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Neuroendocrine tumors, or NETs, are cancer originating in neuroendocrine cells. They are
mostly found in the gastrointestinal tract or lungs. Functional NETs are characterized by
signs and symptoms caused by the oversecretion of hormones and other substances, but
most NETs are non-functioning and diagnosis in advanced stages is common. Thus,
novel diagnostic and therapeutic strategies are warranted. Epigenetics may contribute to
refining the diagnosis, as well as to identify targeted therapy interfering with epigenetic-
sensitive pathways. The goal of this review was to discuss the recent advancement in the
epigenetic characterization of NETs highlighting their role in clinical findings.
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INTRODUCTION

Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from
neuroendocrine cells diffuse throughout the body. The gastroenteropancreatic (GEP) tract and the
bronchopulmonary system represent the main site of origin. NENs are mostly sporadic, but in 10–
30% they can arise within the context of familial syndromes, mainly multiple endocrine neoplasia
type 1 (MEN1) (1). Incidence and prevalence of NENs have markedly increased in the last decades,
irrespective of stage and grade (2). Clinical presentation and prognosis of NENs may widely vary.
NENs can be functional when they release biologically active hormones that cause distinct clinical
syndromes or more often may be non-functional, thus diagnosed incidentally or due to mass effect.
Delayed diagnosis is common, as well as the detection of metastases, mainly to the liver, already at
diagnosis. Patients with localized disease have a better prognosis, with 5-year survival ranging from
78 to 93%, while in metastatic disease, the 5-year survival is worse (19–38%), although improved
over the past years (3). The improvement of survival rates may be the consequence of the availability
of effective therapies, as well as earlier and more accurate clinical and pathologic diagnoses with
relative downstaging. NENs have usually an indolent course and patients need life-long therapy.
Abbreviations: CAPTEM, Capecitabine and temozolomide; cfDNA, Cell-free DNA; CIMP, CpG island methylator
phenotype; CNV, Copy number variation; CTC, Circulating tumor cell; ctDNA, Circulating tumor DNA; ddPCR, Droplet
digital PCR; GEP, Gastroenteropancreatic; MEN1, Multiple endocrine neoplasia type 1; NEN, Neuroendocrine neoplasm;
NET, Neuroendocrine tumor; NEC, Neuroendocrine carcinoma; NF1, Neurofibromatosis type 1; PNEC, Pancreatic
neuroendocrine carcinoma; PNEN, Pancreatic neuroendocrine neoplasm; PNET, Pancreatic neuroendocrine tumor;
SI-NET, small intestinal neuroendocrine tumors; VHL, Von Hippel Lindau.
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Notably, the landscape of the therapeutic options in NENs has
considerably expanded in the last decades. The current systemic
therapies for locally advanced or metastatic NENs include
somatostatin analogs (SSAs), molecular targeted therapy with
mTOR inhibitors (Everolimus), or anti-angiogenesis (Sunitinib),
peptide receptor radionuclide therapy (PRRT) with either
90Yttrium (90Y) or 177Lutetium (177Lu) and chemotherapies
with temozolomide, capecitabine or platinum-based regimens.
These options can be used in sequence or association with
surgery, locoregional treatments (e.g., radiofrequency ablation,
cryoablation, chemoembolization, and radioembolization), and/
or other drugs used as supportive therapies (e.g., telotristat,
diazoxide and proton pump inhibitors) (4, 5). In this review we
will focus on well or moderately differentiated neuroendocrine
tumors (NETs), excluding neuroendocrine carcinomas (NEC) for
their peculiar pathology and treatment.
EPIGENETIC MODIFICATIONS AND
NEUROENDOCRINE TUMORS

Epigenetic changes, such as DNA methylation and histone
modification, are critical for regulating genes and non-coding
RNA expression. Genomic alterations and gene mutations which
are involved in the pathogenesis NETs, as MEN1, VHL-hypoxia-
inducible factor, RASSF1A, have a consequence on the aberrant
placement of epigenetic markers and related pathways (6–10).

Epigenetic mechanisms canmodify gene expression altering DNA
methylation status, histones post trascriptional modifications, and
influencing the expression of non-coding RNAs. Hypermethylation
of a promoter is a mechanism that determined gene silencing,
while hypomethylation can lead to chromosomal instability and
consequently influences gene expression (9, 10). Histone
modifications involves the addition of methyl, acetyl,
phosphorylation at different aminoacid residues of histone
proteins. These modifications alter chromatin accessibility to
transcription factors and lastly gene expression. MicroRNAs
(miRNAs) and long noncoding RNAs are other layers of
epigenetic regulation. They are small, or long sequences of non-
coding RNAs regulating gene expression post-transcriptionally,
considered to be a cancer-associated epigenetic mechanism (11).
METHYLATION PATTERNS RELEVANCE
IN THE PATHOGENESIS OF NETS AND
CLINICAL FINDINGS

The pathogenesis of NETs is further to be elucidated, as in most
other solid tumors. Nevertheless, epigenetic studies have
improved our knowledge. Pancreatic neuroendocrine tumors
(PNETs) account for 1 to 2% of all pancreatic tumors and
most of them are sporadic and non-functioning, 5–7% arise
within inherited syndromes, including MEN1, Von-Hippel
Lindau (VHL) syndrome, neurofibromatosis type 1 (NF1), and
tuberous sclerosis. The majority of familial PNETs are caused by
germline inactivating mutations in the MEN1 gene, suggesting a
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key role in PNETs tumorigenesis. MEN1 gene encodes the
transcription factor MENIN, ubiquitously expressed, and
involved in many biological functions. MENIN, plays an
essential role in chromatin remodeling and gene expression
recruiting the H3K4me3 histone methyltransferase on mixed-
lineage leukemia (MLL1) complex, regulating the expression of
the cyclin-dependent kinase inhibitors, and influenced the
epigenetic regulation of several genes (12). MEN1 mutations or
loss of function deregulated cell growth in 75% cases of PNETs
favoring hypermethylation of several tumor suppressor genes
including RASSF1A (13), HIC-1, MLH1, CDKN2A, and MGMT
(6, 7). Characteristics of the sporadic form of PNETs are mainly
gene mutations in DAXX (death-domain-associated protein) or
ATRX (alpha thalassemia/mental retardation syndrome X-linked)
(12). Both DAXX and ATRX are chromatin remodellers and are
involved in the incorporation of the histone variant H3.3 at the
telomeres and pericentric heterochromatin necessary (14).
Proteins loss, as well as mutations in DAXX or ATRX, are
associated with chromosome instability (CIN), reduced genomic
H3K9me, and aggressive PNET phenotype (12, 15). Increased risk
of PNET was also associated with loss of chromosome 11q
containing the genes Men1, but also DNA repair pathway genes
as BRCA2 and ATM, and amplification region activating PIK3CA
and mTOR pathway. In some cases associated with MENIN loss
were also found mutation affecting VHL tumor suppressor gene
that determined a constitutive hypoxia transcription factors (HIF)
activation and uncontrolled angiogenesis (16, 17), suggesting that
MENIN loss or mutation is a key initiator in PNET tumorigenesis
(15, 18–21). In pulmonary NET in addition to MEN1 mutations
affected also as histone lysine methyltransferase (SETD1B2,
SETDB1), histone acetylation modifiers (BRWD3 and HDAC5)
and ATP-dependent chromatin remodeling SMARCA1 indicating
a key pathogenic role (22). Genomic profile of small intestinal
NET (SI-NET) identify two different groups, one characterized by
loss of chromosome 18, and another one characterized by the
presence of chromosome 18 but with clustered gains on
chromosomes 4, 5, 7, 14, and 20 (23). Correlation of loss of
chromosome 18 and RASSF1A promoter hyper-methylation and
hypo-methylation of long intergenic element 1 (LINE1) and ALU
sequences was found in SI-NETs (24) although not associated with
grade and tumor size (25).

In hereditary SI-NET causative role was attributed to germline
mutations in IPMK (inositol polyphosphate multikinase) p53
activity and MutY DNA glycosylase genes (26) affecting the
oxidative pathway. Above mentioned studies emerged that in SI-
NET epigenetic machinery is not causative however the
uncontrolled pathways of oxidative stress and genomic
rearrangement activated several epigenetic modifications (27).
METHYLATION PATTERNS RELEVANCE
AS DIFFERENTIAL DIAGNOSTIC
BIOMARKERS

The DNA methylation profile of sporadic PNET, VHL and
MEN1-related PNETs, and pancreatic islets were analyzed by
December 2020 | Volume 11 | Article 604341

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Colao et al. Clinical Epigenetics of Neuroendocrine Tumors
Illumina array (850k array) with the goal to find novel diagnostic
markers. The study identified a distinct cluster of methylation
genes associated with VHL, sporadic and MEN1-related PNETs,
indicated that mutations in these genes influence the epigenetic
pathway and clinical presentation of diseases (28, 29). Differential
methylation patterns were also reported among GEP-NETs (24,
30). Indeed, the analysis conducted in 60 tumors selected a pool of
807 genes. These gene sets were able to distinguish NETs in
functional GEP-NETs (insulinoma, gastrinoma) and, non-
function subtypes underlying the clinical and histological
characteristics. Gastrinomas showed hypomethylation of genes
including metalloproteinases (MMP1, MMP3, TIMP2, TIMP3),
the serpin family (SERPINA5, SERPINB5), and oncogenes (IL2,
MCF2, and MOS), whereas hypermethylation was reported for
tumor suppressors (SMARCB1, CASP8, and NBL1) (24, 25, 30).
Promoter hypermethylation of the IGF2 pathway was
characteristic of insulinomas shedding a light on signaling
responsible for their differentiation from a common origin (31).
A study on SI-NET identified TCEB3C gene hypermethylation to
be specific for this histology. Interestingly, treatment of SI-NET
cell lines with the de-methylating agent decitabine and the histone
methyltransferase inhibitor 3-deazaneaplaoncin A-induced
TCEB3C re-expression, confirming an epigenetic regulation of
this gene (32). Followed this stem study, Verdugo et al. and then
Karpathakis et al. identified hyper-methylation of the gastric
inhibitory polypeptide receptor (GIPR) as another specific
marker of SI-NETs and reported hyper-methylation in several
genes. They selected on chromosome 18 as laminin alpha 3
(LAMA3), serpin peptidase inhibitor clade B member 5
(SERPINB5), and factor receptor superfamily member 11a
NFKB activator (RANK or TNSFRSF11A), suggesting that
epigenetic silencing could be the possible second step in tumor
development upon chromosome 18 loss (33–35).
METHYLATION PATTERNS: RELEVANCE
IN PROGNOSIS AND RESPONSE TO
THERAPY

Since epigenetic changes play a key role in the progression of
PNETs the finding to select an epigenetic prognostic factor, is
crucial (34). In particular, some epigenetic changes area correlated
to DAXX or ATRX protein loss because this complex regulates
H3K9me and influenced DNA methylase. Indeed, promoter
hypermethylation of RASSF1A and p57Kip2 in PNENs was
responsible for NAP1L1 overexpression associated with the
metastatic phenotype (35–38). Additionally, a peculiar group of
PNETs named (CIMP) showed hypermethylation of CpG islands
including tumor suppressor genes, such as RASSF1A, hMLH1,
and hypomethylation of LINE-1 sequence. These peculiar
epigenetic pathways were associated with poor prognosis and
advanced stage of PNETs (39). While hypermethylation
ofCDKN2A was associated with early tumor recurrence and
poor outcomes of GEP-NETs (40). A general decrease in
methylation levels was observed in SI-NET metastases compared
to the primary tumors. In particular, differential methylation of
Frontiers in Endocrinology | www.frontiersin.org 3
AXL, CRMP1, FGF5, CXXC5, and APOBEC3C genes were
detected in primary tumors compared to metastases (34).
However, no validation of these markers was reported in the
study population. In a follow-up of primary SI-NET and liver
metastases, it was selected a panel of epigenetically dysregulated
genes that were progressively methylated or demethylated from
the primary tumor to metastases (33, 41), suggesting their
potential use as markers. Recently dysregulation of TET1/TET2
enzymes that catalyze DNA demethylation was observed in SI-
NETs open a potential novel class of drug treatment (42, 43).
Differential methylations of specific gene promoters were also
associated with response to therapy. Table 1 shows the most
representative observational studies involving epigenetic
biomarkers. One example is O6-methylguanine-DNA
methyltransferase (MGMT), a DNA repair enzyme removing
alkyl groups from an alkylguanine. Retrospective studies have
found an association between methylation of MGMT and
response to treatment with temozolomide (an alkylating agent)
making it a promising marker (44–47) (Table 1). A prospective
trial confirmed this correlation (48).
MiRNAS RELEVANCE IN DIFFERENTIAL
DIAGNOSIS AND PROGNOSIS

MicroRNAs (miRNAs) are small (19–24 nt) regulatory RNA
molecules that can also be used to classify cancer because of their
abundance, cell-type, and disease-stage specificity which support
their possible use to predict clinical outcomes and differential
diagnosis. Multiple miRNA profiling studies have been
performed on NET pathological types using different RNA
isolation, detection, and analysis methods. Although these
differences complicate inter-study comparisons, miRNAs still
hold much promise as markers. A set of 10 miRNAs (miR-99a,
99b, 100, 125a, 125b-1, 125b-2, 129-2, 130a, 132, and 342) was
selected as a potential tool to differentiate pancreatic NEN from
pancreatic acinar cell carcinoma (49), while miR-21a was
selected as potential biomarker for GEP-NETs (50). Moreover,
in another study in insulinomas, miR-204 was the unique
miRNA selectively overexpressed while miR-186 showed
significantly downregulated in 39 colorectal NET patients (51).

Different sets of miRNAs were identified as predictors of
metastases on the base of tissue used as control. Overexpression
of miR-21, involved in the regulation of the PI3K/Akt/mTOR
pathway, and the Ki-67 proliferation index was significantly
associated with liver metastases when pancreatic normal tissue
was used as control (52). In contrast proliferation index Ki-67,
miR-642, and miR-210 were correlated with metastases of
PNETs when pancreatic islets were used as control (49). These
data suggest that reference tissue influences the selection of
markers. From the comparison of primary tumor and
metastasis and then validation in 37 patients, the miRNA-196a
was found significantly associated with tumor grade and
recurrence (53).

A different approach is the NETest algorithm for the prediction
of the clinical status of NETs (54, 55). The test is PCR-based
December 2020 | Volume 11 | Article 604341
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measuring 51 individual circulating genes in 1 ml of blood. An
algorithmic analysis provides a numeric score of disease status. It
can define the completeness of surgical resection, identify residual
disease, monitor disease progression, and determine the efficacy of
treatment (56–58). NETest was used to evaluate the alteration in
genes during the treatment with SSA, PRRT, and following surgery
(59–61). In a Dutch cohort of GEP-NET patients, the NETest had
good sensitivity but the specificity was relatively low. Thus,
NETest would be less suited for screening but could be valuable
for the detection of residual disease after therapy (62).
Frontiers in Endocrinology | www.frontiersin.org 4
Interestingly, the NETtest was successfully used to evaluate
efficacy and response to PRRT in metastatic NETs (63) (Table 1).

Several miRNAs were also associated with tumor progression of
SI-NETs. In the miRNAs study performed by Heverhagen (64), the
most promising diagnostic miRNA-biomarker was miR-7-5p
higher in pathological tissue compared to control and selected
miR-885-5p as predictive of rectal NETs metastases (65). In a
cohort study, 3 miRNAs 129-5p, 133a, and 143-3p downregulated
were associated with the metastatic phenotype of SI-NETs (64, 66–
70), while other upregulated were correlated with SSA treatment
TABLE 1 | Observational studies on epigenomics and NETs.

Type of intervention Drugs and
targets

Phase NIH Clinical
Trialcode

End points n.
Patients

Use of Blood Biomarkers to Predict
Gastric Cancer Risk

blood-based
biomarkers
analyses

observational NCT04329299
(2012-2016)

Micro RNAs (miRNAs) and blood-based protein markers in
participants

6,862

Tissue Procurement for Gastric
Cancer including neuro endocrine
cancer,

blood-tissues
from any kind
of treatment

observational NCT01416714
(2011-2025)

Blood -tissues collection 1,000

A Collection of Clinical and
Epidemiologic Data Combined With
Tissue and Blood From Patients
With a Diagnosis of Neuroendocrine
Tumors GEPNET or NET of
unknown primary.

blood- and
biopsies
collection from
any kind of
treatment

observational NCT00745381
(2008-2020)

Blood-based biomarkers molecular testing include evaluation of DNA
mutation, alternative splice variants, protein expression and
phosphorylation, and immunohistochemistry on sample analyses

500

Community-based Neuroendocrine
Tumor (NET) Research Study

Drug:
lanreotide
target:
somatostatin
receptor

observational NCT02730104
(2015-2020)

Data collected will be in accordance with the routine practice of
physicians. Blood collection

100

Database ITANET - ENETS Registry all treatment observational NCT04282083
(2020-2022)

Create an Italian database for the collection of data on diagnostic
approach, therapy and follow up of patients affected by GEP-NET
(gastro-enteric-pancreatic neuroendocrine tumors) and to include
these data into a multi-national European registry database, adhering
to the ENETS (european neuroendocrine tumor society)-registry
project.

3,600

Integrated Cancer Repository for
Cancer Research (iCaRe2) including
neuro endocrine

all treatments observational NCT02012699
(2013-2099)

Register: observational, genetics, biology, early detection, and
patient care can collaborate by using the iCaRe2 as a platform for
cohort and population studies.

999

SYNERGY-AI: Artificial Intelligence
Based Precision Oncology Clinical
Trial Matching and Registry

all treatments observational NCT03452774
(2018-2021)

Platforms, individual clinical data is extracted, analyzed and matched
to a parametric database of existing institutional and non-institutional
CT.

1,500

The Lyon Real World Evidence in
Metastatic NeuroEndocrine
Tumours (LyREMeNet)

advance stage observational NCT03863106
(2017-2020)

Clinical characteristics, prognostic factors, treatment patterns, and
the overall survival among patients with metastatic GEP and lung
NETs.

880

Treatment With Somatostatin
Analogues in Patients With
Gastroenteropancreatic
Neuroendocrine Tumours (STREET)

Drug:
somatostatine,
targe:t
receptor for
somatostatine

observational NCT02788565
(2016-2020)

Direct Cost of Treatment and quality life 156

A Safety and Tolerability Study of
INCAGN02390 in Select Advanced
Malignancies

all treatments observational NCT04028479
(2019-2021)

Diagnostic Test: Testing: Genome
Diagnostic Test: Testing: Transcriptome
Diagnostic Test: Testing: Proteome
Drug: Treatment: CAR-T

10,000

The PIONEER Initiative: Precision
Insights On N-of-1 Ex Vivo
Effectiveness Research Based on
Individual Tumor Ownership
(Precision Oncology) (PIONEER)

with or without
therapy

observational NCT03896958
(2019-2021)

Goal of PIONEER is to enable best in class functional precision
testing of a patient’s tumor tissue to help guide optimal therapy (to
date this type of analysis includes organoid drug screening
approache

200

Recurrence Rates of Type I Gastric
Neuroendocrine Tumors Treated
with Long-acting Somatostatin
Analogs

Drug:
octreotide
analog of
somatostatine

observational NCT03812939
(2019-2020)

Clinical symtoms evaluation of miRNAs as, prognostic factors, and
treatment patterns

30
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status or tumor stage (71). In another study, 4 differentially
expressed miRNAs (miR-21-5p, miR-22-3p, and miR-150-5p)
reached a statistical significance (72) underlying the need to add
tissue markers, to discriminate NETs and to confirm the findings in
annotated sample sets. Two miRNA profiling studies conducted on
SI-NETs (66, 69, 73), compared metastatic tumors to primary
malignancy, merging the data from both studies (metastasis vs
primary) downregulation of miR-133a and upregulation of miR-
183 were associated with poor prognosis and the spread
of malignancy.
ROLE OF LONG NON-CODING RNAS IN
NENS CLINICAL FINDINGS

Long non-coding RNAs (lncRNAs) are non-protein coding RNA
transcripts longer than 200 nucleotides that exert multiple types
of regulatory functions of all known cellular processes.
Increasing evidence supports the role of lncRNAs in NENs
development and progression with different mechanisms. In
PNETs, tumor hypermethylation and silencing of long
noncoding MEG3, determined activation of miR183/BRI3 axis,
and cell proliferation due to c-MET oncogene activation (73).
The reactivation of MEG3 by demethylating agents suppresses c-
MET dependent cell proliferation suggesting that epigenetic
targeting of MEG3 may represent an interesting approach in
MEN1-PNETs treatment (59).

Moreover, downregulation of noncodingMEG3 andHOX genes
has been associated with the development of non-functional
pituitary adenomas and parathyroid tumors, respectively (74).

Two other lncRNAs are implicated in the pathogenesis of PNENs,
the HOX antisense intergenic RNA chromatin-modifier (HOTAIR)
and the metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) (75). HOTAIR reprograms neuroendocrine
differentiation of prostate cancer (76), and its overexpression
increases H3K27me and metastatic potential of breast cancer cells
(77). Evidence supports the hypothesis that both lncRNAs through
epigenetic modification activate downstream pathways Wnt/b-
catenin (78) and ERK/MAPK (79) promoting epithelial-
mesenchymal transition (EMT). In contrast, the upregulation of
both lncRNAs in primary GEP-NETs was associated with less
aggressive disease (80), as well as lncRNA, telomeric repeat-
containing RNA (TERRA), is necessary to maintain genome
integrity (81).
EPIGENETIC MODIFICATIONS ASSESSED
IN LIQUID BIOPSIES AS PROGNOSTIC
MARKERS

Unlike traditional tissue biopsies, liquid biopsies are faster, less
invasive, have the potential to reflect all metastatic sites (i.e. tumor
heterogeneity), and can indicate therapeutic response or progression
through serial sampling. By considering the potential of genomic
analysis, liquid biopsies offer a facilitated means of detecting
Frontiers in Endocrinology | www.frontiersin.org 5
genomic alterations and can be easily repeated over time.
Moreover, cancer-specific circulating DNA (ctDNA) methylation
can be used to measure circulating tumor DNA, as well as reveal the
methylation patterns in the tumor (10).

In metastatic PNET patients, free circulating DNA carrying
oncogenic mutations or methylation have been identified by
mutation-specific droplet digital PCR (ddPCR) (82). In
particular in a prospective trial (“MGMT-NET”), MGMT
hypermethylation was also detectable in ctDNA instead of
tissue (83, 84).

The Phase II PAZONET study is evaluating the epigenome
modification in circulating tumor cells (CTCs), as potential
biomarkers of response to therapy. The same goal was also
assessed during SSA treatment in association with PRRT (85–
87). This novel approach indicates that epigenetic profiling can
identify serum biomarkers with prognostic potential (10).
EPIGENETIC TARGETED AGENTS AND
CLINICAL TRIALS

Several clinical studies reported disease control targeting the
somatostatin receptor (SSR), overexpressed in 70% of GEP-NETs,
supporting the efficacy of both the available SSA octreotide and
lanreotid) (88–90). To improve the efficacy and adverse metastatic
phenotype, several ongoing trials are evaluating other targets as an
inhibitor of angiogenesis, immunotherapy, or combinations of them
(Table 2 and Figure 1).

Epigenetics represents a very promising tool in cancer
treatment because it can be reverted and epigenetic drugs are
in use for the treatment of several cancer types (10, 91).

In vitro studies have already tested DNA methyltransferase
inhibitors (DNMTis) because of MEN1 loss increase DNA
hypermethylation (92). Promising results in PNET and small
intestine cell lines were obtained using inhibitors of DNA
methylases and HDAC to reduce cell viability and restoring
gene expression (93–97). Interestingly, decitabine increased the
expression of SSTR2 and the Ga-DOTATOC uptake also in
BON1 tumor-bearing mice, indicating a possible therapy
implication (98). However, decitabine has not yet been trialed
in humans mainly because this agent targeted the whole
methylated genome. Panobinostat, a histone deacetylase
inhibitor (HDACi), was used in a completed phase II trial for
the treatment of low-grade NENs. Patients showed a high stable
disease with the median progression-free survival (PFS) of 9.9
months, and the median overall survival was 47.3 months.
However, the low response rates, limitated further investigation
(99). Inhibitors of the Bromo and extra terminal domain (BET)
protein family, epigenetic readers of histone code, have also tested in
experimental models (100). Of particular interest is Rx-001 which
acts by blocking both DNMT and HDACs, activity. It showed to
induce global epigenetic changes in tumors favoring infiltration of T
cells, this histology was correlated with clinical benefit and sensitize
tumor microenvironment to chemotherapy (101).

Novel frontier in solid tumor treatment is evaluating a
combination of immunotherapy with epigenetic drugs, mainly
December 2020 | Volume 11 | Article 604341
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TABLE 2 | Clinical trials with drugs interfering with epigenetic pathways.

Hystology Drugs and targets Phase NIH Clinical
Trial

End points n.
Patients

Monotherapy
Solid tumor including
adenocarcinoma gastric cancer

Drug: MLN8237 target aurora
kinase

Phase I/II EudraCT: 2008-
006981-27 (2011

completed)

Safety, tolerability, and
efficacy

273

Advanced Neuroendocrine Cancer Drug: pazopanib target
antiangiogenesis

Phase II NCT00454363
(2007-2015)

Disease progression
laboratory biomarker

52

Low grade neuroendocrine tumor Drug: panabinostat target
HDACis

Phase II NCT00985946
(2010-2015)

Response to therapy 15

Gastro-enteropancreatic metastatic
Neuroendocrine Tumor

Drug: Famitinib target c-Kit,
VEGFR2, PDGFR, VEGFR3,
Flt1 and Flt3

Phase II NCT01994213
(2015-2019)

Efficacy and molecular
testing include evaluation
of DNA mutation, and
immunohistochemistry

53

First-line treatment in newly-diagnosed patients with
Advanced GI Neuroendocrine Tumors.

Drug everolimus, target: mTor Phase II
multicenter

NCT01648465
(2012-2019)

Efficacy as first line 25

Gastroenteropancreatic Neuroendocrine Tumor G3 Drug: Anlotinib target: tyrosin
kinase inhibitor VEGFR2,
PDGFR, VEGFR3, Flt1 and Flt3

Phase II NCT03457844
(2018-2019)

Clinical and molecular
data of disease
progression

60

A Safety and Tolerability Study of INCAGN02385 in Select
Advanced Malignancies

Biological: INCAGN02385 target
LAG3

Phase I NCT03538028
(2018-2020)

Safety 40

In Patients With Advanced Neuroendocrine Tumors After
Progression on Everolimus (CABINET)

Cabozantinib S-malate, target:
inhibtor tyrosine kinase
VEGFR2 RET MET AXL

Phase III
randomized

NCT03375320
(2017-2021)
(2018-2021)

Efficacy as first line 395

Treatment of Advanced Adult Solid Tumors including
gastric and neuroendocrine

Drug: VMD-928
Capsules target tyrosine
kinase

Phase I NCT03556228
(2018-2021)

Safety 54

Select Advanced Malignancies and
Neuroendocrine Tumor

Drug: INCAGN02390 target:
antagonize the TIM-3
pathway

Phase I NCT03652077
(2019-2021)

Safety 41

Refractory Solid Tumors, Esophageal Carcinoma Gastric
(The MATCH Screening Trial)

Drug: Crizotinib
Inhibitor of ALK and ROS1

Phase II NCT02465060
(2015-2022)

End-of-treatment biopsy
and collection of blood
samples for research
purposes

6,245

Study of CVM-1118 for Patients With Advanced
Neuroendocrine Tumors

Drug: CVM-1118 inhibitor of
vasculogenic mimicry

Phase II NCT03600233
(2018- 2022)

Efficacy 30

Unresectable Gastroenteropancreatic Neuroendocrine
Tumors (GEP NETs)

Drug: Abemaciclib, target:
CDK4/cdk6 inhibitors

Phase II NCT03891784
(2019-2024)

Disease progression 37

Patients With Grade 2 and Grade 3 Advanced GEP-NET
(NETTER-2)

Drug: Lutathera Drug: long-
acting octreotide target
receptor somatostatin

Phase III
Multi-center,
Randomized

NCT03972488
(2020-2026)

Efficacy of treatment 222

Observational Study Following Neuroendocrine tumor FT500 Cellular
Immunotherapy Allogeneic
natural killer (NK) cells

Phase I
observational

NCT04106167
(2019-2034)

Safety 76

Malignant Esophagogastric Neoplasm
MAGE-A4c¹°³²T for Multi-Tumor

Autologous genetically modified
MAGE-A4c¹°³²T cells in subjects
who have the appropriate HLA-
A2 tissue marker

Phase I NCT03132922
(2017-2035)

Safety 42

Gastric cancer Drugs: Atezolizumab target: PD-
L1 immune-checkpoint

Phase II EudraCT:2015-
000269-30

(2015-ongoing)

Tolerability and efficacy 725

Pancreatic neuroendocrine tumor Drug: sunitinib target: tyrosine
kinases

Phase II EudraCT:
2012-000425-45
(2012-ongoing)

Effects of morning vs
evening dosing on the
pharmacokinetics and
pharmacodynamics of
sunitinib

18

Combination therapy
Patients with unresectable, Neuroendocrine Tumor
Metastatic Liver Cancer

Drug: cyclophosphamid
chemotherapy
Drug: poly-ICLC immuno-
stimulatory agent
Radiation

Phase I/II NCT00553683
(2007-2014)

Safety and efficacy 50

Advanced Metastatic NETs (COOPERATE-1) Pasireotide target:
somatostatin receptor Drug:
Everolimus Targets: mTor

Phase I NCT01263353
(2010-2016)

Safety 36

(Continued)
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because some immunosuppressive cancer antigens are regulated
by acetylation of their genomic regulative element.

Some trials are testing a combination of agonists of TNF and
immunotherapy via checkpoint inhibition (NCT04198766) or
antibody with double specificities against PD-L1 and CTLA-4
(NCT03517488). However major interest gained depleting
tryptophan enzymes as indoleamine 2,3-dioxygenase and
tryptophan 2,3-dioxygenase (ICI). This because tryptophan is
able to induce immune suppression within the cancer
microenvironment. In tumor cells and nude mice have already
targeted tryptophan. The authors by specific inhibitors or by
preventing tryptophan promoter acetylation using histone
deacetylase inhibitors as BET reported the reduction of
Frontiers in Endocrinology | www.frontiersin.org 7
immunosuppressive protein expression (10, 102) suggesting a
novel therapeutic approach.

CONCLUSIONS AND THE WAY FORWARD

The development of high-throughput techniques and larger datasets
(i.e. The Cancer Genome Atlas) have accelerated research even in
the field of NENs. Some pioneer studies have used an integrative
approach in GEP-NETs (103). EWAS showed that these epigenome
profiles can distinguish subtypes with different clinical features
(Figure 2). The development of the NETest and liquid biopsy, as
well as organoids (104), can be used to predict response to therapy
and during the clinical follow-up, although not routinely used.
TABLE 2 | Continued

Hystology Drugs and targets Phase NIH Clinical
Trial

End points n.
Patients

Gastroenteropancreatic Neuroendocrine Tumors (PLANET) Drug: Somatuline Depot target
receptor somatostatin
Drug: Keytruda anti (PD-1)
immune-checkpoint

PhaseI/II NCT03043664
(2017-2020)

Clinical and molecular
data of disease
progression

22

Gastro-enteropancreatic Neuroendocrine Tumor
(REGOMUNE)

Drug: Regorafenib targeting
cKIT
Drug: Avelumab anti PD-L1
immune-checkpoint

PhaseI/II NCT03475953
(2018-2021)

Disease progression and
efficacy

362

Advanced Solid Tumors (DUET-2) Neuroendocrine Tumor Drug: XmAb20717 target:
bispecific antibody anti PD-L1/
CTLA-4

Phase I NCT03517488
(2018-2021)

Safety 154

Advanced Gastrointestinal Neuroendocrine Tumor G3
Type

Drug: Etoposide chemotherapy
Drug: Irinotecan target inhibitor
of topoisomerase I.

Phase II NCT03963193
(2019-2021)

Disease progression 100

Patients With Advanced Solid Tumors and
Neuroendocrine Tumor

Drug Pembrolizumab, target:
PD-1 immune-checkpoint
Drug: Sonidegib target:
Hedgehog signaling PD1
pathway

Phase I NCT04007744
(2019-2021)

Safety 78

Advanced or Metastatic Cancer (Consortium-IO)
Esophageal Cancer Neuroendocrine Tumor

Drug: Nivolumab optidivo
immune-checkpoint
Drug: Vancomycin targeting
VE800 activates CD8 cells

Pase I/II NCT04208958
(2019-2022)

Safety and clinical activity 111

Advanced Solid Tumors
And neuroendocrine tumor

Drug: FT500
Drug: Nivolumab
Drug: Pembrolizumab
Drug: Atezolizumab
Drug: Cyclophosphamide
Drug: Fludarabine

Phase I NCT03841110
(2019-2022)

immunotherapy tolerability 76

Advanced/Metastatic Solid Tumors Gastric Cancer
Neuroendocrine Tumor

Drug: SO-C101 target: super
agonist IL15; Drug:
pembrolizumab anti PD-1

Phase I NCT04234113
(2019-2022)

Safety 96

A Study to Evaluate the Safety and Pharmacokinetics of
OC-001 in Patients With Locally Advanced or Metastatic
Cancers including Neuroendocrine Tumor

Drug: OC-001 target: TNF,
Drug: pembrolizumab anti
PD-1

Phase I/II NCT04260802
(2020-2022)

Efficacy 80

Locally Advanced or Metastatic Solid Tumors including
gastric neuro endocrine

Drug: INBRX-106 - Hexavalent
OX40 agonist antibody TNF
Drug: Pembrolizumab anti PD-1

Phase I NCT04198766
(2019-2023)

Safety 150

Advanced or metastatic cervical cancer, endometrial
cancer, gastric cancer, hepatocellular carcinoma

Drug: INCAGN01876 inhbitor of
LAG3
Immune TherapiesPD-1/PD-L1
therapy

Phase I/II EudraCT 2016-
004989-25

(2017-ongoing)

Safety, Tolerability, and
Efficacy

Gastric Cancer (GC)
Pancreatic Cancer (PC)

Drugs: Nivolumab target PD-1
1 and Ipilimumab target: CTLA-4

Phase I/II EudraCT:
002844-10

(2013-ongoing)

Safety, Tolerability, and
Efficacy
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FIGURE 1 | A list of epigenetic agents useful in the therapy of NETs.
FIGURE 2 | Major epigenetic pathways involved in NETs. IGF1R, insulin growth factor 1 receptor; FGFR, fibroblast growth factor receptor; SCF, colony stimulation
factor; c-KIT, c-Kit proto-oncogene; PI3K, phosphatidylinositol 3-kinases; PTEN, Phosphatase and tensin homolog; PDK1/2, protein 3-phosphoinositide-dependent
protein kinase-1; TSC1/2, Tuberous sclerosis 1/2; RheB, Ras homolog enriched in brain; HIF, hypoxia factor; RheB, Ras homolog enriched in brain; VHL, Von
Hippel-Lindau; DEPDC5, DEP domain containing 5; NPRL3, neuropilin 3.
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Recently, it was proposed a bioresponsive drug-delivery depot for a
combination of epigenetic modulation and immune checkpoint
blockade (105). From the analysis of the clinical trials reported in
Table 1 and Table 2, it emerges that the evaluation of the epigenetic
pathway as a biomarker of response is of most interest in many
studies, involving different kinds of therapies, even in combination
(10). NCT03475953 and NCT03841110 ongoing trials are
evaluating the therapeutic potential of the combination of direct
drugs against tyrosine kinases and immune response pathways such
as PD-1/PD-L1 and the opportunity to select from patients’ blood
epigenetic biomarkers. The major challenge will now be to clinically
validate such epigenetic biomarkers, within clinical trials for
therapeutics in the new light of precision medicine, as well as
network medicine (104, 106–108).
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