as obesity and cardiovascular disease.
For instance, we observed correlations of the major glucose
metabolism measurements such as the area under the glucose
curve and insulin sensitivity with obesity-related variables such
as BMI, visceral fat, and waist-to-hip ratio (see Figure 1D). Thus,
there was a possibility that our observed changes across disease
progression were driven by other covariates. For instance, the
association between a bacterial genus and glucose metabolism
may be a consequence of obesity which itself is associated with
higher glucose levels. This is commonly known as confounding
and obesity would be the confounder in that case.

To assess those putative confounding effects, we selected three
groups of primary clinical variables that were available for the
majority of the samples for T2D, obesity, and cardiovascular
health, respectively (see Materials and Methods). Representative
clinical variables were chosen by considering only variables
measured for the majority of individuals (not all individuals
provided information on all measures) and that showed the
strongest association with bacterial abundances by themselves.
For each of the previously identified bacterial genera and each
variable in the three groups, we then ran association tests with
either only sex as the confounder (“without”) or with sex and all
major variables from the other groups as confounders (“with”).
The strength of confounding was evaluated by looking for changes
in the regression coefficient for the association between bacterial
abundance and the respective clinical variable. If the coefficients
were stable across the non-confounded (“without”) and (“with”)
group we judged the association robust, whereas a coefficient
closer to zero in the confounded setting (“with”) would indicate a
diminished association when correcting for additional covariates
and, thus, a spurious association.

Coefficients for the diabetes-related clinical variables were not
significantly impacted by the introduction of the additional
confounders (see Figure 6), whereas the coefficients for
obesity-related variables were almost completely abolished by
Frontiers in Endocrinology | www.frontiersin.org 9
adding the additional confounders. This means that the
associations between the four identified bacterial genera and
obesity-related clinical variables were essentially lost when
correcting for diabetes status. Thus, diabetes measures
explained most of the associations between bacterial
abundances and obesity but not vice versa. Cardiovascular
health was also confounded heavily by the T2D-related
variables. In particular, we observed that association
coefficients between the tested microbial genera and BMI, body
fat, or diastolic pressure changed sign when correcting for
secondary clinical variables (Figure 6). This indicates that non-
corrected associations can misinterpret the isolated effect of
those clinical variables. Those spurious associations with
obesity or cardiovascular disease could be observed with all of
the four genera identified in our previous analysis. Here, only
Veillonella showed residual associations with body fat and blood
pressure after correction for some of the clinical variables (body
fat and blood pressure) which led us to hypothesize that
Veillonella seems to associate unspecifically with a variety of
“bad health” markers.
DISCUSSION

One of the challenges in studying the connections between the
gut microbiome and T2D is the strong effect of medication on
the gut microbiota. Metformin in particular has been shown to
induce changes in the microbiome that may themselves
alleviate some of the symptoms of T2D either directly or
indirectly (22). Consequently, T2D medication with
metformin may mask T2D-specific changes in microbial
composition. We confirm this in our study and avoided those
treatment-specific effects by concentrating on a large
treatment-naive cohort. This allowed us to identify a set of
four bacterial genera that are closely connected to T2D disease
progression and risk in treatment-naive individuals of a high-
risk population. Notably, all of the four identified genera
returned to near-normal levels in treated individuals. Thus,
we found that metformin does not only affect more taxa in the
A B DC

FIGURE 5 | Immune/Inflammation makers in the cohort. (A) Association between Veillonella read counts and C-reactive protein in treatment-naive individuals. (CRP).
(B) Association between Anaerostipes/Blautia read counts and Interleukin 6 in treatment-naive individuals. (C) C-reactive protein levels were elevated in untreated
diabetic individuals (T2D) and this was not altered by treatment. (D) Interleukin 6 levels were elevated in untreated diabetic individuals and this was not altered by
treatment. In C–D Stars denote significance under a Mann-Whitney test (* - p < 0.05, ** - p < 0.01, *** - p<0.001).
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gut microbiome than suggested previously but may also
completely disguise microbial changes induced by T2D
(Figure 4A). It is unclear whether this medication-
induced restoration of the gut microbiome is a consequence
of alleviated symptoms such as the regulation of blood
glucose levels or a direct interaction between drugs and
the microbiome. However, our observation that metformin
treatment counteracts microbial changes associated with T2D
but not with other bacteria seems to suggest that this happens
in a disease-dependent manner. Importantly, treatment
did not lower the concentrations of the microbiome-
associated inflammation markers CRP and IL-6 which indicates
that there may be secondary effects of T2D that persist
after treatment.

Additionally, the inclusion of a complete characterization of
individual phenotypes uncovered the complex pattern of
connections between microbial taxa and T2D. Most (25/31)
of the diabetes-related covariates included in the study did
associate with at least one microbial taxon. However, individual
taxa would usually associate with a specific set of clinical
measurements. For instance, even though Escherichia and
Veillonella both increased with disease progression, Escherichia
was preferably associated with measures of blood glucose whereas
Veillonella was associated with more insulin-related measures
(Figure 3A). Additionally, we also found that Blautia and
Frontiers in Endocrinology | www.frontiersin.org 10
Anaerostipes did not only decrease with disease progression but
also associated with improved beta cell function and insulin
efficiency, which is to our knowledge the first time this
connection has been described.

We also studied the relationship between the identified
bacterial genera and T2D risk based on several established T2D
risk factors. Here, we found a clear pattern of microbial shift
associated with the accumulation of risk factors. This
complements previous studies that have described a connection
between the microbiome and the coincidence of T2D diabetes but
not on T2D risk itself (23). We observed that this association was
stable even in a subpopulation with a low number of risk factors.
This is consistent with the pathophysiology of T2Dand shows that
T2D-specific changes in the microbiome may precede observable
symptoms (44, 45). At the present point, one cannot say whether
those associations observed across our cohort are indeed present
in single individuals during the disease trajectory. Thus, those
results rather present co-occurrence than causality. Longitudinal
studiesmay capture properties of T2Dprogression that aremissed
by cross-sectional studies (46). Thus, we anticipate that future
longitudinal studies will shed more light on the causality between
diabetes and the microbiota.

Nevertheless, deepclinical phenotyping allowedus to control for
many of the known comorbidities of T2D and confirm the
robustness of our findings. For instance, we show that the
FIGURE 6 | Adding prominent confounders from other classes of clinical variables did not influence effect size for diabetes-related clinical response variables but did
abolish associations in obesity and some cardiovascular responses. Clinical variables are grouped into T2D, obesity, and cardiovascular disease, and association
tests between each bacterial genus and variable are either not confounded with additional variables (without confounding) or confounded with all variables from the
other groups (with confounding). Points denote the coefficient associated with the response variables under the DESeq2 model (log fold change associated with an
increase of one standard deviation in the clinical variable) and error bars denote the standard errors of the model coefficient. Colors denote bacterial genera.
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strongest associations between themicrobiome and obesity-related
clinical indicators (BMI and visceral fat) are almost entirely
confounded by diabetes covariates and cannot be maintained
when controlling for diabetes status. The implications of this
observation go beyond this study and demonstrate the potential
for extensive confounding in microbiome-obesity studies. As we
have shown, this can be avoided by extensive phenotyping of the
study subjects and can help to identify effects that are specific to the
studied condition and not a secondary effect of another phenotype.
In particular, we feel that the combination of correcting for
additional phenotypes combined with studying microbial changes
that are reversed by treatment is a feasible strategy to constrain the
number of associations and identify connections between disease
and the microbiome that are good candidates for
causal relationships.

On a coarse level, our study is in agreement with previous T2D
microbiome studies which mostly report a depletion of butyrate
producers. On a fine level, however, we find that the identified
genera in our study differ from what has been found in previous
studies. For instance, we do not find a depletion of the butyrate-
producing Roseburia, Faecalibacterium, or Eubacterium (18) but
rather observe a decrease in Anaerostipes hadrus, another known
butyrate-producer (47). Some studies have also reported an
increase of E. coli (15, 16), however, we do not observe an
increase in Lactobacillus or Streptococcus as reported there.
Consistent with previous findings in treatment-naive
subpopulations, we found that T2D could only be weakly
predicted from microbiome composition when correcting for
metformin treatment (23). Hyperglycemia itself has been shown
to increase the risk for enteric infection by driving intestinal
barrier permeability which is consistent with the tight
association we observe between Escherichia abundance and
blood glucose levels (48). Functionally, many of the observed
associations point towards gut inflammation. Blooms of
proteobacteria, like E. coli, have been associated previously with
an inflamed gut and are often observed in irritable bowel disease
(49, 50). Loss of Blautia has also been associated with an inflamed
gut in Crohn’s disease and other clinical conditions (51, 52).
Additionally, alterations in solute carrier expression, as present in
the Mexican population (12), have been observed in the
development of irritable bowel disease and have been linked to
inflammation (53, 54).

Though there is some evidence that gut inflammation may be
modulated by the microbiome, it is still unclear whether one
could potentially target T2D via altering the gut microbiome (55,
56). We did identify a microbiome-inflammation axis formed by
three of the four identified taxa and observed that inflammation
markers remained elevated even in treated individuals. E. coli
was not directly associated with CRP or IL-6 (FDR-adjusted LRT
p = 0.7) which indicates that there may be additional factors
driving the colonization with Proteobacteria. Thus, the observed
compositional changes consistent with inflammation might be
useful as markers for long-term effects of diabetes-induced
phenotypes. For instance, the gut microbiome may help to
identify diabetes patients with a high risk for irritable bowel
disease or colorectal cancer which have a higher incidence in
Frontiers in Endocrinology | www.frontiersin.org 11
T2D patients (57–59). In the end, additional studies will be
required to elucidate the causal connections between the gut
microbiome and T2D.
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SUPPLEMENTARY FIGURE 1 | (A) Increment of the area under the glucose
curve stratified by metabolic group. “nT2D” denotes new (treatment-naive) T2D
and pT2D denotes previous (treated) T2D. Bars denote the standard error of the
mean. (B) Insulin sensitivity over the metabolic groups. Bars denote the standard
error of the mean. (C) Beta cell disposition index stratified by metabolic group. The
dashed line denotes the cutoff value 2 that was used to separate functional from
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non-functional beta cells. (D) Abundances of Escherichia and Intestinibacter
stratified by metformin history. Superscripts denote the following comparisons in a

t-test: *p < 0.01 vs. NG group, **p < 0.01 vs. NG and IFG groups,
†
p < 0.01 vs all

groups.

SUPPLEMENTARY FIGURE 2 | Binary risk factors used to calculate the overall
risk of developing T2D. Shown are bacterial abundances stratified by individual risk
factors. Absence is denoted by zero and presence by 1. The following 3 risk factors
were summarized into a single one (any of the 3 present) when calculating overall
risk: polycystic ovary syndrome, cardiovascular disease, having a baby born with
more than 4 kg of weight (macrosomia). Reads were normalized across samples as
described in Methods.
REFERENCES

1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2
diabetes mellitus and its complications. Nat Rev Endocrinol (2017) 14:88–98.
doi: 10.1038/nrendo.2017.151

2. Folli F, La Rosa S, Finzi G, Davalli AM, Galli A, Dick EJ Jr, et al. Pancreatic
islet of Langerhans’ cytoarchitecture and ultrastructure in normal glucose
tolerance and in type 2 diabetes mellitus. Diabetes Obes Metab (2018) 20
(Suppl 2):137–44. doi: 10.1111/dom.13380

3. Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ,
Majluf-Cruz A, et al. Pancreatic islet amyloidosis, -cell apoptosis, and -cell
proliferation are determinants of islet remodeling in type-2 diabetic baboons.
Proc Natl Acad Sci (2009) 106:13992–7. doi: 10.1073/pnas.0906471106

4. Diabetes Prevention Program Research Group. Reduction in the Incidence of
Type 2 Diabetes with Lifestyle Intervention or Metformin. N Engl J Med
(2002) 346:393–403. doi: 10.1056/NEJMoa012512

5. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2
diabetes: dietary components and nutritional strategies. Lancet (2014)
383:1999–2007. doi: 10.1016/S0140-6736(14)60613-9

6. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al.
ReplicationofGenome-WideAssociationSignals inUKSamplesRevealsRiskLoci
for Type 2 Diabetes. Science (2007) 316:1336–41. doi: 10.1126/science.1142364

7. Wellcome Trust Case Control Consortium, Zeggini E, Scott LJ, Saxena R,
Voight BF, Marchini JL, et al. Meta-analysis of genome-wide association data
and large-scale replication identifies additional susceptibility loci for type 2
diabetes. Nat Genet (2008) 40:638–45. doi: 10.1016/S0084-3741(08)79224-2

8. Barquera S, Campos-Nonato I, Aguilar-Salinas C, Lopez-Ridaura R,
Arredondo A, Rivera-Dommarco J. Diabetes in Mexico: cost and
management of diabetes and its complications and challenges for health
policy. Global Health (2013) 9:3. doi: 10.1186/1744-8603-9-3

9. Alegre-Dıáz J, Herrington W, López-Cervantes M, Gnatiuc L, Ramirez R, Hill
M, et al. Diabetes and Cause-Specific Mortality in Mexico City. N Engl J Med
(2016) 375:1961–71. doi: 10.1056/NEJMoa1605368

10. Barquera S, Tovar-Guzmán V, Campos-Nonato I, González-Villalpando C,
Rivera-Dommarco J. Geography of diabetes mellitus mortality in Mexico: an
epidemiologic transition analysis. Arch Med Res (2003) 34:407–14. doi:
10.1016/S0188-4409(03)00075-4

11. Moreno-Estrada A, Gignoux CR, Fernandez-Lopez JC, Zakharia F, Sikora M,
Contreras AV, et al. The genetics of Mexico recapitulates Native American
substructure and affects biomedical traits. Science (2014) 344:1280–5. doi:
10.1126/science.1251688

12. The SIGMA Type 2 Diabetes Consortium. Sequence variants in SLC16A11 are
a common risk factor for type 2 diabetes in Mexico. Nature (2013) 506:97–
101. doi: 10.1038/nature12828

13. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton
KJ, et al. The genetic architecture of type 2 diabetes. Nature (2016) 536:41–7.
doi: 10.1038/nature18642

14. Villarreal-Molina MT, Flores-Dorantes MT, Arellano-Campos O, Villalobos-
Comparan M, Rodriguez-Cruz M, Miliar-Garcia A, et al. Association of the
ATP-Binding Cassette Transporter A1 R230C Variant With Early-Onset Type
2 Diabetes in a Mexican Population. Diabetes (2008) 57:509–13. doi: 10.2337/
db07-0484
15. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B,
et al. Gut metagenome in European women with normal, impaired and
diabetic glucose control. Nature (2013) 498:99–103. doi: 10.1038/nature12198

16. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association
study of gut microbiota in type 2 diabetes. Nature (2012) 490:55–60. doi:
10.1038/nature11450

17. de Vos WM, Nieuwdorp M. A gut prediction: Genomics. Nature (2013)
498:48–9. doi: 10.1038/nature12251

18. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M. Insights Into the Role of
the Microbiome in Obesity and Type 2 Diabetes.Diabetes Care (2015) 38:159–
65. doi: 10.2337/dc14-0769

19. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut
microbiome studies identifies disease-specific and shared responses. Nat
Commun (2017) 8:601. doi: 10.1038/s41467-017-01973-8

20. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, et al. Human gut microbiome viewed across age and
geography. Nature (2012) 486:222–7. doi: 10.1038/nature11053

21. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut microbiota and
intestinal FXR mediate the clinical benefits of metformin. Nat Med (2018)
108:1167. doi: 10.1038/s41591-018-0222-4

22. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al.
Metformin alters the gut microbiome of individuals with treatment-naive type
2 diabetes, contributing to the therapeutic effects of the drug. Nat Med (2017)
23:850–8. doi: 10.1038/nm.4345

23. Forslund K, Meta HIT consortium, Hildebrand F, Nielsen T, Falony G, Le
Chatelier E, et al. Disentangling type 2 diabetes and metformin treatment
signatures in the human gut microbiota. Nature (2015) 528:262–6. doi:
10.1038/nature15766

24. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE,
et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature
(2014) 505:559–63. doi: 10.1038/nature12820

25. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al.
Environment dominates over host genetics in shaping human gut microbiota.
Nature (2018) 555:210–5. doi: 10.1038/nature25973

26. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin
resistance and type 2 diabetes. Nature (2006) 444:840–6. doi: 10.1038/
nature05482

27. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S, et al. The gut microbiome in
atherosclerotic cardiovascular disease. Nat Commun (2017) 8:169. doi:
10.1038/s41467-017-00900-1

28. Ryan PM, London LEE, Bjorndahl TC, Mandal R, Murphy K, Fitzgerald GF,
et al. Microbiome and metabolome modifying effects of several cardiovascular
disease interventions in apo-E–/– mice. Microbiome (2017) 5:576. doi:
10.1186/s40168-017-0246-x

29. Price ND, Magis AT, Earls JC, Glusman G, Levy R, Lausted C, et al. A wellness
study of 108 individuals using personal, dense, dynamic data clouds. Nat
Biotechnol (2017) 35:747–56. doi: 10.1038/nbt.3870

30. Hernández-Avila M, Romieu I, Parra S, Hernández-Avila J, Madrigal H,
Willett W. Validity and reproducibility of a food frequency questionnaire to
assess dietary intake of women living in Mexico City. Salud Públ México
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