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The pituitary gland controls many important physiological processes in vertebrates,
including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary
exhibits a high degree of plasticity. This plasticity permits changes in hormone production
and secretion necessary to meet the fluctuating demands over the life of an animal.
Pituitary plasticity is achieved at both cellular and population levels. At the cellular level,
hormone synthesis and release can be regulated via changes in cell composition to
modulate both sensitivity and response to different signals. At the cell population level, the
number of cells producing a given hormone can change due to proliferation, differentiation
of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play
an important role in the control of reproduction, have been intensively investigated during
the last decades and found to display plasticity. To ensure appropriate endocrine function,
gonadotropes rely on external and internal signals integrated at the brain level or by the
gonadotropes themselves. One important group of internal signals is the sex steroids,
produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to
exert complex effects on the teleost pituitary, with differential effects depending on the
species investigated, physiological status or sex of the animal, and dose or method of
administration. This review summarizes current knowledge of the effects of sex steroids
(androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary,
discriminating direct from indirect effects.

Keywords: estrogen, androgen, adenohypophysis, brain, gonads, plasticity, pituitary, steroids

INTRODUCTION

Teleostfishcomprise the largest vertebrate groupwithclose to30,000 species (1), includingwell established
model species such as zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes), which provide
valuable tools for basic research on vertebrate physiology (2, 3). In addition, numerous teleosts, such as
salmonids, seabreams, basses, tilapia, and other species with regional importance, have commercial and
ecological or societal value and are subjects of applied research related to aquaculture or conservation.

Compared to tetrapods, teleosts experienced anadditionalwhole genomeduplication, knownas the 3R
(4). Some teleosts, such as the salmonids, have also had a fourth duplication event (4R) (5). Therefore,
teleostfish canpotentiallypossess 2 to4 timesmoregenes thanother vertebrates, andalthoughmanyof the
duplicatedgeneshavebeen lost through teleost evolution, somehavebeenconservedanddevelopednewor
n.org December 2020 | Volume 11 | Article 6050681
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expanded functions. Fish reproductive physiology has been
extensively investigated over the last decades, due to the high
economic interest of controlling fish reproduction in aquaculture
species and for evolutionary aspects as the main regulatory
mechanisms are conserved among vertebrates.

In all vertebrates, the reproductive function is controlled
through the physiological connections of the brain - pituitary -
gonadal (BPG) axis, where the pituitary gonadotropes play a central
role (6, 7). Located in the anterior pituitary (adenohypophysis),
gonadotropesproduce and release into theblood circulation the two
gonadotropins (follicle-stimulating and luteinizing hormones, Fsh
and Lh, respectively) which stimulate gonadal gametogenesis and
steroidogenesis. Gonadotropins are heterodimeric proteins
consisting of an a-subunit, common to both Lh and Fsh, and a
unique b-subunit that confers the biological specificity (8).
Interestingly, contrary to mammals and birds, in teleosts, the two
gonadotropins are generally produced by discrete gonadotrope cell
types; Lh cells and Fsh cells (9, 10).

Located below the hypothalamus, the pituitary is composed of two
mainpartswithdifferentdevelopmentalorigins.Theneurohypophysis
(posterior pituitary) originates from a down-growth of the
diencephalon and contains projections from neuroendocrine cells
mainly located in the preoptic-hypothalamic region of the brain.
The anterior pituitary originates from the placodal ectoderm at the
anterior neural ridge which invaginates and subsequently separates
from the stomodeum, a thickening of the ectoderm that forms the
epithelium of the oral cavity (11). The anterior pituitary contains
several hormone producing cells, including the gonadotropes which
are localized to the proximal pars distalis (PPD).

Unlike in mammals where the different endocrine cell types
are mosaically distributed in the adult anterior pituitary, in
teleosts they are spatially discrete through the entire lifespan
(6, 11). However, in both mammals and teleosts, the anterior
pituitary shows high plasticity at both cellular and population
levels, allowing the anterior pituitary to meet the demands for
hormonal production as they change over the life cycle of an
animal (12). At the cellular level, cellular activity (hormone
production and release) can be modified by varying regulatory
ligand sensitivity through the presence and number of receptors,
or by altering rates of hormone synthesis and secretion, the latter
corresponding to the hormone release as defined by Jena (13)
(Figure 1A). At the population level, the number of cells of each
endocrine cell type can change (Figure 1B). This can be due to
proliferation of the endocrine cells (Figure 2A), differentiation
of progenitor cells (Figure 2B), phenotypic conversion
Abbreviations: 11- HA, 11b-hydroxyandrosterone; 11-KT, 11-ketotestosterone;
Acth, Adrenocorticotropin; Ar, Androgen receptor; BPG, Brain-pituitary-gonad;
D1, Type 1 dopamine receptors; D2, Type 2 dopamine receptors; DA, Dopamine;
DHT, 5a-dihydrotestosterone; E2, 17b-estradiol; EE2, 17a-ethinylestradiol; Esr,
Estrogen receptor; Fsh, Follicle-stimulating hormone; GDX, Gonadectomy; Gh,
Growth hormone; Gnrh, Gonadotropin-releasing hormone; Lh, Luteinizing
hormone; Msh, Melanocyte-stimulating hormone; MT, Methyltestosterone;
OVX, Ovariectomy; PI, Pars intermedia; POA, Preoptic area; Pomc, Pro-
opiomelanocortin; PPD, Proximal pars distalis; Prl, Prolactin; RPD, Rostral pars
distalis; Sl, Somatolactin; T, Testosterone; Th, Tyrosine hydroxylase;
Tsh, Thyrotropin.
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(transdifferentiation) of an endocrine cell into another cell type
(Figure 2C), or cell death (apoptosis) (Figure 2D).

Thepituitary endocrine cell populationwith thehighest capacity
for plasticity is likely the gonadotropes. Gonadotrope plasticity (cell
activity and cell number) is regulated by a myriad of brain factors
primarily released from the preoptic-hypothalamic region. The
main brain factors in this regard are gonadotropin-releasing
hormone (Gnrh), dopamine (DA), and Kiss in teleosts (Figure 3;
for review see (7, 14, 15)). Gnrh serves as the main stimulator of
gonadotropes (7, 16). The neuro-hypothalamic Kiss system also
plays an important stimulatory role (15). In contrast, DAappears to
be the main gonadotrope inhibitor (7, 17). Other neuroendocrine
factors regulating gonadotropes include Gnih, neuropeptide Y,
GABA (7), but these will not be discussed in this review.

In addition to signals from the brain, the plasticity of
gonadotropes is also modulated by negative and positive feedback
via endocrine signals from peripheral organs. Among these signals
are the sex steroids. Sex steroids are synthesized from cholesterol,
predominantly by the steroidogenic cells of the gonads, and
circulate at different levels in males and females (18). Two major
classes of sex steroids, androgens and estrogens, were classically
delineated as male- and female-specific hormones as they were
mainly synthesizedby the testes andovaries, respectively, and found
to promotemale and female secondary sex characteristics.We now
know that both androgens and estrogens are essential regulators in
both males and females.

Steroidogenesis primarily occurs in the gonads, in testicular Leydig
cells in males, and ovarian granulosa and theca cells in females (19).
However, granulosa cells are not strictly steroidogenic but process
steroidprecursors fromtheca cells. For instance, testosterone (T) from
theca cells is aromatized in granulosa cells to 17b-estradiol (E2), the
most prevalent and potent form of circulating estrogen in fish, a
process regulated throughmaturation-dependent levels of aromatase.
Aromatase is amember of the P450 cytochrome enzyme superfamily
andencodedby the cyp19a1gene,whichexists in two forms in teleosts:
cyp19a1a and cyp19a1b, the former expressed in the ovary and the
latter in the brain and pituitary of both sexes (20, 21).While T and the
even more potent , non-aromatizable , hormone 5a-
dihydrotestosterone (DHT) are the active androgens in mammals,
the non-aromatizable 11-ketotestosterone (11-KT) is the main active
androgen inmost teleosts (22, 23).However,DHT is also found in the
circulation in both male and female fathead minnow (Pimephales
promelas) (24, 25), and is the predominant steroid produced by
urohaze-goby (Glossogobius olivaceus) testis tissue in vitro (26).
Moreover, activity of 5-a reductase, which converts T to DHT, has
been detected in many tissues, including the brain and pituitary, in
several teleost species (25, 27), indicating that there may be a still
undescribed biological role of DHT in teleosts. Finally, there is a third
class of vertebrate sex steroids, the progestogens, which can be
converted through several steps to T, 11-KT and E2, cortisol, and
other steroids (18), but will not be further covered in this review.

Interestingly, in vertebrates, sex steroids can also be produced
in other tissues, including the central nervous system, either
via de novo synthesis from cholesterol or from other steroid
intermediates produced in the periphery, thus allowing the tissue
to autonomously utilize and modulate local steroid signaling (28,
December 2020 | Volume 11 | Article 605068
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29). In teleosts, expression of numerous enzymes, including
aromatase, involved in sex steroid biosynthesis has been
described in several brain areas (30, 31).

In target cells, sex steroids bind both nuclear and
transmembrane receptors driving complex signaling responses
(for reviews see (32–34)). In most vertebrates, genome
duplications have led to two cytoplasmic estrogen receptors (ESR;
ESR1 and ESR2), and one androgen receptor (AR). Teleost fish,
however, often possessmultiple paralogs of each receptor due to the
additional whole genome duplications that occurred before and
Frontiers in Endocrinology | www.frontiersin.org 3
within the teleost group (3R/4R), adding complexity to sex steroid
receptor signaling. Indeed, in most teleost species, while a single
Esr1 has been maintained, two Esr2 (Esr2a and Esr2b), and two Ar
(Ara and Arb) have been conserved (35, 36).

Considering the progress in the field made in recent years,
this review aims to summarize current knowledge regarding the
effects of androgens and estrogens on gonadotrope activity and
number in teleosts. Because these steroids can act on all levels of
the BPG axis, we also aim to delineate their indirect effects via the
brain from their direct effects on the gonadotropes.
A

B

FIGURE 1 | Schematic representation of the plasticity of the pituitary cells leading to a change in hormone production quantity. At the cellular level (A), the activity of
the endocrine cell (hormone synthesis and release) can be modulated through the regulation of the number of different receptors thus changing sensitivity of the
pituitary cells to inputs and/or by changing the hormone production rates. At the population level (B), the number of specific cell types can be modified changing the
proportion of the different endocrine cell types in the pituitary.
A B C D

FIGURE 2 | Schematic representation of the mechanisms allowing a change in the number of a specific endocrine cell type in the pituitary: proliferation (mitosis) of
endocrine cells themselves (A), proliferation of progenitor cells followed by their differentiation (B), transdifferentiation (phenotypic conversion) of other differentiated
cells (C), and cell apoptosis (D). Grey cells represent undifferentiated progenitor cells and colored cells represent differentiated cells.
December 2020 | Volume 11 | Article 605068
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SEX STEROIDS ARE MEDIATORS
OF GONADOTROPE PLASTICITY

Effects on Gonadotrope Activity
Effects on Sensitivity to Regulatory Signals
Sex steroids can alter gonadotrope activity by changing gonadotrope
cell sensitivity to regulatory signals, throughmodulation of the levels
of Gnrh or DA receptors. Although molecular mechanisms by
which steroids regulate Gnrh and DA receptors are well
documented in mammals, much less is known in fish.

In mammals, GnRH signaling occurs through two
paralogous receptors (37), whereas additional paralogs have
been identified in teleosts, with up to six receptors in Atlantic
salmon (38). In spite of this genomic difference, effects of sex
steroids on GnRH receptor expression has been found across
taxa. For example, E2 up-regulated pituitary GnRH-R
expression in several mammalian studies, including in cows
(39, 40), rats (41, 42), and ewes (43, 44), while T also up-
regulated pituitary GnRH-R in rats (45). In teleosts, the effects
of sex steroids on gnrhr expression have been investigated in
only a limited number of species which have yielded disparate
results. In the European sea bass (Dicentrarchus labrax), Gnrh
receptor transcript levels in gonadotropes strongly increased at
the time of spawning, when E2 is elevated (46), suggesting a
stimulatory effect of E2 as seen in mammals. Conversely, in
African catfish (Clarias gariepinus), castration increased
pituitary Gnrh receptor content (47). This effect was reversed
by treatment with androstenedione (AS), but not with non-
aromatizable 11b-hydroxyandrostenedione (11b-OHA4).
Finally, in goldfish (Carassius auratus), T-enhanced Lh-
Frontiers in Endocrinology | www.frontiersin.org 4
responsiveness to Gnrh was shown to be independent of
changes in pituitary Gnrh receptor affinity or number (48).

Interestingly, among teleost species studied, only one of the
multiple paralogs appears to be directly up-regulated by sex steroids
in each species. Furthermore, if we apply the nomenclature and
molecular phylogeny from (38) for gnrhr genes to the published
studies, we find that it is the same isoform across species. For
example, E2 treatment in female Nile tilapia (Oreochromis
niloticus), increased mRNA levels of both gnrhr2ba1 (gnrhr1,
according to the authors) and gnrhr2ba2 (gnrhr3) in vivo, but
only gnrhr2ba1 (gnrhr1) in vitro, suggesting E2 directly regulates
gnrhr2ba1 but indirectly regulates gnrhr2ba2 (49). Similarly, in the
male black porgy (Acanthopagrus schlegeli), E2 and T increased the
expression of gnrhr2ba1 (gnrhrI) (50, 51), but not gnrhr1cb
(gnrhrII) (50). Finally, in pituitary cultures from Atlantic cod
(Gadus morhua), E2 and T stimulated the expression of
gnrhr2ba1 (gnrhr2a) but not gnrhr1cb (gnrh1b) in mature and
post-spawning fish, and DHT increased expression of only
gnrhr2ba1 in post-spawning fish (52). While three species cannot
represent the entire diversity of teleosts, they suggest that this
receptor acquired a sensitivity to sex steroids in a common
ancestor and this has been conserved through evolution.

In mammals, it is well established that E2 modulates pituitary
expression of type 2 dopamine receptors (D2), as demonstrated
in rats (53–55). Regarding DA receptors, two DA receptor
families have been described in vertebrates: type 1 dopamine
receptors (D1) and D2. Similar to Gnrh-r, multiple paralogs
within each family are found in teleosts (56). In vitro experiments
have demonstrated that pituitary D2, but not D1, plays a role in
the dopaminergic inhibition of gonadotropin synthesis and
FIGURE 3 | Schema of the neuroendocrine control of reproduction in teleosts, presenting the brain-pituitary-gonad (BPG) axis and the role of sex steroids in the
retro-controls at the different levels.
December 2020 | Volume 11 | Article 605068
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secretion in several teleost species (17). D2 has been localized to
the PPD in many teleosts, and to Lh cells in rainbow trout
(Oncorhynchus mykiss) (57) and zebrafish (58). Sex steroid
regulation of pituitary D2 has been studied in few teleost
species, with divergent effects. In rainbow trout, D2 antagonist
decreased the stimulatory effect of Gnrh3 on Lh cells (59),
whereas in Nile tilapia, d2 mRNA levels increased in females
following E2 treatment, both in vivo and in vitro (49). In
European eel, neither E2 nor T affected pituitary d2 levels (60).

Effects on Hormone Synthesis and Secretion
Gonadectomy (GDX) experiments and in vivo or ex vivo steroid
treatments in a wide variety of species have demonstrated the
significant role of the gonadal feedback loop in regulating
gonadotropin synthesis and secretion in teleosts, with sex
steroids exerting both negative and positive effects (Table 1).

Clearly, the effects of sex steroids on Lh and Fsh synthesis depend
on developmental stage, reproductive status, sex, and even the
duration and dose of the experimental treatment. For instance, in
goldfish, lhb mRNA levels increased in juveniles, but not adults,
following T and E2 treatments (79, 82). Sex-specific effects have been
seen in European eel (Anguilla anguilla), where intraperitoneal E2
injections strongly increased pituitary Lh levels in immature eels of
bothsexes,whileTstrongly stimulatedpituitaryLh levelonly inmales
(75). Similar sex-specific effects were observed for fshb transcripts in
coho salmon (Oncorhynchus kisutch), where E2 was found to inhibit
fshb in males but not in females (74). Dose-specific responses were
reported in medaka, where high concentrations of E2 decreased lhb
mRNA levels (90, 91) while more physiological levels stimulated lhb
synthesis (9). Interestingly, in coho salmon, pituitary Fsh levels
increased following administration of the non-aromatizable
androgen 11-ketoandrostenedione (11-KA, a precursor of 11-KT),
whereas T suppressed pituitary Fsh in summer but stimulated it in
autumn (113), suggesting season-specific functions of T and an
important role of aromatase in mediating negative feedback.

Secretion of Lh and Fsh are also affected by sex steroids, with
differential effects depending on the species, sex, and/ormaturational
stage of the animal (Table 1). For instance, in goldfish, Lh releasewas
stimulatedbyT inmature females andbyE2 in early recrudescence in
males (80). Studies in rainbow trout reported that T increased Fsh
plasma levels in immature fish (103) but decreased in mature fish
(104–106). Opposite effects were found in mature male Atlantic
salmon (Salmo salar), in which T inhibited Fsh release in summer
during gonadal maturation, but stimulated Fsh release during the
autumn spawning period (68). Sex steroids can also influence
gonadotrope cell activity by modulating gonadotrope response to
Gnrh. For instance, in Atlantic croaker (Micropogonias undulates), a
study foundnoeffect ofE2onbasal plasmaLh levels but an inhibitory
effect on Gnrh-induced Lh release in mixed-sex adults (64). In
goldfish, E2 and T potentiated the Gnrh agonist (Gnrh-a) effect on
Lh secretion in vivo in a season-dependent manner (83)

Gonadotropin synthesis and release can be differentially
affected by sex steroids within the same organism, as shown
for example in rainbow trout where E2 stimulated Lh synthesis
but did not affect Lh release (93, 99, 101–103). Finally, Lh and
Fsh can be oppositely regulated within in the same species, both
at the secretion and expression levels. For instance, in
Frontiers in Endocrinology | www.frontiersin.org 5
previtellogenic female rainbow trout, E2 implants increased
plasma Lh level but decreased plasma Fsh (57), and in male
coho salmon, E2 increased pituitary mRNA levels of lhb but
decreased fshb (74).

Effects on Gonadotrope Cell Populations
In addition to changes in gonadotrope cell activity, plasticity also
results from changes in gonadotrope numbers and pituitary
reorganization (Figure 2). For example, in European sea bass,
while gonadotropes are only located in the PPD in immature fish,
they tend to also colonize the periphery of the pars intermedia (PI)
duringmaturation (46). Suchpopulation-levelplasticity canmake it
difficult to discern whether steroid-induced changes in hormone
mRNA or protein levels, detected by quantitative approaches such
as ELISA or qPCR on the whole tissue, are due to changes in cell
activity or cell number. Gonadotrope population changes in the
pituitary can be due to proliferation of gonadotropes (Figure 2A),
differentiation of progenitor cells, (Figure 2B) transdifferentiation
(Figure 2C), and cell death (Figure 2D). These mechanisms
underlie many changes in the rates of synthesis and release of Fsh
and Lh by the pituitary, and there is increasing evidence that the sex
steroids may play a role in these processes.

Proliferation
In teleosts, the pituitary grows throughout the lifespan. Evidence
that pituitary endocrine cells are mitotically active has been
illustrated at the electron microscope level in the mosquito fish
(Gambusia affinis) (114). More specifically, the number of
gonadotropes can change according to life stage or other factors,
such as social status. For example, Lh cell number increased in
juvenile male African catfish as spermatogenesis progressed (61,
115), and in bothmale and femalemedaka, the numbers of both Lh
and Fsh cells increased between juvenile and adult stages (91, 116).
In Nile tilapia, Fsh cell numbers were higher in dominant than
subordinate males (117).

Furthermore, some studies demonstrate that gonadotrope
proliferation can be controlled by sex steroids. In medaka, for
instance, gonadotrope proliferation following steroid treatment
was documented using double staining with proliferation markers
Pcna and BrdU (91, 116). Exposure to T or E2, but not 11-KT,
stimulated Lh and Fsh cell proliferation in bothmales and females,
suggesting a positive effect of E2 on gonadotrope cell proliferation.
In contrast, in zebrafish larvae, the number of Fsh cells was
significantly lower in E2-treated fish than in controls (118),
suggesting that E2 inhibits Fsh cell proliferation during early
development in zebrafish. An earlier study in juvenile male
African catfish showed that the number of Lh gonadotropes
with numerous Lh-containing granules increased following T
treatment (61). However, the authors did not detect differences
in pituitary cell proliferation between androgen-treated and
control fish and therefore speculated that androgens might
activate quiescent gonadotropes. Whether these divergent results
are due to species or stage differences remains to be investigated.

Differentiation of Progenitor Cells
Differentiation of progenitor cells may also increase gonadotrope
cell numbers, but the evidence of a role of steroids in this process
December 2020 | Volume 11 | Article 605068
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TABLE 1 | Effects of gonadectomy or sex steroid treatments in vivo or ex vivo in different teleost species.

Secretion Reference

Lh Fsh

(61)

(not E2, E1, DHT or (62)

(63)

(64)

E2 on basal Lh level
2 ↓ Gnrh-induced

(65)

(66)

Summer: GDX ↑
T and 11-KA ↓

(67)

GDX ↓ 11-KA ↑
Summer: T ↓
Autumn: T ↑

(68)

(51)

(69)

(70)

(71)

(72)

(73)

T and E2 ↓ (74)

(75)

(76)

(77)

(75)

(78)

(79)

T or 11-KT) (80)
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Species Stages/sex Pituitary synthesis

Lh Fsh

African catfish
(Clarias gariepinus)

immature M GDX ↓ Lh T ↑ Lh (not 11-KT)

mature M GDX ↓ Lh
E2 estrone T and AS, ↑ Lh (not DHT or 11b-
OHA4)

GDX ↑; T and AS ↓
11b-OHA4)

GDX ↓ lhb 11-KT ↑ lhb

Atlantic croaker
(Micropogonias
undulates)

maturing mix M/F E2 ↑ lhb E2 ↓ fshb

Late maturing/mature mix M/F No effect of E2 or GDX on lhb GDX ↑ fshb
E2 ↓ fshb

No effect of GDX o
GDX ↑, and T and
stimulation

M E2 ↑ (not T, DHT)

immature M and F T ↑ Lh

Atlantic salmon
(Salmo salar)

maturing M T and 11-KA ↑ Lh Summer: GDX ↑ Fsh T and 11-
KA ↓ Fsh

mature M GDX ↓ Lh
T and 11-KA ↑ Lh

GDX ↓ Fsh 11-KA ↑ Fsh
Summer: T ↓ Fsh
Autumn: T ↑ Fsh

GDX ↓
T ↑ (not 11-KA)

Black porgy
(Acanthopagrus
schlegelii)

immature M E2 ↑ lhb E2 ↑ fshb

2 years old M E2 ↑ (not T, 11-KT

mature M E2 ↑ lhb E2 ↑ (not T, 11-KT

M (spawning season) E2 ↑ Lh (not T) E2 ↑ (not T)

protandric transition E2 ↑

M and F E2 ↑ (not T, 11-KT

Coho salmon
(Oncorhynchus
kisutch)

M and F T and E2 ↑ lhb and Lh E2 ↓ fshb in M (not in F)
No effect of E2 or T on Fsh

European eel
(Anguilla anguilla)

silver (immature) F E2 ↑ Lh (not T) no effect of E2 or T

T and E2 ↑ lhb

E2 ↑ lhb (not T or DHT) no effect of E2, T, or DHT on fshb

silver M T and E2 ↑ Lh

Goldfish
(Carassius auratus)

immature mixed sex T and 11-HA for 12 or 24h ↓ while 48,72 and
96h ↑ lhb

E2 and T ↑ lhb (not 11-KT) E2, T and 11-KT ↓ fshb

early recrudescent M and F 11-KT ↓ lhb
E2, and T in F, ↑ lhb

E2,T and 11-KT ↓ fshb E2 ↑ in M only (not
r
E

)

)

)
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TABLE 1 | Continued

Secretion Reference

Fsh

1-KT) (80)

(79)

(81)

(82)

(83)

(78)

(84)

(85)

(86)

(87)

(88)

(89)

(9)

(90)

(91)

No effect of E2 (49)

(92)

(21)

(93)

↓ (94)

(Continued)
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Species Stages/sex Pituitary synthesis

Lh Fsh Lh

mature M and F E2 ↑ lhb in M only (not T or 11-KT) No effects of T, E2, or 11-KT on
fshb

T ↑ in F only (not E2 or 1

early recrudescent and mature
F

no effect of GDX, T, E2, or 11-KT on lhb GDX ↑ fshb
E2, T, and 11-KT ↓ fshb

mature F E2 ↓

no effect of GDX, T, or E2 on Lh GDX ↑ T and E2 ↓

no effect of E2 or T

mature mixed sex T and 11-HA ↑ lhb

mature F + M (in vivo and ex-
vivo)

E2 ↑ lhb and Lh E2 ↑ fshb

Hybrid striped bass female (mid-vitellogenesis) no effect of GDX on Lh
GDX ↑ lhb E2 ↓ lhb and Lh

GDX ↑ fshb
E2 ↓ fshb

Indian catfish
(Heteropneustes
fossilis)

F (preparatory phase) GDX ↓ lhb E2 ↑ lhb GDX ↑ fshb E2 ↓ fshb

F (resting phase) no effect of GDX or E2 on lhb GDX ↑ fshb E2 ↓ fshb

mature F GDX ↑

Japanese eel
(Anguilla japonica)

silver E2 ↑ Lh E2 ↑

Masu salmon
(Oncorhynchus
masou)

yearling and 2 years old no effect of GDX on Lh
MT ↑ Lh

GDX ↑

Medaka
(Oryzias latipes)

mature F E2 and 11KT ↑ lhb E2 and 11KT ↓ fshb

mature F and M E2 ↓ lhb in F
no effect of E2 on lhb in M

mature M and F E2 ↓ lhb

Nile tilapia
(Oreochromis
niloticus)

F (early vitellogenesis) E2 ↓ lhb E2 ↓ fshb E2 ↓

Orange‐spotted
grouper
(Epinephelus coioides)

mature F no effect of GDX or E2 on lhb GDX ↑ fshb E2 ↓ fshb

Ricefield eel
(Monopterus albus)

in vitro pituitary fragments
from F

E2, T and 11-KT ↑ lhb no effect of E2, T, or 11-KT on
fshb

Rainbow trout
(Oncorhynchus
mykiss)

F (early vitellogenesis) E2 ↑ Lh no effect of E2

mature M (spermiation) GDX ↑ E2, T, and 11-KT

mature M (early
spermatogenesis)

GDX ↑ E2 and T ↓

mature M (resting phase) GDX and T ↑
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TABLE 1 | Continued

Secretion Reference

Lh Fsh

of GDX, T, or E2 (94)

induced stimulation (66, 95,
96)

f E2
(97)

f GDX or E2

↓

(98)

f MT or E2 (99)

(100)

of E2 (101)

2) (102)

) T ↑ (but not E2) (103)

of GDX or E2 GDX ↑ E2 ↓ (104)

of E2 E2 ↓

T (and E2) ↓ (105)

E2 ↓ Fsh (57)

of GDX or E2 GDX ↑ E2 ↓ (106)

2 or 11-KT) (107)

of E2, T or 11-KT

(108, 109)

f E2, T or DHT (110)

(111)

f T (112)

ne; Others* include estriol, MT, testosterone propionate [11-oxygenated
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Species Stages/sex Pituitary synthesis

Lh Fsh

mature M (late
spermatogenesis)

No effect

immature M and F T ↑ lhb and Lh T ↑ Gnrh

mature F (late vitellogenesis) GDX ↑
no effect

mature F (post ovulatory) no effect

mature F (germinal vesicle
migration)

GDX ↑ E2

Immature M and F T only in F, and E1, E2, and others* ↑ Lh

organ culture from immature F MT and E2 ↑ Lh no effect

immature M T ↑

immature F E2 ↑ Lh No effect

triploid (immature) F T and E2 ↑ Lh T ↑ (not E

immature yearlings T and E2 ↑ Lh T ↑ Fsh E2 ↓ Fsh T↑ (not E

vitellogenic F No effect

immature F No effect

mature F

previtellogenic F E2 ↑

F No effect

Red sea bream
(Pagrus major)

immature M T ↓ lhb (not E2 or 11-KT) 11-KT and T ↓ fshb (not E2) T ↓ (not E

mature M 11-KT ↑ lhb (not E2 or T) No effect of E2, T, or 11-KT on
fshb

No effect

Sablefish
(Anoplopoma fimbria)

prepubertal F E2 and T ↑ lhb no effect of E2 or T on fshb

Sea bass
(Dicentrarchus labrax)

mature M and F E2 T or DHT ↑ Lh;
T ↑ lhb (not DHT or E2)

E2, T or DHT ↓ fshb no effect

mature F and M no effect of GDX or T on lhb (GDX ↑ fshb) T ↓ fshb

Striped bass
(Morone saxatilis)

immature F T ↑ Lh no effect

M, Males; F, Females; 11b-OHA4, 11b-Hydroxyandrostenedione; 11-HA, 11-hydroxyandrosterone; AS, androstenedione; E1, Estrone; 11-KA, 11-ketoandrostenedio
steroids, 11-KT, and 11-HA]; []: high concentrations are needed to provide significant differences.
-

o

o

o

2

o

o
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Fontaine et al. Sex Steroids on Gonadotrope Plasticity
is not conclusive. In mammals, Sox2-expressing cells were shown
to comprise a pool of pluripotent progenitor cells that proliferate
and differentiate to either replenish pituitary cell populations or
increase the absolute numbers of cells, including gonadotropes
(119–122). These multipotent progenitor cells have been found
in the pituitary cleft of mice (123–125) and rats (125, 126), lining
the intraglandular structure bordering the adenohypophysis and
neurohypophysis. While E2 treatment inhibited SOX2
expression in human embryonic stem cells in vitro (127), other
studies suggest that SOX2+ cell proliferation is stimulated by E2
treatment (128). This indicates that progenitor stem cell
proliferation, and perhaps differentiation, may be regulated by
sex steroids in mammals. In teleosts, however, multipotent sox2-
expressing cells have only been detected in the brain (129–132)
and retina (133). Pituitary sox2-immunoreactive cells have, to
our knowledge, only been identified in one teleost study, where
they were localized at the junction of the adenohypophysis and
neurohypophysis in medaka (91). However, evidence that these
cells are pluripotent and contribute to endocrine tissue renewal
in teleosts is lacking.

Another marker, S-100, has been widely used to identify
follicular stellate (FS) cells, which are non-endocrine cells
networked by gap junctions throughout the anterior pituitary
in mammals [for review, see (134, 135)]. FS cells are thought to
be progenitor cells and thus involved in pituitary cell renewal and
plasticity (136, 137). Interestingly, mammalian FS cells have been
found to be sex steroid sensitive. Indeed, in male rats, GDX
decreased the number of gap junctions, but T replacement
maintained their numbers (138, 139). Similar observations
were made in females where OVX reduced the gap junction
number while E2, and to a lesser extent T, partly restored it (140).
However, the role of sex steroids in FS cell proliferation or
differentiation remains unknown in mammals.

Pituitary non-secretory (agranular) cells have been described
in several teleost species, including the southern mouth-brooder
(Pseudocrenilabrus philander) (141), sailfin molly (Poecilia
latipinna) (142), ironfish (hybrid between the Funa (Carassius
carassius) and goldfish) (143), stickleback (Pungitius pungitius L)
(144), European eel (145), Mediterranean yellowtail (Seriola
dumerilii) (146), grey mullet (Mugil cephalus) (147), Arabian
toothcarp (Aphanius dispar) (148), and white seabream
(Diplodus sargus) (149). In Nile tilapia, FS cells were observed
to network via gap junctions (150). In the Japanese eel (Anguilla
japonica), it was demonstrated that aromatase-positive cells,
most likely corresponding to FS cells, express the proliferation
marker PCNA (151). Such cells are suspected to have the same
origin as the aromatase positive radial glial cells in the brain that
act as progenitors throughout life (152). These results suggest
that the proliferation of such cells could be sex steroid
dependent, but this remains to be systematically investigated.

Transdifferentiation
The third mechanism that remodels gonadotrope populations is
known as transdifferentiation, defined by (153–155) as the
change from one hormone producing cell type into another.
Transdifferentiation may allow the pituitary to appropriately
respond to certain physiological and pathological conditions
Frontiers in Endocrinology | www.frontiersin.org 9
(156). While experiments have generated evidence of the
phenomenon, the molecular mechanisms mediating such
transformations are still enigmatic.

In teleosts, a recent study inmedaka demonstrated that Fsh cells
commenced lhb production in vitro, indicating the capability of a
fully differentiated cell to transdifferentiate into another cell type
(116). However, transdifferentiation between other pituitary cell
types hasnot been reported in teleosts, and the role of sex steroids in
transdifferentiation has not been investigated to date.

In contrast, several examples of pituitary endocrine cell
transdifferentiation have been described in mammals. For instance, a
study in adult mice found that stem-somatotropes can populate the
pituitarywith both somatotropes and lactotropes (157, 158). Similarly,
studies in rats (159, 160) and humans (161) suggest that the
proportions of somatotropes, lactotropes and mammosomatotropes
(GH+/PRL+) in the adenohypophysis vary among non-pregnant,
pregnant and lactating females due to cell transdifferentiation. More
direct evidence of transdifferentiation of somatotropes into lactotropes
is provided by in vitro studies (162, 163). In mammalian species,
reversible interconversion has also been observed between
somatotropes and lactotropes (164), somatotropes and thyrotropes
(130, 153, 165–167), and somatotropes and gonadotropes (168).

While direct evidence for the role of sex steroids in cell
phenotypic interconversion is also limited in mammals, there is
some indirect evidence. In female dogs, estrogen deficiency due to
ovarian dysfunction leads to an increase in gonadotropes, attributed
in part to transdifferentiation (169). In rats, the production of Fshb
and Lhb by somatotropes was coincident with a dramatic increase in
Esrb expression (168), suggesting that estrogen may regulate
gonadotrope population remodeling via transdifferentiation.

Cell Death
Pituitary cell apoptosis is considered necessary to ensure the balance
between cell renewal and cell loss and permit optimal response to
physiological demands (170). Although experimental evidence of sex
steroids regulating endocrine pituitary cell apoptosis is lacking in
teleosts, there is ample evidence in mammals of both androgens and
estrogensmodulating apoptosis in suchcells, includinggonadotropes
(170, 171). For instance, in proestrus rats, E2 has been reported to
increase anterior pituitary cell apoptosis, predominately in
gonadotropes, both in vitro and in vivo (172, 173). Another study
in female rats reported that gonadotrope proliferation is lowest
during diestrus (when E2 is lowest) before rising gradually until the
estrus phase (174), suggesting that E2 may exert either anti-
proliferative or apoptotic action to maintain an appropriate
gonadotrope population in mammals. Whether apoptosis regulates
the number of endocrine cells in teleosts remains to be elucidated.

Conclusion
As shown above, it is nowwell established that sex steroids participate
in the regulation of gonadotrope plasticity. The effects mainly occur at
the cellular level bymodulating the sensitivity of the endocrine cells to
ligands through the regulation of the number of receptors, or by
regulating endocrine cell activity (hormone synthesis and release). It
also appears that in at least some species, increased gonadotropin
production can result fromgonadotrope cell divisionorprogenitor cell
differentiation. However, these and other population-level processes
December 2020 | Volume 11 | Article 605068
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remain poorly characterized in teleosts. Therefore, there is a need for
further studies to elucidate the underlying mechanisms regulating
gonadotrope cell number and the potential role of sex steroids.
SEX STEROIDSMEDIATE GONADOTROPE
PLASTICITY DIRECTLY AND VIA THE BRAIN

Because of the strong regulationof gonadotropes by the brain, it can
be difficult to distinguishwhether signalingmolecules act directly at
the pituitary, or instead modulate the gonadotrope regulatory
systems in the brain. For example, in ex vivo medaka brain and
pituitary preparations, Fsh cells exhibited a calcium response to
Gnrh stimulation (175), but in dissociated cell cultures Fsh cells did
not (176), suggesting an indirect effect of Gnrh on Fsh cells. For sex
Frontiers in Endocrinology | www.frontiersin.org 10
steroids, it is particulary complicated as sex steroids can
simultaneously act at all levels of the BPG axis, making it difficult
to determine whether the observed effects are directly on
gonadotropes, mediated through the brain or another pituitary
cell type, or both. Therefore, a combination of in vivo or ex vivo and
invitro techniques canhelpdiscriminatedirect fromindirect effects.
In addition, investigation of Esr and Ar expression in brain and
pituitary cells in vivo have identified some direct targets of sex
steroids and thus have helped to decipher the pathways used for the
regulation of gonadotrope plasticity, althoughmuchwork remains.

Brain Mediated Effects
ESRs, and to a lesser extent ARs, have been found to be widely
expressed in the brains of vertebrates (177, 178), including
teleosts (Table 2). While esrs and ars are expressed in many
TABLE 2 | Literature on the expression of androgen and estrogen receptors in the brain and the pituitary of teleosts.

Species
PITUITARY BRAIN

ARa ARb ESR1 ESR2a ESR2b ARa ARb ESR1 ESR2a ESR2b

African cichlid
(Astatotilapia burtoni)

(179, 180) (180) (179, 180) (180)

Atlantic croaker (Micropogonias undulates) (181, 182)

Eelpout
(Zoarces viviparus)

(183)

European eel
(Anguilla anguilla)

(184)

Fathead minnow (Pimephales promelas) (185) (185)

Goldfish
(Carassius auratus)

(186) (??) (187–189) (186) (??) (190) (??) (189, 191)

Medaka
(Oryzias latipes)

(192) (91) (193)

(194, 195)

Midshipman
(Porichthys notatus)

(196) GENE LOST (197) (196, 198)

Orange‐spotted grouper
(Epinephelus coioides)

(92)

Oyster toadfish
(Opsanus tau)

(199) (??) (199) (??)

Paradise fish
(Macropodus opercularis)

(200) (??) (200) (??)

Pejerrey
(Odontesthes bonariensis)

(201)

Platyfish
(Xiphophorus maculatus)

(202) (??)

Rainbow trout
(Oncorhynchus mykiss)

(203–205) (205) (204, 206–210)

Ricefield eel
(Monopterus albus)

(211) (212) (212)

Sablefish
(Anoplopoma fimbria)

(213) (213) (213) (195, 214)

Sea bass
(Dicentrarchus labrax)

(215) (216) (215) (216)

(217)

Sea bream
(Sparus auratus)

(218)

Zebrafish
(Danio rerio)

(219) GENE LOST (220) (219)
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different brain areas, numerous teleost studies have
demonstrated that both esrs and ars are highly expressed in
the classical neuroendocrine regions of the brain such as the
POA and the mediobasal and caudal hypothalamus (221). The
high expression of esrs and ars in the brain provides histological
support for the sex steroid feedback control on gonadotropin
synthesis/secretion and gonadotrope proliferation which may be
relayed through regulators from the brain, notably Gnrh, DA,
and kisspeptins. Therefore, any change in neuronal activity
(synthesis or secretion) or cell number (neurogenesis or
neurodegeneration) in the populations producing such factors
might affect gonadotrope activity.

Gnrh System
The Gnrh system is the main stimulator of gonadotrope cell
activity. Gnrh exerts its effects through three Gnrh paralogs,
classified according to lineage: Gnrh1, Gnrh2, and Gnrh3 (222,
223). While both Gnrh receptors and Gnrh3 or Gnrh2 fibers
have been observed in the retina and the pineal gland
respectively, hypophysiotropic Gnrh1, or Gnrh3 in those
teleost species lacking Gnrh1, serves as the main stimulator of
gonadotropes by projecting in close proximity to gonadotrope
cells in the pituitary [for review, see (15)].

Gnrh is regulated by sex steroids in both mammals [for
review, see (224) and (225)] and fishes. In teleosts, sex steroids
can stimulate or inhibit the activity of Gnrh neurons, thus
indirectly regulate gonadotrope function, as shown in Table 3
and previously discussed in (240). The effects of sex steroids seem
to depend on the specific Gnrh cell population and the
maturation stage of the fish. For instance, in yearling masu
salmon (Oncorhynchus masou), castration in under-yearling
precocious males increased gnrh3 mRNA levels in the ventral
telencephalon but not in the POA, suggesting that the Gnrh3 cell
populations are differentially regulated by gonadal steroids (89).
In medaka, E2 significantly suppressed gnrh expression in
embryos (233) but not in adults (90), suggesting that the effect
might be stage-specific in some species. Interestingly, in the
spotted scat (Scatophagus argus), E2 inhibited gnrh1 expression
in a dose-dependent manner and this effect was abolished by a
broad spectrum Esr antagonist or an Esr1-specific antagonist,
but not by an Esr2 antagonist (238), which suggests that Esr1
mediates the inhibitory effect of E2 in this species.

In mammals the limited expression of Esrs in Gnrh neurons
indicates that steroids do not exert significant feedback directly
to these neurons (for review, see 149 and 150). Similarly, esrs
were not found in Gnrh neurons in the rainbow trout (241).
However, a few studies have reported the presence of Esrs and
Ars in teleost Gnrh neurons, suggesting the possibility of a direct
sex steroid feedback. The era paralog was found to be expressed
in Gnrh3 neurons in medaka (195) and in Gnrh1, 2, and 3
neurons in Nile tilapia (242), while both ara and arb were found
in Gnrh1 neurons in the cichlid Astatotilapia burtoni (179).
Thus, it is possible that sex steroids might regulate Gnrh activity
and proliferation directly in teleosts, although as described below
there is more evidence of indirect pathways via effects on Gnrh
regulatory factors (e.g., kisspeptin and dopamine), as seen
in mammals.
Frontiers in Endocrinology | www.frontiersin.org 11
Kiss System
Kisspeptin (Kiss), a member of the (RF)-amide peptide family, has
been recognized as an important regulator of reproduction in
vertebrates. In mammals, Kiss neurons in the POA and the
mediobasal hypothalamus are believed to stimulate the synthesis
and secretion of Gnrh and mediate feedback by sex steroids (243–
245). However, in teleosts, a study in striped bass showed that Kiss
regulates gonadotropes in a Gnrh-independent manner (246).
Recently, a study in zebrafish reported that Kiss directly
stimulates lhb and fshb expression in pituitary in vitro culture,
therefore suggesting that Kissmore directly regulates gonadotropes
in teleosts than in mammals [(247) and reviewed in (15)].

While Kiss expression is stimulated by E2 in rodents (248, 249),
the existence of kiss paralogs (kiss1 and kiss2) in teleosts (250, 251)
substantially increases the complexity of E2 regulation of kiss genes
in these species (Table 3). Furthermore, which of the paralogs plays
a role in the regulation of the BPG axis and steroid feedback may
vary by species. For instance, in female medaka, kiss2 expression in
POA does not vary with reproductive state or after OVX (193).
However, kiss1 cell number was higher in reproductive fish
compared to that in non-reproductive fish, and decreased
significantly after OVX, which suggests sex steroids may exert
positive feedback on kiss1 in this species. In contrast, in the
orange-spotted grouper (Epinephelus coioides), the expression
of kiss2, but not kiss1, significantly increased in OVX females,
which was reversed with E2 treatment (92). However, in situ
hybridization showed that both kiss1 and kiss2 neurons
express esr1, esr2a, and esr2b, indicating that E2 may potentially
regulate both kiss1 and kiss2 in this species. Esrs have also been
described in kisspeptin neurons in other teleost species: era in
medaka (193) andEuropean seabass (217), and esr1, esr2a and esr2b
in goldfish (191, 252), suggesting that Kiss neurons may be directly
regulated by estrogens in teleosts as in mammals.

Interestingly, androgens also modulate kiss expression with
different effects depending on the species, sex, or reproductive stage
(Table 3). For instance, a study in female European seabass reported
that during mid-vitellogenesis, but not during early recrudescence,
both GDX and T treatment after GDX significantly lowered kiss1
expression, but that kiss2 expression decreased only after T treatment
in GDX animals (237). In the orange-spotted grouper, during MT-
induced sex reversal from female to male, hypothalamic
kiss2 transcript levels were significantly lower 1 week after
methyltestosterone (MT) implantation in females (234). Levels
remained low in the 2nd and 3rd weeks, but increased significantly
in the 4th week, compared to controls. Interestingly, a second MT
implant at the3rdweek significantly enhancedkiss2 expression.These
results suggest thatMTmay stimulatekiss2 inmales but suppress it in
females in this species.

Dopaminergic System
Dopamine (DA), a catecholamine, is also known to modulate the
levels of Gnrh through D2 type DA receptors (253), which
subsequently regulate the activity and proliferation of gonadotropes
as well as gonadotropin synthesis (17, 254). In teleosts, neurons that
produce the tyrosine hydroxylase (Th) enzyme (the rate-limiting
enzyme in catecholamine biosynthesis) and project to the pituitary
have been localized in the POA, in close proximity of Gnrh neurons,
December 2020 | Volume 11 | Article 605068

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fontaine et al. Sex Steroids on Gonadotrope Plasticity
in several species including goldfish (255), rainbow trout (206),
European eel (256), zebrafish (257), and the cichlidA. burtoni (253).

Several studies have demonstrated the effects of estrogens and
androgens on th expression or DA levels in teleosts (Table 3). The
effects of sex steroids on the dopaminergic system seem to also
depend on the maturation state. For instance, in the Asian catfish
(Heteropneustes fossilis),OVXorE2 replacement in4-weekOVXfish
Frontiers in Endocrinology | www.frontiersin.org 12
did not significantly affect the DA system during the resting phase,
but in the pre-spawning phase,OVXsignificantly decreasedwhile E2
replacement increased DA levels (226). However, due to the limited
number of studies and species investigated, it remains unknown
whether the sex steroid regulationofDA is sex- or species-dependent.

Nevertheless, there is evidence that esrs are expressed in
DA neurons in the POA of rainbow trout brain (206) which
TABLE 3 | Effects of sex steroids on the brain and the main neuroendocrine factors involved the regulation of gonadotrope function: Gonadotropin-releasing hormone
(Gnrh), Kiss and Dopamine (DA).

Species Stage Gnrh Kiss DA

Black porgy
(Acanthopagrus schlegelii)

immature M E2, no effects on Gnrh1 (51)

Indian Catfish
(Heteropneustes fossilis)

pre-spawning F but not in resting
phase

E2 ↑ DA (226)

Asian catfish
(Clarias Batrachus)

juvenile M and F EE2 ↑ th and DA; MT ↓
th and DA (227)

European eel
(Anguilla anguilla)

F silver eels E2 ↑ IRGnrh (228)
E2 ↑ Gnrh1; T and Androstenedione ↓
Gnrh2 (229)

prepubertal F T and DHT (not E2) ↑
th (230)

Goldfish
(Carassius auratus)

adult F E2 ↑ Kiss2 (191)

sexually regressed and recrudescent
F

T and E2 ↑ pituitary DA
turnover in sexually
regressed fish but only
T in recrudescent fish
(231)

Masu salmon
(Oncorhynchus masou)

yearling M MT ↑ Gnrh3 (232)

yearling F MT, no effects on Gnrh3 (232)

immature F MT ↑ Gnrh3 (89)

Medaka
(Oryzias latipes)

embryos E2 ↓ Gnrh expression (233)

adult M and F E2, no effects (90)

adult F E2 ↑ Kiss1 but not Kiss2 (193)

Orange‐spotted grouper
(Epinephelus coioides)

adult F E2 ↓ kiss2 but not kiss1 (92)

MT-induced M MT ↑ kiss2 (234)

immature F E2 and T ↓ Gnrh (235) MT ↓ kiss2 (234)

Rainbow trout
(Oncorhynchus mykiss)

immature triploid F E2 and T ↑ Gnrh3 (102)

immature fish E2, no effect on Gnrh1 or Gnrh2 (236)

immature M T ↑ Gnrh (100)

vitellogenic F E2 ↑ Th (106)

recrudescent F E2 ↑ DA and DA
metabolites (93)

Sea bass
(Dicentrarchus labrax)

vitellogenic F E2 ↓ Gnrh1 (111) E2, no effects on Kiss1 or Kiss2
(111)

mid-vitellogenic F but not in early
recrudescence

T, unclear effects on Kiss1 and
Kiss2 (237)

recrudescent M T, no effects on Gnrh1 (111) T ↓ Kiss2 (111)

Spotted scat
(Scatophagus argus)

adult F E2 ↓ Gnrh1 (238)

Zebrafish
(Danio rerio)

immature fish E2 ↑ Kiss1 and Kiss2 (239)
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suggests a direct role of estrogens on the DA system. However, it is
difficult to knowwhether theobserved effects ofDAongonadotropes
result from a direct action of DA or if they are indirectly mediated
through theGnrh system, asGnrhneurons are also controlledbyDA.

Apoptosis and Proliferation
Sex steroids have been shown to play important roles regulating
certain neuronal cell populations in the brain throughneurogenesis
(29) and neurodegeneration (258) in vertebrates. Published
research on the role of sex steroids on cell survival and apoptosis
in the teleost brain is limited toa single study inadultmale zebrafish,
which found that cell survival was slightly reduced in several brain
areas after E2 treatment (132).

There is more evidence of the effects of sex steroids on cell
proliferation in the teleost brain. For instance, in adult male
zebrafish, E2 treatment inhibited cell proliferation in several brain
areas,whereas an aromatase inhibitor treatment tended to stimulate
cell proliferation, although the effect was not significant in all
regions studied (133). However, the same authors reported that
fish treated with a high affinity Esr antagonist had higher numbers
of proliferative cells in several brain regions, suggesting that E2
inhibits, rather than stimulates, neuronal cell proliferation in this
species. An anti-proliferative effect of E2 was also seen in adult
female zebrafish, where the number of proliferating cells labelled
with BrdU decreased in several neurogenic brain regions, including
the POA (214). However, opposite effects were observed in juvenile
black porgy treated with E2, where levels of brain aromatase and
numbers of proliferative cells increased (259). A significant
reduction in brain cell proliferation was observed after treatment
with an aromatase inhibitor, while castration did not affect the
number of brain cells. This suggests that T itself may inhibit
neurogenesis, but local E2 synthesis from aromatization of T may
promote neurogenesis in this species.

Changes in specific neuroendocrine cell populations in teleosts
due to sex steroids was first investigated in sex‐reversing fishes. In
bluehead wrasse (Thalassoma bifasciatum), the number of Gnrh
neurons in the POAwas higher inmales at the terminal phase of sex
transformation than females or initial-phase males (260, 261).
Additionally, the number of Gnrh neurons was shown to increase
in females and initial-phasemales, but not in terminal phasemales,
following 11-KT treatment, demonstrating a role of sex steroids on
Gnrh neuron number (260, 261). However, whether this increase
was due to cell proliferation or recruitment was not investigated. In
Mozambique tilapia, Gnrh3 neurons are more numerous in males,
and treatment with 11-KT or methyltestosterone (MT, a potent
synthetic androgen), but not E2, increased the number of Gnrh3
neurons in females to a level similar to that in males, and modified
the fish behavior (262). Recently, the same group showed that this
phenomenon was due to proliferation by identifying newly formed
Gnrh3 neurons after androgen treatment (263). In larval zebrafish,
treatment with the synthetic estrogen 17a-ethinylestradiol (EE2)
increased the numbers of forebrain Gnrh3 cells (264). The authors
suggest that EE2 accelerated Gnrh3 neuron development as 5 dpf
larvae treatedwithEE2hadsimilarnumbersofGnrh3neurons as20
dpf controlfish. Similar effects of sex steroidswere seen in immature
African catfish, where testosterone increased the number of Gnrh1
neurons (265).
Frontiers in Endocrinology | www.frontiersin.org 13
There is also some evidence that sex steroidsmay also affect kiss
neuron number in teleosts. Inmedaka, the number of kiss1 neurons
was observed to decrease after OVX in some brain regions, but was
maintained with E2 treatment (193). However, it is not known
whether this was due to a decrease of kiss1 expression in some
neurons after OVX or if E2 treatment had a positive effect on cell
survival.Finally, informationontheeffects of sex steroidsonDAcell
number is to date still lacking.

Direct Effects on Gonadotropes
Because no direct effects of sex steroids have been demonstrated
on gonadotrope proliferation, transdifferentiation or cell death in
vitro, this section will address the question of gonadotrope
plasticity by considering changes in their activity only.

The Pituitary: A Target of Sex Steroids
As in other vertebrates, Esrs have been identified in the pituitary
of many teleost species while Ars have been described in only a
few species (Table 2).

Interestingly, inmale wild sablefish (Anoplopoma fimbria), pituitary
esr1 and aramRNA levels were positively correlated with those of lhb,
whereas esr2a and esr2b were correlated with fshb transcripts during
gametogenesis (213).However,whether the alterations in esr or ar levels
occurred ingonadotropes remains tobedetermined. Indeed, the specific
cell typeswithin thepituitary that express these receptors haveonly been
investigatedinafewteleostspecies. InEuropeanseabass,highexpression
of esr1, esr2a, and esr2bmRNAs was localized to the PPD and PI, and
double label in situ hybridization demonstrated that both Fsh and Lh
cells express esr1, esr2a, and esr2b transcripts (215, 216). In ricefield eel
(Monopterus albus), esr1, but not esr2, was expressed in Lh cells (211,
212). Inmedaka,Lhcells expressedall three isoforms,withesr1andesr2b
most predominately expressed (91). In contrast, nothing is known
regarding the presence of ars in teleost gonadotropes.

In summary, the localization of both Esrs andArs in the pituitary,
and the presence of Esr in gonadotropes support a direct effect of sex
steroids on gonadotropes. Yet, further studies are needed to identify
which pituitary cell types express which receptors and thereby
provide stronger evidence of direct signaling, and to determine
whether expression patterns vary among species and with stage of
sexual maturity.

Aromatization of Androgens in the Pituitary:
A Production Site of Estrogens
Using aromatase inhibitors (51, 211, 266) or a combination of
aromatizable and non-aromatizable androgens (62, 79, 91, 116),
several studies have clearly demonstrated that aromatase, by
converting T into E2, plays a role in the cellular responses to T
observed in teleosts.

Aromatase has been identified in the pituitary of all major
vertebrate groups from fishes to mammals. However, experiments
in goldfish, toadfish (Opsanus tau), and sculpin (Myoxocephalus
octadecimspinosus) showed that teleost pituitaries have aromatase
levels l00 –1000 times greater than those in mammals and other
vertebrates (27, 267, 268). Since then, aromatase expression or
activity hasbeendemonstrated in thepituitary ofmanyother teleost
species such as African catfish (269), Atlantic salmon (270),
Mozambique tilapia (Oreochromis mossambicus) (271), rainbow
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trout (210), channel catfish (Ictalurus punctatus), and zebrafish
(272), midshipman fish (Porichthys notatus) (196), Atlantic cod
(273), killifish (Fundulus heteroclitus) (274), black sea bass
(Centropristis striata) (275), a neotropical cichlid fish (Cichlasoma
dimerus) (276), sablefish (213), brown ghost knifefish [Apteronotus
leptorhynchus) (277)], and black porgy (51).

Interestingly, in pejerrey (Odontesthes bonariensis), aromatase
(cyp19a1b) expressing cells labeled by immunohistochemistry or in
situ hybridization were found close to blood vessels in the pituitary
(278). Moreover, aromatase has been located in pituitary cells in the
Japanese eel (152) and larval zebrafish (264), in Lh cells, but not Fsh
cells, in ricefieldeels (211), and inbothLhandFshcells inmedaka(91,
116). While no sex differences were detected in pituitary aromatase
mRNA levels or enzyme activity in the pejerrey (278) and the
Japanese eel (279), respectively, aromatase activity in European
seabass (280), and cyp19a1b expression in the yellow perch (281)
and a South American catfish (282), were higher in male pituitaries.
This might explain the differential sex responses of gonadotropes
observed following steroid treatment in some species. In larval
zebrafish, EE2 exposure did not affect cyp19a1b levels in the
pituitary, despite increasing levels in the forebrain (264).

Direct Effects on Hormone Synthesis and Release
In 1983, pituitary grafts (transplantation of pituitaries to another
tissue) in rainbow trout revealed positive effects of T on pituitary
and plasma Lh levels, indicating a stimulatory role of T on Lh
synthesis and release (283). Stimulatory effects of androgens and
estrogens have also been observed in studies using whole pituitary
or fragments in cultures from rainbow trout (99) and ricefield eel
(211). However, as paracrine signaling occurs between pituitary
cells in vertebrates (284), including in teleosts as shown for instance
in goldfish (285) and Grass carp (Ctenopharyngodon idella) (286),
and pituitary endocrine cells can be stimulated by neuroendocrine
factors despite the absence of cognate receptors, through cell-cell
communication (176), using whole pituitary or fragments could
mask potential direct effects from the steroids. Therefore, we argue
that dissociated cell culture is the only suitable technique to
investigate the direct effect of sex steroids (or other factors) on
gonadotropin synthesis and secretion.

Studiesusingdissociatedpituitarycell cultures fromseveral teleost
species have yielded convincing evidence for a direct role of sex
steroids in the regulation of gonadotropes, mostly by stimulating lhb
and fshb expression (Table 4). However, divergent effects of
treatment duration have reported in juvenile eel pituitary cells for
example, where no effects on lhb mRNA levels were observed after
24 h E2 treatment while a 72 h E2 treatment decreased it (288). In
African catfish, both T and E2 inhibited lhb transcription after 24 h
treatment but simulated lhb levels after 48 h treatment (287).

Interestingly, in the channel catfish, bothE2 andT enhanced the
expression of lhb, but the effect of T was abolished by an aromatase
inhibitor (266), indicating an important role of aromatase and E2.
This result is supported by other studies where T, but not non-
aromatizable androgens, gave a similar effect on gonadotropin gene
expression as did E2 treatment (77, 293). Several studies using
dissociated pituitary cell cultures have also demonstrated a direct
effect of sex steroids on Gnrh-induced Lh release (Table 4). For
Frontiers in Endocrinology | www.frontiersin.org 14
instance, E2 treatment increasedGnrh3-stimulated Lh release from
female rainbow trout pituitary cells (57, 295).

Again, sex steroid effects on gonadotropes were found to vary
with stage of sexualmaturity and sex. For example, T stimulated fshb
in cells from maturing Atlantic cod, had no effect in cells from
maturefish and decreased fshb frompost-spawningfish (52). In cells
frommasu salmon, the combination of Gnrh3 and E2 increased lhb
mRNA levels and decreased those of fshb in males, but had no effect
on lhb or fshb in females (297). These results indicate that E2 and
Gnrh3 signaling differentially modulate gonadotropin synthesis and
that effects might be sex-specific in this species.

Further evidence of the ability of sex steroids to directly modulate
gonadotropin transcription is provided by the identification of steroid
response elements (SRE) in gonadotropin promoters and by in vitro
reporter assays. SRE are short, palindromic nucleotide sequences in
target genes where steroid receptors bind to regulate transcription of
those genes. Full-site and half-site estrogen response elements (ERE)
have been identified upstreamof the lhb gene in chinook salmon (298,
299),butonlyhalf-siteEREshavebeenfoundinboth fshband lhbgenes
inNile tilapia [lhb (300); fshb (301)] and goldfish [lhb (80); fshb (302)],
and the fshb gene in chinook salmon (303) and sea bass (304). A half-
site androgen response element (ARE) was also been identified
upstream of fhb in sea bass (304). Using an in vitro reporter assay,
the ricefield eel lhbpromoterwas activated highly byE2, and to a lesser
extent by T and 11-KT, indicating the presence of functionally active
ERE and ARE in the lhb promoter. Conversely, neither E2 or
androgens activated the fshb promoter (211).

Conclusion
As shown above, it is clear that sex steroids act at both the brain and
gonadotrope levels.However, there is still a need to further decipher
direct from indirect effects of sex steroids. So far, theuse ofdispersed
cell cultures has been the only way to confirm a direct effect of sex
steroids on gonadotropes. However, precaution should be taken as
gonadotropes have been shown to change phenotype after
dissociation and seeding. Indeed, in a medaka study, Fsh cells
which were shown to not possess Gnrh receptors in vivo and to not
respond to Gnrh treatment in vitro 24 h after dissociation, did
respond to Gnrh after 3 days in culture (116), suggesting that they
begin to express Gnrh receptors during incubation. Therefore, the
direct effects of sex steroids in dissociated cell cultures should be
confirmed by the localization of sex steroid receptors in vivo in the
cells of interest.

A lot of work remains to identify the cell types that express esr
and ar, in both the brain and the pituitary which will help to
elucidate the regulatory pathway. While Gnrh, Kiss and DA are
the primary gonadotrope regulators, they are complemented by,
and themselves controlled by, other factors including sex steroids.
New techniques such as multicolor in situ hybridization and single
cell transcriptomics will accelerate such research.

Finally, most of the direct effects observed on gonadotrope
plasticity are about the activity (cell sensitivity and hormone
synthesis and release). No data exist on the direct effect of sex
steroids on the regulation of cell proliferation or cell death, which
are difficult to address in in vitro work. Therefore, new
approaches are needed to address these questions in the future.
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GENERAL CONCLUSION AND FUTURE
PERSPECTIVES

To conclude, any attempt to draw generalizations in teleosts, or to
propose hypotheses on evolutionarily conserved mechanisms or
ecological, developmental or sex-specific adaptations, is difficult due
toan insufficientbodyof evidence. Indeed, althoughmanystudieshave
beenperformedon several species, the information is often conflicting,
with differential effects of sex steroids among species, sexes,
developmental stages, and reproductive states. Because effects can
vary between males and females, or over the reproductive cycle
Frontiers in Endocrinology | www.frontiersin.org 15
within one species, it is evident that the signaling pathways can
change according to the unique molecular environment. It must be
recognized that teleost fish diverged over their 300 MY evolutionary
history, and there is enormous variability among its nearly 30,000
species, in termsofboth theenvironmentalparametersof theirhabitats
(salinity, light, temperature, etc.) and their reproductive strategies
(iteroparity vs. semelparity, daily spawning vs. seasonal spawning,
etc.).Thus, it isnot surprising tofinddiversityamongteleosts regarding
the roles of sex steroids in mediating gonadotrope plasticity and the
pathways bywhich they exert these effects. This high complexity of sex
steroid signalingnecessitates further research addressing themolecular
TABLE 4 | Direct effects of sex steroids demonstrated by in vitro studies using dissociated pituitary cells from teleosts.

Species Stages Synthesis Secretion References

Lh Fsh Lh

African catfish
(Clarias gariepinus)

mature M 24 h treatment E2 and T ↓ lhb
48 h treatment: T and E2 ↑ lhb (not
DHT)

(287)

Atlantic cod
(Gadus morhua)

maturing mix F/M No effect of T, DHT, or E2 on lhb T ↑ fshb (not E2 or DHT) (52)

mature mix F/M DHT ↑ lhb (not T or E2) E2 DHT ↑ fshb (not T)

Post-spawning mix F/M No effect of T, DHT, or E2 on lhb T ↓ fshb (not E2 or DHT)

Black porgy
(Acanthopagrus
schlegelii)

mature M no effects of E2, T, 11-KT on
basal levels
11-KT and E2 ↑ Gnrh-induce
stimulation

(69)

Channel catfish
(Ictalurus punctatus)

mature F E2 and T ↑ lhb (266)

European eel
(Anguilla anguilla)

silver F T, DHT and 3a-diol ↑ lhb and Lh
24 h treatment: no effect of E2 on
lhb or Lh
72 h treatment: E2 ↓ lhb

T, DHT and 3a-diol ↑ (not E2)

(288)

T ↑ lhb and Lh (not E2) (289)

T and DHT ↑ lhb (not E2) E2 ↑ fshb (not T or DHT) (77)

Goldfish
(Carassius auratus)

mature or sexually
regressed

no effect of T on lhb no effect of T on fshb (290)

immature T ↑ lhb no effect of T on fshb

Hybrid tilapia
(Oreochromis
niloticus ×
O. aureus)

immature M No effect of T on lhb T ↑ fshb (291)

Marine medaka mature mix M/F E2 ↑ lhb E2 ↑ fshb (292)

Masu salmon
(Oncorhynchus
masou)

F and M E2 and T ↑ lhb (not 11-KT) E2 and T ↑ (not 11-KT) (293)

E2 ↑ lhb and Lh no effect of E2 on fshb
or Fsh

(294)

Nile tilapia
(Oreochromis
niloticus)

Maturing F E2 ↑ lhb no effect of E2 on fshb (49)

Rainbow trout
(Oncorhynchus
mykiss)

immature T ↑ Lh T ↑ (283)

Adult F E2 ↑ Gnrh-induce stimulation (295)

Immature F E2 ↑ Gnrh-induce stimulation (57)

Ricefield eel
(Monopterus albus)

?? E2 ↑ lhb no effect of E2 on fshb (212)

Zebrafish
(Danio rerio)

mature mix F/M T and E2 ↑ lhb T and E2 ↑ fshb (296)
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mechanisms behind the observed responses. One mechanism
underlying such variation is likely the differences in steroid levels
across stages and between sexes, which has been extensively reviewed
[e.g. (18, 305–307)]. A second mechanism is likely due to variation in
thesteroidmodifyingenzymes(e.g.,aromatase) inthepituitary, leading
to local changes in levelsof specificsteroids.Athirdmechanismis likely
differences in the receptor subtypes and their numbers in target tissues,
which might be differentially regulated by environmental and
internal factors.

Fortunately, we have a wealth of powerful tools available to
investigate the role of gonadal sex steroids. For instance, GDX,
which is still used today in teleosts and adapted to new species of
interest (308), is a powerful technique when combinedwith steroid
replacement to investigate the role sex steroids play in tissue
plasticity. However, GDX does not remove all sex steroids, as
some can be produced by interrenal cells and adipose tissue (309),
as well as in the brain and pituitary as described above. Therefore,
future studies are needed to investigate the potential roles of the
extra-gonadal sources of sex steroids. Administration with
exogenous hormones is certainly an appropriate approach to
evaluate physiological effects, but the method of administration,
time and duration, and concentration can influence response. For
example, recent studies in medaka showed that E2 may be best
administered through feeding as it is convenient and effectively
mimics the diurnal E2 changes in this species, whereas fish exposed
to E2 in tank water exhibited blood E2 concentrations exceeding
those of environmental water, suggesting that E2 bioconcentrates
(310). In addition, as shown in the female ricefield eel for example
(211), when testing for effects of steroids in vivo, the use of a non-
aromatizable androgen such as 11-KT and an aromatase inhibitor
in addition to androgen and estrogen treatments will help to clearly
identify the roles of estrogens vs. androgens, which is still unclear.

Finally, because teleosts possess many paralogous sex steroid
receptors, it is important that future studies investigate the role of
each. Recently, transgenesis techniques such as TALEN and
CRISPR/Cas9 have provided new approaches for such
investigations. In medaka, for example, TALEN was used to
develop an Esr1 knockout (KO) fish (311). Using these animals,
the authors demonstrated the dispensable role of Esr1 for
development and reproduction in medaka. Using the CRISPR/
Cas9 technique, three mutant transgenic zebrafish lines have
been created for each of the esr present in the zebrafish genome,
as well as all possible double and triple knockouts of the three
esrs (312). The authors did not observe any reproductive
Frontiers in Endocrinology | www.frontiersin.org 16
dysfunction for the three single esr mutant fish lines, which
suggests functional redundancy among Esrs. However, double
and triple knockouts showed that esr2a and esr2b were essential
for reproduction in females and maintenance of the female sex
phenotype as the double mutant sex-change from female to male.
While these techniques show a great number of benefits, some
limitations still exist. Knocking out gene expression from the one
cell stage, as it is currently performed in most teleost
experiments, may activate compensatory mechanisms (312).
Also, as sex steroid receptors, aromatase, and other
steroidogenic enzymes are widely expressed in the brain,
pituitary and gonads, it is impossible to identify the precise
origin of the effects observed after a KO is made. However,
techniques allowing spatial and/or temporal control of the KO
have recently been established in fish (313). Such techniques
might be a promising tool for future investigations of the
molecular, cellular and physiological roles of specific sex
steroid receptors, and thus their roles in gonadotrope plasticity.

Thus, we are hopeful thatmore light will be shed on these topics
as theywill provide important information to better understand the
role of sex steroids and the pathway they use to regulate
gonadotrope plasticity.
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282. Silva de Assis HC, Navarro-Martıń L, Fernandes LSP, Cardoso CC, Pavoni
DP, Trudeau VL. Cloning, partial sequencing and expression analysis of the
neural form of P450 aromatase (cyp19a1b) in the South America catfish
Rhamdia quelen. Comp Biochem Physiol B Biochem Mol Biol (2018) 221-
222:11–7. doi: 10.1016/j.cbpb.2018.04.001

283. Gielen JT, Goos HJ. The brain-pituitary-gonadal axis in the rainbow trout,
Salmo gairdneri. II. Direct effect of gonadal steroids on the gonadotropic
cells. Cell Tissue Res (1983) 233(2):377–88. doi: 10.1007/BF00238304

284. Denef C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk.
J Neuroendocrinol (2008) 20(1):1–70. doi: 10.1111/j.1365-2826.2007.01616.x

285. Yuen CW, Ge W. Follistatin suppresses FSHb but increases LHb expression
in the goldfish - evidence for an activin-mediated autocrine/paracrine system
in fish pituitary. Gen Comp Endocrinol (2004) 135:108–15. doi: 10.1016/
j.ygcen.2003.08.012

286. Zhou H, Wang X, Ko WKW,Wong AOL. Evidence for a novel intrapituitary
autocrine/paracrine feedback loop regulating growth hormone synthesis and
secretion in grass carp pituitary cells by functional interactions between
gonadotrophs and somatotrophs. Endocrinology (2004) 145(12):5548–59.
doi: 10.1210/en.2004-0362

287. Rebers FE, Hassing GA, Zandbergen MA, Goos HJ, Schulz RW. Regulation
of steady-state luteinizing hormone messenger ribonucleic acid levels, de
novo synthesis, and release by sex steroids in primary pituitary cell cultures
of male African catfish, Clarias gariepinus. Biol Reprod (2000) 62(4):864–72.
doi: 10.1095/biolreprod62.4.864

288. Huang YS, Schmitz M, Le Belle N, Chang CF, Quérat B, Dufour S.
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