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Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both
teleosts and mammals, melatonin produced in the pineal gland at night is released into the
blood and cerebrospinal fluid, providing rhythmic information to the whole organism.
Melatonin acts via specific receptors, allowing the synchronization of daily and annual
physiological rhythms to environmental conditions. The pituitary gland, which produces
several hormones involved in a variety of physiological processes such as growth,
metabolism, stress and reproduction, is an important target of melatonin. Melatonin
modulates pituitary cellular activities, adjusting the synthesis and release of the different
pituitary hormones to the functional demands, which changes during the day, seasons
and life stages. It is, however, not always clear whether melatonin acts directly or indirectly
on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control
the pituitary hormone production and release, as well as downstream, on the tissues
targeted by the pituitary hormones, which provide positive and negative feedback to the
pituitary gland. In this review, we describe the known pathways through which melatonin
modulates anterior pituitary hormonal production, distinguishing indirect effects mediated
by brain centers from direct effects on the anterior pituitary. We also highlight similarities
and differences between teleosts and mammals, drawing attention to knowledge gaps,
and suggesting aims for future research.

Keywords: melatonin, adenohypophysis, photoperiod, melatonin receptors, seasonal reproduction, plasticity,
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INTRODUCTION

Our environment is constantly changing.While somevariations are
fast and unpredictable (e.g. meteorological phenomena), others,
such as solar cycles, moon phases, and seasons follow regular
patterns. Photoperiod, the alternation of light and darkness, is the
most reliable (noise-free, characterized bypredictable rhythmsover
a long period of time) signal, allowing animals to synchronize their
biological rhythms with both daily and seasonal changes.
Photoperiod is conveyed by two types of signal: a neural message
from photoreceptive structures to specific signaling centers in the
brain, and a hormonal message (1, 2).

Melatonin is the key hormone that conveys rhythmic
information from the environment, including photoperiod and
temperature, to the organism. Circulating blood levels ofmelatonin
exhibit a daily rhythm with higher levels during night than during
day, and a seasonal rhythm with longer duration of the high level
period during winter, as a consequence of the longer dark phase
(Figure 1). Additionally, variations in temperature fine-tune those
rhythms by modulating the amplitude of melatonin production.
Duration and amplitude of melatonin release therefore provide
clear information regarding time of the day and the year, and allow
the synchronization of metabolic, physiological, and behavioral
events, including growth, reproduction, and migration (3, 4).

Melatonin is synthesized fromtryptophan in four enzymatic steps
(4, 5). Tryptophan isfirst converted into 5-hydroxytryptophanby the
tryptophan hydroxylase, then converted into serotonin by the 5-
hydroxy-tryptophan decarboxylase. Afterwards, serotonin is
acetylated by the arylalkylamine N-acetyltransferase (AANAT),
producing N-acetylserotonin, which is finally converted into
melatonin by the hydroxyindole-O-methyl transferase. AANAT
has been reported to be the limiting enzyme driving the rhythm of
melatonin production (6). It has been hypothesized that the
functional shift of AANAT from amine detoxification to melatonin
synthesisplayedacritical role in theevolutionofmelatoninasanight-
time signal (7–9).

While the general mechanism of melatonin synthesis is
conserved across vertebrates, the number of genes encoding
Abbreviations: 1R to 4R, 1st to 4th whole genome duplication; AANAT,
Arylalkylamine N-acetyltransferase; AC, Adenylyl cyclase; ACTH, Adrenocorticotropic
hormone; ARC, Arcuate nucleus; ATP, Adenosine 5’-triphosphate; cAMP, Cyclic
adenosine 5’-monophosphate; cGMP, Cyclic guanosine monophosphate; CREB,
Calcium/cAMP response element binding protein; Cry1, Cryptochrome1; DIO2/3,
Deiodinase 2/3; ER, Endoplasmatic reticulum; EYA, Eyes absent homologue; FSH/
FSHB, Follicle-stimulating hormone/FSH beta subunit; GH, Growth hormone; GnIH,
Gonadotropin inhibiting hormone; GnRH, Gonadotropin releasing hormone; GnRHR,
Gonadotropin releasing hormone receptor; LP/SP, Long photoperiod/Short photoperiod;
LH/LHB, Luteinizing hormone/LH beta subunit; LL/DD, Constant light/Constant
darkness; ME, Median eminence; MSH, Melanocyte-stimulating hormone; MTNR,
Melatonin receptors; PD, Pars distalis; Per1, Period1; PI, Pars intermedia; PKA, Protein
kinase A; PKC, Protein kinase C; PLC, Phospholipase C; POA, Preoptic area; POMC,
Pro-opiomelanocortin; PRL, Prolactin; PT, Pars tuberalis; RFRP, RFamide related peptide;
SCN, Suprachiasmatic nucleus; SL, Somatolactin; T3, Triiodothyroxine; T4, Thyroxine;
TEF, Thyrotroph embryonic factor; TH, Thyroid hormone; TRH, Thyrotropin-releasing
hormone; TSH/TSHB, Thyroid stimulating hormone/TSH beta subunit.
Gene and protein nomenclature: The present review follows the ZFIN nomenclature
conventions for protein and gene names in mammals and fish (e.g. Mammalian
protein: LHB; Mammalian gene: Lhb; fish protein: Lhb; fish gene: lhb).
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the different enzymes differs between mammals and fish, as a
consequence of whole genome duplications that occurred in the
vertebrate lineage. Indeed, after the two successive whole genome
duplications (referred to as 1R and 2R) which occurred at the
base of the vertebrate lineage (10–12), a third one (3R) occurred
at the base of the teleost fish lineage (13), and a fourth one (4R)
occurred independently in both the cyprinid and salmonid
lineages (14, 15). Following a genome duplication, one of the
paralogous genes may be lost or duplicated paralogues may
acquire differential specialized functions over time, and an
increase in the number of paralogues, expands the hormone-
receptor combinations (16). In contrast to mammals, all
actinopterygians, including the teleosts, possess at least two
aanat genes (aanat1 and aanat2) (9, 17), resulting probably
from the whole genomic duplications that occurred in the
vertebrate lineage (18). Additionally, aanat1 and aanat2 have
also been duplicated during the 3R (18). While one of the aanat2
paralogues was lost early after the 3R, this was not the case for the
aanat1 paralogues and, to date, some fish possess two Aanat1
isoforms (aanat1a and aanat1b) or either one of them. While
aanat1 genes are mostly expressed in the retina, brain, and
peripheral tissues, aanat2 expression is specific to the pineal
gland (19, 20), the site of production of circulating melatonin in
both mammals (21) and teleosts (22, 23). Melatonin is then
released from the pineal gland into the blood and cerebrospinal
fluid to be transported to its target organs.

Melatonin acts through several different receptors (MTNR),
belonging to the G‐protein coupled receptor superfamily (24). Four
sub‐groups of Mtnr, arising from the 1R and 2R, have been
characterized in vertebrates: MTNR1A (Mel1a or MT1), MTNR1B
(Mel1b or MT2), MTNR1C (Mel1c or GPR50), and MTNR1D
(Mtnr1A-like or Mel1d) (25–28). In mammals, melatonin action is
mediated only through two MTNR paralogues, MTNR1A and
MTNR1B, since the Mtnr1d gene was lost in the mammalian
lineage and MTNR1C lost its ability to bind melatonin (28).
Teleosts may possess up to 7 Mtnr paralogues (excluding the
polyploid cyprinids), arising from the 3R and 4R (25, 28). MTNR
affects different intracellular signaling pathways, including cAMP/
PKA, viaGi proteins (MTNR1A andMTNR1B) (29, 30), PLC/PKC
via Gq‐proteins (MTNR1A and MTNR1C) (31) and cGMP via Gi/o

proteins (MTNR1B) (32, 33). In medaka (Oryzias latipes), all four
Mtnr subtypes are functional and decrease cAMP in response to
melatonin exposure (27). Interestingly, melatonin receptors in
Atlantic salmon (Salmo salar) increase cAMP when activated by
melatonin (25). The broad distribution of MTNR expression in the
central nervous system (including the pituitary) and peripheral
tissues suggests melatonin can have widespread effects (28, 34).

The pituitary is a key endocrine gland in all vertebrates, involved
in the regulation of many important physiological processes (35).
These include growth, puberty, seasonal sexual maturation,
metabolism, and homeostasis, which exhibit cycling components
over the day, the year and the life cycle. Located below the
hypothalamus, the pituitary is composed of two main parts with
different developmental origins (36): the anterior pituitary
(adenohypophysis) and the posterior pituitary (neurohypophysis)
(Figure2).Theneurohypophysisoriginates fromadown-growthof
the diencephalon and is mainly composed of nerve terminals from
January 2021 | Volume 11 | Article 605111
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neuroendocrine cells in the preoptic area (POA) and the
hypothalamus of the brain, which are considered today as two
distinct regions (37). The adenohypophysis originates from an up-
growth of the pharyngeal ectoderm and endoderm (38) and can
be histologically divided in the pars intermedia (PI), the pars
distalis (PD), and the pars tuberalis (PT), the latter present in
mammals but not in teleosts. The adenohypophysis hosts several
hormone-producing cell types: gonadotropes (producing the
gonadotropins: follicle-stimulating and luteinizing hormones,
FSH and LH), lactotropes (prolactin, PRL), somatotropes (growth
hormone, GH), thyrotropes (thyrotropin, TSH), corticotropes
(adrenocorticotropin, ACTH), and melanotropes (melanocyte-
stimulating hormone, MSH) (39). Teleosts also possess one
additional cell type, the somatolactotropes responsible for the
production of somatolactin (Sl) (40).

The activity of pituitary endocrine cells is constantly changing
over time, adjusting the hormonal production to changing
physiological needs. It is controlled by factors produced from
Frontiers in Endocrinology | www.frontiersin.org 3
signaling centers in the brain, mainly the POA and hypothalamus,
and from peripheral organs, which provide positive and negative
feedback to these centers and to the pituitary (41, 42). In mammals,
POA/hypothalamicneuronsproject to themedianeminence (ME)of
the hypothalamus, releasing their hormones into the hypophysial
portal systemwhere they are transported via the blood stream to the
pituitary endocrine cells (42). Teleosts, on the other hand, lack the
hypophysial portal system, and instead the POA/hypothalamic
neurons innervate the pituitary, releasing their neurohormones
directly at target cells or into pituitary blood vessels (41,
43). Pituitary hormonal production is regulated through
both modulation of the activity of individual cells, and
regional reorganizations of the anterior pituitary in terms of
structure or cell composition, as discussed previously for
gonadotropes (38, 44).

While pituitary plasticity is influenced by environmental
factors, the role that melatonin plays in translating fluctuations
of environmental conditions into pituitary hormonal production
FIGURE 2 | Schema of the pituitary in mammals and teleosts. The pituitary is composed of two main parts: the neurohypophysis (posterior pituitary) and the
adenohypophysis (anterior pituitary). The neurohypophysis is mainly composed of neuron terminals from neuroendocrine cells with cell soma located in the preoptic-
hypothalamic region of the brain. The adenohypophysis contains different hormones producing cell types and can be anatomically divided in pars distalis, pars
intermedia and, in mammals but not in teleosts, pars tuberalis.
FIGURE 1 | Schematic representation of daily and seasonal fluctuation in plasma melatonin levels.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ciani et al. Melatonin Effects on the Pituitary
is not always clear. In addition, the mechanisms of melatonin
action are complex, as both direct effects on pituitary endocrine
cells and indirect effects through neuro/hormonal signaling
centers combine to regulate pituitary activity. In this review, we
describe the known pathways through whichmelatonin modulates
anterior pituitary hormonal production, distinguishing between
indirect effects mediated by brain centers and direct effects on the
anterior pituitary. We also highlight similar and divergent features
between teleosts and mammals, and emphasize important
unsolved questions for future research.
BRAIN-MEDIATED EFFECTS OF
MELATONIN ON ANTERIOR PITUITARY
ENDOCRINE CELLS

Mammals
Endocrine pituitary cells are primarily controlled by brain
signaling centers, mainly the preoptic and hypothalamic area
(42) (Figure 3, Table 1), which integrate nervous and hormonal
signals of different origins. These brain regions are characterized
by the presence of numerous melatonin binding sites as shown in
rodents and ruminants (60–66). Although the suprachiasmatic
nucleus (SCN) of the hypothalamus drives the rhythmic
production of melatonin in mammals (67), the present review
will focus on known effects of melatonin on brain centers directly
regulating pituitary endocrine production, as discussed below.
Frontiers in Endocrinology | www.frontiersin.org 4
Gonadotropes
Gonadotropes are the most investigated pituitary cell type in
relation to melatonin, due to the high scientific and economic
interest around the seasonal control of reproduction. Indeed,
gonadotropes produce the two gonadotropins (FSH and LH),
key hormones in the control of reproduction, which are
heterodimeric glycoproteins composed of a common a-subunit
(GPHa, also shared with TSH) and a hormone-specific b subunit
(LHb or FSHb) conferring the specific biological activity (42).

GnRH
Mammalian gonadotropin-releasing hormone (GnRH1 or
mGnRH-I), a 10-amino acid neuropeptide produced from POA/
hypothalamic neurons, is the main regulator of gonadotropin
synthesis and secretion (42). Most mammals also possess a
second form (GnRH2 or cGnRH-II), expressed in the midbrain
and other organs, which is primarily involved in other functions
than regulating gonadotropin release. Vertebrates also possess two
major types of GnRH receptors (type I with the GnRHR1a and II
with the GnRHR2c) (68), however in many mammalian species,
GnRHR2c receptor is not functional (69).

Melatonin influences GnRH production and thus the
reproductive axis in seasonal breeders. Melatonin administration
and short photoperiod (SP) cause testicular regression in the male
summer breeder jerboa (Jaculus orientalis), a desert hibernating
rodent, by inhibiting GnRH release (47). In contrast, melatonin
administration in the ewe (Ovis aries, a winter breeder) increases the
pulsatile GnRH secretion from hypothalamus, and pituitary LH
FIGURE 3 | Schematic view of the putative pathways through which melatonin influence pituitary endocrine activity in mammals. Red continuous lines indicate cell
types directly targeted from melatonin. Dashed red lines indicate cells influenced by melatonin via yet unidentified interneurons, paracrine signals or MTNR. Note that
melatonin might act only on a few of the illustrated pathway, in different species (see text). Black dashed lines indicate all other interactions between brain and
pituitary. POA, preoptic area; PT, pars tuberalis; PD, pars distalis; T3, triiodothyronine; RFRP, RFamide-related peptide; KISS, kisspeptin; GnRH, gonadotropin-
releasing hormone; CRH, corticotropin-releasing hormone; TSH, thyroid-stimulating hormone; FSH, follicle-stimulating hormone; LH, luteinising hormone; ACTH,
adrenocorticotropic hormone; PRL, prolactin; GH, growth hormone.
January 2021 | Volume 11 | Article 605111
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secretion (45, 46).While suggesting a connection betweenmelatonin
level and GnRH production, these in vivo experiments do not reveal
whether melatonin acts directly on GnRH neurons, indirectly via
interneurons or through a combination of both. However, in vitro
experiments using the GT1-7 mouse hypothalamic GnRH cell line
reveal that GnRH neurons express MTNR1A (MT1) andMTNR1B
(MT2) (48) and demonstrate that melatonin inhibits both GnRH
mRNA expression and protein secretion (48, 70).

Melatonin action might be modulated in a sexually dimorphic
way in rodents as higher mRNA levels of Mtnr1a (MT1) are
detected in male than female rat (Rattus norvegicus) GnRH
neurons, while Mtnr1b (MT2) is not expressed in either sex (71).
Sexual dimorphism of the melatonin response in GnRHneurons is
supported by another in vitro study, where melatonin augmented
the membrane current induced by gamma-aminobutyric acid
(GABAA) in 70% and attenuated it in 18% of neurons from adult
males, while it augmented the current in only 25% and attenuated it
in 61% of the neurons from adult females (49). Nevertheless, the
physiological relevance of the direct actions ofmelatonin onGnRH
neuron activity in vivo remains controversial, as melatonin might
additionally act on upstream signals, such as KISS1, RFRP3 andT3,
as discussed below.

RFRP3 (GnIH)
RFamide relatedpeptide3 (RFRP3) is themammalian orthologueof
avianGnIH,whichwas originally identified inbirds as an inhibitory
factor of gonadotropin synthesis and release, by acting on both
GnRH neurons and gonadotropes. RFRP3 neurons are located in
the paraventricular nucleus of the hypothalamus (42). Interestingly,
the effects of RFRP3 on gonadotropin synthesis are deeply
influenced by sex and timing of administration in mammals. For
instance, in Syrianhamsters (Mesocricetus auratus), RFRP3 inhibits
gonadotropin secretion in ovariectomized females (72) while it
Frontiers in Endocrinology | www.frontiersin.org 5
stimulatesGnRHandgonadotropin secretion inmales (73). Inmale
Siberianhamster (Phodopus sungorus), RFRP3directly injected into
the third ventricle inhibits LH release when applied under LP, but
has excitatory effects under SP (57), suggesting that melatonin
might differentially influence the activity of RFRP3 neurons over
the seasons.

In summer breeders, such as Siberian and Syrian hamster, both
SP and melatonin injection reduces RFRP3 protein and mRNA
levels, as well as decrease RFRP3 fibre density and number of
projections toGnRHneurons (55–57). These studies also show that
pinealectomy abolishes the effects of photoperiod manipulation,
while subsequent melatonin exposure re-establishes them. While
sex steroids are known to induce positive or negative feedback on
hypothalamic signaling centers, the SP-induced reduction in
RFRP3 protein and mRNA levels observed in male hamsters is
not a consequenceof reducedcirculating steroid levels, sinceneither
castration nor testosterone implants alter RFRP3 synthesis. These
data therefore strongly suggest thatmelatonin is responsible for the
inhibition of RFRP3.

In winter breeders, such as sheep, SP decreases both RFRP3
mRNAand protein levels, andRFRP3neuronprojections toGnRH
neurons (74, 75). Similarly, in brushtail possum (Trichosurus
vulpecula) females, the number of RFRP3 neurons decreases
during winter (76). Interestingly, in the laboratory Wistar rat, a
non-photoperiodic breeder, no effect of photoperiod manipulation
was detected onRFRP3 neurons (56). These results suggest that the
photoperiodic control of melatonin on RFRP3 is conserved among
mammals, with inhibiting effects in both summer and winter
breeders, while the downstream effects of the RFRP3 system on
gonadotropin secretionmight diverge toadapt to long-dayor short-
day breeding strategies.

Whether melatonin acts directly on RFRP cells in mammals
requires further investigations as there is still a lack of evidence for
TABLE 1 | Summary of the known effects of melatonin POA/hypothalamic neurons controlling pituitary hormonal production in mammals.

Target Effect of
melatonin

Species Breeding
season/
Photoperiod

Description Reference

Mammals
GnRH Stimulates Sheep Winter/SP Melatonin administration increases GnRH secretion Bittman et al. (45)

Viguié et al. (46)
Inhibits Jerboa Summer/LP Short photoperiod and melatonin administration downregulate GnRH release El Qandil et al. (47)
Inhibits GT1-7 mouse GnRH

cell line
Melatonin reduces GnRH mRNA and protein levels in GT1-7 cell line Roy et al. (48)

Modulates Rat non-seasonal
breeder

Melatonin augments/reduces GABA-induced currents in GnRH neurons in a
sex dependent way

Sato et al. (49)

KISS Inhibits Syrian hamster Summer/LP Melatonin reduces KISS1 mRNA Revel et al. (50)
Ansel et al. (51)

Turkish hamster Summer/LP Melatonin reduces KISS1 mRNA Piekarski et al. (52)
Striped hamster Summer/LP Melatonin reduces KISS1 mRNA Li et al. (53)
Rat non-seasonal

breeder
Melatonin reduces KISS1 mRNA Oliveira et al. (54)

RFRP Inhibits Syrian hamster Summer/LP Melatonin (and SP) reduces RFRP-3 mRNA and protein Mason et al. (55)
Revel et al. (56)

Siberian hamster Summer/LP Melatonin (and SP) reduces RFRP-3 mRNA and protein Ubuka et al. (57)
Revel et al. (56)

Dopamine Stimulates Syrian hamster Summer/LP Melatonin administration stimulates tyrosine hydroxylase activity in males Alexiuk et al. (58)
Inhibits Sheep Winter/SP Melatonin implants inhibit tyrosine hydroxylase activity Viguié et al. (59)
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colocalizationwithMTNR,or studies clearlydemonstrating adirect
action of melatonin on RFRP3 neurons, as previously discussed by
Kriegsfeld and collaborators (77).

Kisspeptin
KISS neurons produce the neuropeptide kisspeptin (KISS) and
stimulate GnRH synthesis and secretion, thereby regulating
gonadotrope cell activity (78). Located in two discrete
hypothalamic nuclei, the arcuate nucleus (ARC) in all mammals
and the anteroventral periventricular area around the 3rd ventricle in
rodents or the POA in non-rodent mammals, the activity and
number of KISS neurons display a marked photoperiodic/seasonal
pattern, as shown below.

In the winter breeding sheep, SP upregulates both ARC KISS1
mRNA and protein, and increases the number of both ARC KISS
neurons and synaptic connections from KISS to GnRH neurons
(75). In contrast, melatonin inhibits the activity of KISS neurons in
summer breeders. For instance, using a combination of
photoperiod manipulation, pinealectomy and melatonin
administration Revel and colleagues (50) and Ansel and
colleagues (51) demonstrated that melatonin clearly reduces ARC
KISS1mRNAinSyrianhamsters, an effect furthermodulatedby the
negative steroid feedback. Similar inhibitory effects ofmelatonin on
KISS1mRNAwere detected in Turkish (Mesocricetus brandti) (52)
and striped (Cricetulus barabensis) (53) hamsters but also in the rat,
a non-seasonal breeder (54). Interestingly, in the Siberian hamster,
ARC KISS1 mRNA levels are lower under LP due to a robust
negative sex steroid feedback overriding themelatonin signal, since
castration in LP animals restores high KISS1 mRNA levels (79).
Therefore, the role of melatonin among different species, or
different reproductive stages, might be difficult to identify
considering the impact of steroid feedbacks on ARCKISS neurons.

Although a direct effect of melatonin on KISS1 mRNA levels
was detected in a hypothalamic cell line from rat (80), Mtnr
expression has not been found in sheep KISS neurons, neither
during the breeding nor during the non-breeding season (81).
These results suggest that the effects of melatonin on KISS
neurons could be mediated upstream.

Dopamine
The activity of the dopaminergic neurons located within the
POA/hypothalamic area, which are involved in the inhibition of
gonadotropin synthesis and release (82), also appears to be
regulated by melatonin. For instance, in the ewe, a winter
breeder, melatonin implants inhibit the activity of tyrosine
hydroxylase (the rate-limiting enzyme in the dopamine
synthesis pathway) in the median eminence, while stimulating
LH release (59). In contrast, in male Syrian hamsters, in which SP
elicits testicular regression, melatonin administration stimulates
tyrosine hydroxylase activity in the median eminence, increasing
dopamine synthesis and release (58).

Other Endocrine Cells in the Pars Distalis
Melatonin plays a role in the regulation of other pituitary
endocrine cell types in mammals by regulating their main
hypophysiotropic factors.

Corticotrope cells produce ACTH, a hormone involved in
various physiological processes including the stress response
Frontiers in Endocrinology | www.frontiersin.org 6
(promoting the release of cortisol from the adrenal gland) and
the control of numerous daily and seasonal physiological
rhythms (including sleep) (83). Corticotropes are mainly
regulated by corticotropin releasing hormone (CRH) neurons
located in the paraventricular nucleus. Melatonin exerts a stress-
protective effect in mammals (84, 85). Daily melatonin
administration reduces the ACTH secretory response to acute
and chronic stress in rat (86, 87). In humans (Homo sapiens),
oral melatonin administration in blind individuals normalizes
the temporal pattern of ACTH and cortisol plasma
concentrations during sleep, suppressing the pituitary-adrenal
activity during early sleep and activating it during late sleep (88).
Melatonin might modulate ACTH production by acting directly
on hypothalamic CRH neurons, which express the MTNR1A in
humans (89).

Lactotrope cells produce PRL, a peptide hormone involved in
reproduction (lactation), moulting, metabolism, and immune
responses. PRL secretion is stimulated by releasing factors from
the PT and inhibited by dopamine secreted by tubero-
infindibular dopaminergic neurons located in the dorsomedial
arcuate nucleus (90–92). Exogenous melatonin administration
and SP decrease the PRL secretion in ruminants. For instance,
oral melatonin administration inhibits PRL secretion in lactating
ewes (93). SP reduces PRL secretion in cows [Bos taurus (94)],
while melatonin oral administration reduces PRL release in both
prepubertal (95) and mature (96) cows. The pathway involved in
the melatonin-mediated PRL inhibition seems to be mediated
through a dopamine-independent mechanism, since melatonin
administration inhibits PRL release even in rams where the
hypothalamo-pituitary connection has been surgically
disrupted (97, 98) and melatonin implants reduce PRL
secretion without altering dopamine content in ewe (59).

Despite the involvement of both somatotropes and thyrotropes
in seasonal physiological activity, there is no clearly established role
for melatonin signaling to their POA/hypothalamic regulators.
Somatotrope cells produce GH, a peptide hormone involved in
numerous physiological processes including growth, metabolism
and cellular proliferation. The main hypothalamic regulators of
somatotropes are growth hormone releasing hormone (GHRH)
and somatostatin, which stimulates and inhibits GH production,
respectively (99). Thyrotrope cells produce TSH, a heterodimeric
glycoprotein hormone, composed of an a- (GPHa) and a b-
(TSHb) subunit, involved in different seasonal physiological
functions including reproduction and growth (100). Two distinct
populations of thyrotropes, with distinctmorphology and secretory
activity are located in the PT and PD (101–103). Thyrotropin-
releasing hormone (TRH) produced by hypothalamic neurons is
themain regulator ofPDTSHsynthesis (104).Bycontrast,TRHhas
no effect on PT thyrotrope activity (105), which is controlled by
other signals includingmelatonin, asdiscussed in section3belowon
direct effects of melatonin.

Teleosts
In teleosts, endocrine pituitary cells are also mainly controlled by
brain signaling centers in the preoptic and hypothalamic areas
(41), which are characterized by the presence of numerous
melatonin binding sites (106–108). The effects of melatonin on
January 2021 | Volume 11 | Article 605111
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these brain centers, and thus indirectly on pituitary activity, have
been studied mainly in the context of reproduction in teleosts,
such as in the salmon (109) and eel (110) where melatonin has
been shown to play an important role in puberty. Therefore, the
available knowledge and thus the discussion in the present
review, only concern gonadotropes (Figure 4, Table 2).

Gonadotropes
In contrast to mammals, the teleost gonadotropes mainly produce
Lh and Fsh in distinct cells, with only a small portion of
gonadotropes producing both hormones in some species (43).
However, like in mammals, pituitary gonadotropin synthesis and
release are regulated by POA/hypothalamic signaling centers,
including Gnrh, Gnih, Kiss, and dopamine neurons (41, 123, 124).

Gnrh
Fish possess up to three genes encodingGnrh (gnrh1, gnrh2, gnrh3)
(16, 41). In some teleost species,melatonin stimulates gonadotropin
production by upregulatingGnrh expression. For instance, in adult
female zebrafish (Danio rerio), melatonin exposure via immersion
increases themRNA levels of brain gnrh3 andpituitary lhb (111). In
a second studyonadult zebrafish females, brain gnrh3mRNA levels
were increased in both constant light (LL) and constant darkness
(DD) as compared to normal light-dark cycles (117). The
Frontiers in Endocrinology | www.frontiersin.org 7
inconsistent responses of gnrh highlight the importance of the
experimental conditions, and suggest the presence of different
regulatory mechanisms activated by melatonin exposure and
photoperiod manipulation, as mentioned in the introduction.

In other teleost species, melatonin inhibits gonadotropin
production by downregulating Gnrh expression. In Nile tilapia
(Oreochromis niloticus), whose development and reproduction are
suppressed under SP (125, 126), intraperitonealmelatonin injections
simultaneously reduce gnrh1 mRNA in the brain and both lhb and
fshbmRNA in the pituitary (112). Several studies were performed in
male sea bass (Dicentrarchus labrax). Both intraperitonealmelatonin
injections (114) and melatonin implants (115) downregulate brain
mRNA levels of the two hypophysiotropic forms of Gnrh, gnrh1 and
gnrh3. Remarkably, these genes show natural daily variations in
mRNA levels, with lower levels during the mid-dark phase, when
plasmamelatonin is highest (114). Melatonin implants also decrease
pituitary mRNA levels of Gnrh receptors (named gnrhr2ba1 and
gnrhr1cb, according to recent phylogeny, (68) but named gnrhr-II-1a
and gnrhr-II-2b, respectively, in the study), as well as fshb (115).
Interestingly, pituitary Gnrh1 protein content shows daily variation
with minimum levels during night time, under both natural
photoperiod and LP (127). While downregulating the Gnrh
system, melatonin implants also reduce plasma gonadotropins (Lh
and Fsh) and androgens (testosterone, T and 11-keto-testosterone,
FIGURE 4 | Schematic view of the putative pathways through which melatonin influence pituitary endocrine activity in teleosts. Red continuous lines indicate cell
types directly targeted from melatonin. Dashed red lines indicate cells influenced by melatonin via yet unidentified interneurons, paracrine signals or Mtnr Note that
melatonin might act only on a few of the illustrated pathway, in different species (see text). Black dashed lines indicate all other interactions between brain and
pituitary. POA, preoptic area; PD, pars distalis; Kiss, kisspeptin; Gnrh, gonadotropin-releasing hormone; Lh, luteinising hormone; Fsh, follicle-stimulating hormone;
Sl, somatolactin; Tsh, thyroid-stimulating hormone; PRL, prolactin; GH, growth hormone.
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11KT) levels, thus impairing sexual maturation (115). Servili and
collaborators (128) show that in sea bass, the non-hypophysiotropic
Gnrh2neurons send theirprojections to thepineal gland, anddirectly
stimulate melatonin secretion. Taken together, these results suggest
thatmelatonin inmale sea bass, downregulates the production of the
hypophysiotropic Gnrh forms (Gnrh1 and Gnrh3) and their release
in the pituitary. This, combinedwith the reduction ofGnrh receptors
in the pituitary, result in gonadotropin downregulation. The use of
different concentrations of exogenous melatonin can modulate its
effects on Gnrh and gonadotropin content. For example, in
underyearling masu salmon (Oncorhynchus masou), oral
administration of melatonin (50 µg/g feed) under LP increases Fsh
and T plasma content but has no effect on Lh (129), suggesting that
mimicking SP by melatonin administration stimulates testicular
development. However, a 10-fold higher dose (500 µg/g feed)
decreases pituitary Gnrh and Lh content together with plasma T
levels (113). In contrast, the Gnrh system does not respond to
melatonin in some teleost species such as European eel (Anguilla
anguilla)wheremelatonin implantshadnoeffectsonbraingnrh1and
gnrh2mRNA levels (116).

The specific pathways through which melatonin affects Gnrh
are largely unknown. In sea bass, the effects of melatonin on
Gnrh neuron activity are most likely mediated via interneurons
(114), since the distribution of melatonin receptors does not
match the distribution of gnrh1 and gnrh3 cells (106). In masu
salmon, melatonin binding sites were localized in the POA (113),
however no colocalization study was performed to investigate
their presence in Gnrh neurons.
Frontiers in Endocrinology | www.frontiersin.org 8
Gnih
Melatoninmodulates the activity ofGnihneurons by stimulating or
inhibiting Gnih expression in different species. In adult zebrafish
females, exogenousmelatonin treatment reduces gnihmRNA levels
in cultured whole brain, while DD decreases in vivo brain gnih and
increases both lhb and fshb mRNA in the pituitary (117). In
contrast, in Nile tilapia (mixed sex), brain gnih mRNA levels
increase during the night, in parallel with plasma melatonin levels
in mature fish (130). Additionally, intraperitoneal melatonin
injections increase gnih and mtnr1c mRNA in the brain and
simultaneously decrease lhb and fshbmRNA in the pituitary.

Kim and colleagues (130) suggest that, like in birds, melatonin
might act on Gnih neuron activity viaMtnr1c (131). Indeed, in the
cinnamon clownfish (Amphiprion melanopus), Gnih neurons
express Mtnr1c (named from the authors MT-R1) (132). However,
whether this is a species-specific case, or a general condition for all
teleosts, remains to be investigated.

Kiss
In teleosts, contrary to in mammals, Kiss neurons directly regulate
pituitary endocrine cells rather than acting through Gnrh neurons
(133). Teleosts possess two genes encoding kisspeptins (kiss1, kiss2)
(16, 134).Melatonin is also involved in the control ofkiss expression
in teleosts. In adult female zebrafish, melatonin exposure via
immersion increases mRNA transcript levels of both kiss1 and
kiss2 in the brain, and lhb in the pituitary (111).While kiss1doesnot
respond to photoperiod manipulations, kiss2 mRNA is induced
under LL when melatonin plasma levels are at their minimum
TABLE 2 | Summary of the known effects of melatonin POA/hypothalamic neurons controlling pituitary hormonal production in teleosts.

Target Effect of
melatonin

Species Spawning
season/
Photoperiod

Description Reference

Teleosts
Gnrh Stimulates Zebrafish Spring/LP

(Daily in
captivity)

Melatonin exposure via water upregulates brain gnrh3 expression (adult
females)

Carnevali et al. (111)

Inhibits Nile tilapia Spring/LP Melatonin injections downregulate brain gnrh1 expression Kim et al. (112)
Masu salmon Autumn/SP Oral melatonin administration (50 µg/g feed) decreases Gnrh release Amano et al. (113)
Sea bass Spring/LP Melatonin injections downregulate brain gnrh1 and gnrh3 expression Servili et al. (114)

Melatonin implants downregulate brain gnrh1 and gnrh3 and gnrhr-II-1a -2b Alvarado et al. (115)
None European eel Spring/LP Melatonin implants have no effects on gnrh expression Sébert et al. (116)

Gnih Stimulates Nile tilapia Spring/LP Melatonin injections upregulate brain gnih expression Kim et al. (112)
Inhibits Zebrafish Spring/LP

(Daily in
captivity)

Melatonin downregulates gnih expression in cultured hypothalamus Yumnamcha et al. (117)

Kiss Stimulates Zebrafish Spring/LP
(Daily in
captivity)

Melatonin exposure via water upregulates brain kiss1 and kiss2 expression
(adult females)

Carnevali et al. (111)

Inhibits Sea bass Spring/LP Melatonin implants downregulate brain kiss1 and kiss2 expression Alvarado et al. (115)
Dopamine Inhibits European eel Spring/LP Melatonin implants stimulate brain tyrosine hydroxylase activity Sébert et al. (116)

Carp Spring/LP Melatonin inhibits dopamine release in cultured hypothalamus Popek (118)
Melatonin injections inhibit brain dopamine release Popek et al. (119)

Asian catfish Spring/LP Melatonin inhibits hypothalamic tyrosine hydroxylase activity during preovulatory
phase in female

Chaube and Joy (120)

A higher dose of melatonin has no effect on tyrosine hydroxylase activity Senthilkumaran
and Joy (121)

Rainbow trout Autumn/SP Melatonin decreases hypothalamic-pituitary dopamine turnover Hernández-Rauda et al.
(122)
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(117). In contrast to in zebrafish, prolonged exposure to melatonin
via implants decreases brainmRNA levels of kiss1 and kiss2 inmale
sea bass (115). The heterogeneity of kiss response, as seen for gnrh,
highlight the influence of experimental conditions and suggest the
possible involvement of different pathways influenced by the
hormonal and nervous photoperiodic signal.

It is not known whether melatonin acts directly on kiss
neurons or operates via interneurons in teleosts. In sea bass,
Kiss1 and Kiss2 immunoreactive neurons were identified in the
lateral tuberal nucleus and parvocellular nucleus, respectively
(135), two locations that also express melatonin receptors (106).
However, a clear colocalization of the melatonin receptors in Kiss
neurons has not been demonstrated.

Dopamine
In several teleost species, dopaminergic neurons from the POA exert a
strongnegative control ongonadotropes, especially Lh-producing cells
(82). Melatonin, in turn, influences the activity of hypophysiotropic
dopaminergic neurons. In European eel melatonin implants stimulate
the dopaminergic system in the POA, increasing tyrosine hydroxylase
activity, the rate-limiting enzyme of dopamine synthesis (116). As a
consequence, this treatment downregulates both lhb and fshbmRNA
levels. In contrast to the eel, melatonin inhibits the dopaminergic
system in other fish species. For instance, in mature female carp
(Cyprinus carpio), melatonin decreases dopamine release, both in in
vitro cultured hypothalamus (118) and in vivo by direct injection into
the third cerebral ventricle (119). The in vivo inhibition of dopamine
release was registered during the spawning period in summer, but not
during sexual regression in winter, suggesting that the effect of
melatonin on the dopaminergic system might depend of the
maturation stage. Inhibiting effects of melatonin on the
dopaminergic systems were also observed in other species, including
the threespot wrasse (Halichoeres trimaculatus), where intraperitoneal
melatonin injections downregulate brain dopamine content (136), and
rainbow trout (Oncorhynchus mykiss), where melatonin decreases the
hypothalamic-pituitary dopamine turnover (122). In preovulatory
female catfish (Heteropneustes fossilis), melatonin injections for three
days inhibit tyrosine hydroxylase enzymatic activity in the
hypothalamus (120). However, in a previous study using the same
species, reproductive phase and melatonin injection dose, but
administrated over a longer period (20 days), failed to affect
hypothalamic dopamine turnover (121). This indicates that the
length of the treatment with melatonin might affect the response of
the dopaminergic system.

Melatonin binding and mtnr mRNA distribution studies in
rainbow trout (108) indicate that it is very unlikely that Mtnr is
present onhypophysiotropicdopaminergicneurons.Therefore, the
effects of melatonin might be mediated by interneurons in this
species. Studies in Atlantic salmon (137) goldfish (Carassius
auratus) (138) and Japanese catfish (Silurus asotus) (139), identify
melatonin binding sites in the POA, where hypophysiotropic
dopaminergic neurones are located (82); however, a clear
colocalization has not been demonstrated.

Summary
Melatonin affects pituitary hormonal production in both
mammals and teleosts by regulating upstream brain factors. As
Frontiers in Endocrinology | www.frontiersin.org 9
gonadotropes play a crucial role in the control of reproduction,
which often depends on environmental conditions, it is not
surprising that especially their response to indirect melatonin
signaling has been studied extensively.

In mammals, melatonin modulates gonadotropin expression
by acting on POA/hypothalamic signaling centers. It
downregulates KISS and GnRH production and stimulate
dopaminergic activity in summer breeders, while it upregulates
KISS and GnRH production and inhibits dopaminergic activity
in winter breeders. Interestingly, melatonin reduces GnIH
neuronal activity in both summer and winter breeders,
indicating downstream differences in the signaling cascade.

In teleost fish, melatonin affects these brain signaling hubs in a
more complex manner, both inhibiting and activating the
gonadotrope axis, depending on the species. In some species,
melatonin activates the gonadotrope axis by simultaneously
stimulating the production of Gnrh and Kiss, while inhibiting
Gnih; in others, melatonin exerts a negative action on
reproduction. Melatonin may downregulate dopamine
production resulting in increased gonadotropin synthesis, or it
can stimulate the dopaminergic system and inhibit gonadotropin
production. Nevertheless, in both teleosts and mammals, a clear
picture of the cell types directly targeted bymelatonin in the brain is
still scarce. In light of such opposing forces, it is urgent to identify
the specific cell types targeted by melatonin in both mammals and
teleosts, by determining which ones express MTNR. This is a
requirement before being able to fully elucidate the mechanisms
involved in the integration of environmental signals in the brain
neuroendocrine centers.
DIRECT EFFECTS OF MELATONIN ON
THE ANTERIOR PITUITARY

Mammals
In addition to the effects mediated by the brain, melatonin can act
directly on the pituitary gland in mammals (Figure 3, Table 3).

Melatonin Receptors in Mammalian Pituitary
The main target for melatonin within the mammalian pituitary is
thePT, as indicatedby the importantpresenceofmelatoninbinding
sites in allmammalian species investigated so far. Those include, for
instance, Siberian hamster (154, 155); Syrian hamster, (154–156);
rat, (154, 155, 157, 158); red deer (Cervus elaphus) (159); ferret
(Mustela putorius furo) (160), rhesus monkeys (Macaca mulatta)
(161) and human (89). MTNR1A (MT1) is the main form of
melatonin receptor present in the PT. Mtnr1a mRNA was
detected by in situ hybridization in the PT of sheep, Siberian
hamster and rat (154) and in primary PT cell cultures of sheep
(162).MTNR1Ahas also been detected in humanPT, via immuno-
staining (89). Identification of the specific cell types expressing
melatonin receptors is a key requisite to discriminate the direct
effects mediated by melatonin. Double labelling combining in situ
hybridization and immunohistochemistry shows that Mtnr1a is
expressed inmost, butnot all, thyrotrope cellswithin thePT,while it
is absent from the other endocrine cells types in the anterior
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pituitary in European hamster (Cricetus cricetus) (163) and rat
(157).This suggests that thyrotropesof thePTare themainpituitary
target of melatonin action in mammalian species.

Interestingly, the expression of Mtnr within the PT varies
across the year, in response to different neuroendocrine factors
(34), modulating the endocrine response to melatonin between
the different seasons. For instance, Mtnr expression increases
during the reproductive season, peaking under LP in summer
breeders or SP in winter breeders. Simulating winter season in
the summer breeder Syrian hamster, using artificial SP (164) or
melatonin injections (156, 165) induces a marked decrease in
MTNR density in the PT of Syrian hamster. Melatonin injections
decrease MTNR1A density in both Syrian and Siberian hamster
PT (156). Similar effects of SP were shown in European hamster
(163, 166) and hedgehog, Erinaceus europaeus (167). On the
contrary, in winter breeders such as the mink (Mustela vison),
the density of melatonin binding sites in the PT plummets in July
and peaked in October, in concomitance with reactivation of
sexual activity (168).

Melatonin and the pituitary also regulate daily physiological
rhythms. As a consequence, variations in the presence of MTNR
within the PT are not limited to annual cycles, but also occur
within the span of a single day. Mtnr1a mRNA levels vary during
the day in the PT of Siberian and Syrian hamster, peaking during
daytime and decreasing at night (156).

Finally, in the PD of foetal rat, Mtnr1a mRNA was also
identified by in situ hybridization before activation of the GnRH
system, but not in postnatal stages (169). Bae and colleagues
(170) demonstrate that Mtnr1a transcripts are present in the
mice aT3-1 gonadotrope cell line, but their expression is
downregulated after exposure to GnRH. The activation of the
GnRH system in postnatal stages might therefore be responsible
for the lack of MTNR in the adult PD reported in rat. Melatonin
binding sites were also detected in the PD of adult sheep (171,
Frontiers in Endocrinology | www.frontiersin.org 10
172), red deer (159) and ferret (160). A weak staining of
MTNR1A was detected in human PD by in situ hybridization
(89). To date, the identity of the cellular targets of melatonin
within the PD and their contribution to the hormonal regulation
of the gland remain largely unknown.

Effects of Melatonin on the Pars Tuberalis
As mentioned above, melatonin pituitary binding primarily takes
place in the PT. Through these cells, melatonin seems to regulate
the PD activity via at least two different routes, a retrograde route
from the PT to the brain (Figure 5) and an anterograde route
from the PT to the PD, as discussed below.

Retrograde Route
Studies in rodents demonstrate the inhibitory effects of melatonin
on PT-TSH synthesis (173) via MTNR1A (174). During the long
days in spring/summer, PT-TSH rises independently from TRH
stimulation (175) due to reduced circulatingmelatonin levels. In the
retrograde route (Figure 5), the expression of PT-TSH is rapidly
induced, after LP exposure, by the transcription factor EYA3,which
workswith the circadian transcription factor thyrotrophembryonic
factor (TEF) (176, 177).Melatonin acutely inhibitsEya3 expression,
but at the same time induces a peak ofEya3 12h later. This leads to a
strong morning peak of Eya3 (and subsequently TSH) during long
days. Although several other collaborating transcription factors are
involved in the precise circannual regulation of TSH secretion from
PT, EYA3 seems to be the one regulated by photoperiod
viamelatonin.

PT-TSH then reaches the brain where it binds to its receptors in
tanycytes, specialized ependymal cells within the mediobasal
hypothalamus, thus regulating the enzymatic activity of local
deiodinases (Dio2-Dio3) (173, 178). This controls local thyroid
hormone (TH) metabolism by converting thyroxine (T4) to the
bioactive triiodothyroxine (T3), serving as key regulator of
TABLE 3 | Summary of the known effects of melatonin on pituitary in vitro and ex vivo cultures in mammals.

Species Type of preparation Effects of melatonin Reference

Mammals
Sheep PT cell culture Acute: inhibits forskolin-induced secretion of tuberalin Morgan et al. (140)

PT cell culture Acute: inhibits forskolin-induced cAMP Hazlerigg et al. (141)
PT cell culture Prolonged: increase basal and forskolin-induced cAMP Hazlerigg et al. (141)
PT cell culture Reduces Mtnr1a mRNA Barret et al. (142)
PT explants Reduces Mtnr1a mRNA Fustin et al. (143)
PT explants and cell culture Reduces Egr1 expression Fustin et al. (143)

Rat (neonatal) PD organ cultures Inhibits LH and FSH release Martin and Klein (144)
Martin and Sattler (145)

PD cell culture Inhibits GnRH-induced Ca2+ signal and LH secretion Vaněček and Klein (146)
PD cell culture Inhibits GnRH-induced cFOS Sumova et al. (147)
Organ cultures No effect on TRH-induced TSH/PRL or SRIF-induced inhibition of GH Martin and Klein (144)

Martin and Sattler (145)
Rat (maturing) PD cell culture No effect on GnRH-response Rivest et al. (148)
Rat (Adult) TP/ME explants Inhibits Lh release Nakazawa et al. (149)

GH3/GH4 cell line Inhibits secretion of PRL and GH (no effect on cAMP) Griffiths et al. (150)
GH3 cell line Inhibits basal and forskolin-induced PRL secretion and expression Ogura-Ochi et al. (151)

Baboon PD cell culture No effect on LH or FSH secretion Ibáñez-Costa et al. (152)
Baboon PD cell culture Stimulates GH and PRL expression and release Ibáñez-Costa et al. (152)

PD cell culture Increases expression of receptors for GhRH and ghrelin, decreases receptors for somatostatin Ibáñez-Costa et al. (152)
PD cell culture No effect on ACTH or TSH Ibáñez-Costa et al. (152)

Mouse ATt20 cell line Inhibits cAMP and ACTH release Tsukamoto et al. (153)
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seasonality (173). Ikegamiandcollaborators (175)demonstrate that
specific post-translational glycosylations allow PT-TSH to
exclusively target the hypothalamus, and not the thyroid. While
the cellular and molecular targets remain to be clearly identified,
recent findings indicate that the increase of T3 in the mediobasal
hypothalamus acts on KISS1 and RFRP3 neurons, which in turn
modulate GnRH secretion (78). The molecular pathway from
melatonin to T3 production appears to be conserved in
mammalian species regardless of their reproductive strategy as
summer or winter breeders (67, 179). Therefore, species-specific
differences might occur downstream of this common pathway.

Anterograde Route
In the anterograde route, melatonin regulates PRL synthesis and
secretion in the PD by inhibiting the release from the PT of one
or more PRL-releasing factors named “tuberalin” (67). To date,
the PT-specific factor(s) are still undetermined, as more than 30
different factors are known to stimulate PRL secretion (92).
Several candidates have been proposed including tachykinin-1
and neurokinin A in sheep (180) or endocannabinoids in
hamster (179, 181). Notably, these factors might act through
folliculo-stellate cells to regulate lactotropes (182).

Tuberalin secretion can indeed be stimulated in ovine PT cell
cultures by forskolin (140), an activator of adenylyl cyclase (AC),
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the enzyme catalysing the conversion of ATP to cyclic AMP
(cAMP). The forskolin-induced secretion of tuberalin from PT
cells was assessed by adding medium from the PT culture to a PD
culture and measuring the amount of PRL secreted in response.
Melatonin acutely inhibited the forskolin-induced secretion of
tuberalin but had no effect alone. In support, melatonin inhibited
the forskolin-induced cAMP production in ovine PT cells (141).
Furthermore, melatonin downregulated the expression of its own
receptor in PT cells from rat (183) and sheep (142). In ovine PT
cells, the downregulation of Mtnr expression involves the cAMP
signaling pathway (143). Together, these results imply that
melatonin works through the MTNR/Gi/cAMP pathway to
inhibit tuberalin secretion and subsequently regulating PRL
production in the PD. Interestingly, incubation with melatonin
for 16 h sensitizes AC, increasing both basal and forskolin-
induced cAMP production (141). After the prolonged melatonin
exposure, acute application of melatonin still inhibits the
forskolin-induced cAMP increase.

For melatonin to inhibit secretion of tuberalin, there must be a
stimulating factor that melatonin can oppose. This “tuberalin
releasing factor” has not been identified but was named StimX by
Morgan and Williams (184). Dardente and colleagues (67)
proposed dopamine as a promising candidate for StimX, arguing
that itmight act through the dopamine receptorD1expressed inPT
FIGURE 5 | Melatonin-induced retrograde signaling in mammals and teleosts. Thyrotrope and gonadotrope cells are respectively represented as green and red squares
(see legend). Question marks (?) indicate putative pathways not yet demonstrated. In mammals, the photic signal perceived from the retina reaches the pineal gland after
being processed from different brain centers (including the suprachiasmatic nucleus, SCN) thus regulating the rhythmic release of melatonin at night. Circulating melatonin
acts on pars tuberalis (PT) thyrotropes (PT-TSH) viaMTRN1A, thus inhibiting PT-TSH release. In spring, when melatonin levels decrease, PT-TSH secretion is stimulated. PT-
TSH, guided by tissue specific glycosylation, binds on its receptors on tanycytes located in the third ventricle of the hypothalamus. Here, PT-TSH regulates local deiodinases
(Dio2/Dio3) influencing thyroid hormone metabolism by promoting the conversion of T4 into the bioactive T3. T3 in turn activates arcuate nucleus (ARC) kisspeptin (KISS)
neurons via a still unknown mechanism. The following increase in gonadotropin releasing hormone (GnRH) release, stimulates gonadotropes activity in the pars distalis (PD).
In teleosts the photic signal is directly perceived from photoreceptive structures within the pineal gland, thus regulating the rhythmic release of melatonin at night. Recent
studies suggest that melatonin might regulate the release of a retrograde signal from the pituitary also in teleosts. A distinct population of thyrotrope cells (expressing a
second Tsh paralogue, tshbb) located near the pituitary stalk, drastically increase tshbb expression under long photoperiod, a similar response to the one occurring in
mammalian PT-TSH. Although melatonin receptors have been described in teleost pituitary and found to display daily and seasonal regulation, their presence in this
thyrotrope population as well as the inhibition of Tsh synthesis and release in response to melatonin, remain to be demonstrated.
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cells, whose activation increases the intracellular cAMP level
in neurons.

Downstream of cAMP, melatonin up-regulates or down-
regulates the expression of a range of genes (67). Several of them
are clock genes, including Period1 (Per1) and Cryptochrome-1
(Cry1) (185). This implies that PT cell activitymight be regulated by
an internal clock and that the clock itself may be modulated by
melatonin. Interestingly, the same clock genes are not affected
by melatonin in the suprachiasmatic nucleus (SCN) of the
hypothalamus, indicating that the SCN clock is working more
independently than peripheral clocks (186–188). In ovine PT cell
cultures and explants, the expression of the immediate early gene
Egr1 is acutely suppressed bymelatonin, which otherwise follows a
daily rhythm (143). EGR1 in turn regulates several genes, some
being upregulated, such as Cry1, others downregulated such as
Mrnt1a. In contrast to Mtnr1a, the expression of Cry1 was not
affected by changes in cAMP levels.

Other PT endocrine cells beside thyrotropes might also be
regulated by melatonin. Nakazawa and collaborators (149) found
that melatonin inhibits LH release from male rat tissue explants
(consisting of PT and median eminence) in a dose-dependent
manner. This in turn increases the release of GnRH from the
median eminence part of the explant.

Effects of Melatonin on the pars distalis
Gonadotropes
In rodents, the effects onPDgonadotropes seemhighly age-specific,
with clear inhibitory effects in neonatal animals and no effects in
adults. Melatonin (1–10 nM) reduces the GnRH-induced LH and
FSH release in pituitary organ cultures from neonatal rats (144,
145). Furthermore, Vanecek and Klein (146) demonstrate that
melatonin (10 nM) reduces the GnRH-induced Ca2+ signal and
subsequently LH secretion. Similarly, Pelisek and Vanecek (189)
demonstrated that melatonin (2 nM) reduces GnRH-induced LH
release, as well as the forskolin-induced cAMP production, in cell
cultures from neonatal rats. Melatonin (1 nM) directly inhibits
GnRH-induced Ca2+ signaling in neonatal gonadotropes, both via
plasmamembrane Ca2+ channels and endoplasmic reticulumCa2+

release channels (190). The inhibitory effect of melatonin on the
GnRH-induced Ca2+ oscillations might not be uniform over the
gonadotrope cell population as the responses differ between cells,
indicating a complex regulatory pathway (191, 192). The role of
MTNR in neonatal PD may not be limited to gonadotrope
regulation. In light of the previously described role of melatonin
on the regulation of clock genes, Johnston and colleagues (169)
suggest that Mtnr1a expression may reflect a developmental
requirement for circadian synchronization between tissues before
mature regulatory pathways become established. Additionally, the
promoter region of rat Mtnr1a contains response elements for
transcription factors involved in pituitary cell differentiation and
regulation (169). Melatonin might therefore be involved in the
correct development of the embryonic PD. Indeed, melatonin (100
nM) inhibits GnRH-induced increase of cFos (a proto-oncogene
involved in cellular proliferation and differentiation)
immunoreactivity in neonatal rat pituitary PD culture (147).

During development and maturation, melatonin binding is
reduced, and in adults, melatonin does not have the same direct
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effect on the pituitary. Rivest and collaborators (148) found that
melatonin incubation (5 nM) of pituitary cell cultures from
sexually maturing rats does not modify the GnRH response.
Likewise, Ibáñez-Costa and colleagues (152) found no effect of
melatonin (pM to µM range) on the FSH and LH secretion in
primary pituitary cultures from adult female baboons.

Other Endocrine Cells in the pars distalis
Regarding the effects of melatonin on other PD endocrine cells, the
results are even scarcer. Melatonin (10-8 to 10-6 M) reduces the
productionand secretionofbothPRLandGHfromthe ratpituitary
cell line GH4C1, but has no effect on basal or stimulated cAMP
levels (150). Similarly, Ogura-Ochi and collaborators (151) show
that melatonin suppresses both basal and forskolin-induced PRL
secretion andmRNAabundance in the closely relatedGH3cell line.
In contrast, in primary pituitary cell cultures from adult female
baboons, melatonin increases GH and PRL expression and release
in a dose-dependent manner, an effect blocked by somatostatin
(152). Both the common (AC/PKA/Ca-channels) and distinct
(PLC/Ca-release) pathways seem to be involved. Melatonin (10
nM) also affects the expression of GHRH receptors, ghrelin and
somatostatin, but not expression or release of ACTH or TSH. Also
in pituitary organ cultures from neonatal rats, melatonin has no
effect on TRH-induced TSH/PRL release or somatostatin-induced
inhibitionofGHrelease (144, 145). In themice corticotrope cell line
AtT20, melatonin reduces the levels of ACTH, alongside a
reduction in cAMP (153).

Teleosts
As in mammals, melatonin can also act directly on the pituitary
gland in teleosts (Figure 4, Table 4).

Melatonin Receptors in Teleosts Pituitary
Multiple Mtnr paralogues are expressed in the pituitary of
teleosts (28). For instance, qPCR analysis detected the mRNA
of four Mtnr paralogues in the pituitary of medaka (27). Three
were described in Senegalese sole (Solea senegalensis) (200),
goldfish (201), and Atlantic salmon (25). Two were detected in
chum salmon (Oncorhynchus keta) (202) and pike (Esox lucius)
(196). One was detected in European sea bass (203), suggesting
possible multiple effects of melatonin which might also vary
between species.

The exact locationofmelatonin receptor/binding sites in teleosts
is not clear. Despite the aforementioned identification of mtnr
mRNA ingoldfish pituitary,Martinoli and colleagues (107) observe
no specific binding of melatonin. On the other hand, rainbow
trout (197) and pike (196) pituitaries have 2-[125I]iodo-melatonin
binding sites. However, the assay used was aimed at characterizing
the binding capacity rather than their localization within the
pituitary, although a regional distribution was reported, with
binding sites clustering together in close proximity.

Like in mammals, the abundance of pituitary Mtnr in teleosts
varies with the season and the day, suggesting a correlation with
physiological state. The Senegalese sole (200) shows seasonal
fluctuations with higher mtnr mRNA levels during the summer
spawning period. While a first study in Atlantic salmon carried
out in autumn indicated the absence of melatonin binding sites
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(137), a later study shows that Mtnr exhibits both seasonal and
daily fluctuations in the male parr pituitary (25). In spring during
sexual maturation, pituitary mtnr mRNA peaks during the day
and drops at night, while in autumn minimal levels are
constantly maintained throughout the day. In medaka, where
SP inhibits reproduction, pituitary mtnr1a, mtnr1c, and mtnr1d,
but notmtnr1bmRNA levels show daily fluctuations with higher
levels at night under LP but not SP (27). The presence of multiple
Mtnr paralogues whose concentrations vary across the season
indicates a complex role of melatonin in teleost pituitary
physiology. It is not yet clear precisely which cell types express
mtnr in teleosts. Indeed, the seasonal and daily variations inmtnr
mRNA levels observed in sole, sea bass, salmon, and medaka
suggest a relation with the reproductive status of the fish. These
fluctuations also highlight the importance of both the timing of
sampling and the application of different techniques for the
successful identification of the cells expressing Mtnr within
the pituitary.
Effects of Melatonin in Teleosts Pituitary
Putative Retrograde Signal
Unlike mammals, teleosts do not possess an anatomically distinct
PT. Nakane and Yoshimura (204) propose that, in salmonids, the
translation of the photoperiodic signals into pituitary hormonal
messages might instead take place in the saccus vasculosus (SV), a
secretory organ located posterior to the pituitary and directly
connected to the third ventricle of the hypothalamus. In masu
salmon, specialized cells within the SV, the coronet cells, possess all
the components involved in the regulationof seasonal reproduction
via the Tsh pathway (Tshb, Tsh receptors andDio2). However, the
exact photoperiodic role of the SV (and the involvement of
melatonin in it), remains controversial. First, the SV signal
pathway is presumably directly activated by photo-transduction
through photoreceptive pigments without the requirement of
melatonin (205). Additionally a recent study in juvenile Atlantic
salmon reported no photoperiodic effects on SV tshb and dio2b
mRNA levels (206). Finally, the SV is not present in all fish [e.g. it is
absent in zebrafish (207, 208)]. Therefore, a different mechanism
mightbe involved in thephotoperiodic control of seasonality infish.

Several teleosts possess two tshb paralogues resulting from the
3R, tshba and tshbb (209) (named by the authors tshb and tshb3).
In Atlantic salmon, both are expressed in the pituitary, but only
Frontiers in Endocrinology | www.frontiersin.org 13
tshbb is expressed in the SV (210). Interestingly, while pituitary
tshba mRNA levels are relatively constant, tshbb mRNA level
vary profoundly, with a peak concomitant with the onset of
downstream migration, in spring. Since the two paralogs also
show expression at distinct locations in the pituitary, Fleming
and colleagues (210) propose that tshbb-expressing cells, located
near the pituitary stalk, are analogous to the mammalian PT-
TSH cells and possibly regulate the retrograde diffusion of Tsh to
the hypothalamus (Figure 5).

Irachi and collaborators (206) demonstrate a significant increase
in pituitary tshbbmRNA levels followed by a rise in dio2bmRNA
levels in the midbrain/optic tectum and hypothalamus in response
to increased daylength, providing additional evidence that the
pituitary Tshb (formed by the tshbb subunit) is a key contributor
to photoperiodic signaling in fish, similar to the mammalian PT-
TSH. However, whether like in mammals, melatonin signal is
directly integrated by the pituitary Tshb (tshbb-expressing) cells
in teleosts, is not known.

Other Endocrine Cells in the Pars Distalis
The direct effects of melatonin on other endocrine cell types have
not been extensively investigated in teleosts and the few studies
available indicate different effects between species.

In goldfish,melatonin (10-6–10-3M) has no effect onACactivity
in homogenized pituitary samples (193).AlthoughAC is part of the
most common signaling pathway triggered bymelatonin receptors,
this result does not rule out the possibility that melatonin may
trigger effects via other pathways. The conclusion that melatonin
most probably had no direct effect on the pituitary was further
supported by a studyonperfused goldfish pituitary fragments, from
which melatonin did not affect secretion of gonadotropins or Gh
(194). Similarly, Sébert and colleagues (116) report from
unpublished in vitro experiments that melatonin has no effect on
fshb and lhb mRNA levels in primary pituitary cultures from
European eel.

However, effects of melatonin have been observed in other
species. Melatonin (0.2 ng/ml) stimulates Lh (GtH II) secretion
from pituitary fragments from mature Atlantic croaker (195). In
trout pituitary organ- and cell cultures, high concentration of
melatonin [close to the night-time circulating levels as
determined by Gern and colleagues (211)] induces a dose-
dependent Gh secretion in the absence of forskolin, along with a
decrease in the secretion of Prl (197). In contrast, low melatonin
TABLE 4 | Summary of the known effects of melatonin on pituitary in vitro and ex vivo cultures in teleosts.

Species Type of preparation Effects of melatonin Reference

Teleosts
Goldfish Primary cell culture No effect on AC activity Deery et al. (193)

Perfused fragments No effect on secretion of Lh, Fsh or Gh. Somoza and Peter (194)
European eel Primary cell culture No effect on fshb and lhb mRNA levels Sébert et al. (116)
Atlantic croaker Perfused fragments Stimulates Lh (GthII) secretion Khan and Thomas (195)
Pike Whole pituitary Inhibits forskolin-induced cAMP Gaildrat and Falcón (196)
Rainbow trout Primary cell culture Low dose: inhibits forskolin-induced cAMP and Gh secretion Falcón et al. (197)

Primary cell culture High dose: stimulates Gh secretion Falcón et al. (197)
Primary cell culture High dose: inhibits Prl secretion Falcón et al. (197)

European sea bass Primary cell culture Increases Cry1 and Cry2 mRNA levels Herrero and Lepesant (198)
Medaka Whole pituitary organ culture Reduces fshb, tshb and sl mRNA levels (not lhb, gh, prl or pomc) Kawabata-Sakata et al. (199)
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concentration (close to daytime circulating levels) inhibits the
forskolin-induced increase in cAMP levels and Gh secretion.
Finally, melatonin exposure (10-5 M) in ex vivo whole pituitary
organ culture from sexually mature medaka, decreases fshb, tshba
and slmRNA levels but has no significant effects on lhb, gh, prl, and
pomc, (199).

Summary
The presence of melatonin receptors indicates that melatonin
can directly regulate pituitary cells. According to the receptor
localization, the PT thyrotropes are the main targets of
melatonin in the mammalian pituitary. A few mammalian
species also have melatonin binding sites in the PD, suggesting
a possible direct control of melatonin on PD endocrine
production. The teleost pituitary also expresses several Mtnr
paralogues, however their localization is not clear.

In mammals, most of the direct effects of melatonin on the
pituitary take place in the PT, in particular on thyrotropes (Figure
5). Here, melatonin acting via MTNR1A (MT1) affects the
expression levels of a set of clock genes that in turn regulate
synthesis and secretion of TSH and the hitherto unidentified
tuberalin, for retrograde and anterograde seasonal regulation of
gonadotropes and lactotropes in the PD, respectively. The signaling
pathway from MTNR1A activation to transcriptional regulation
seems tomainly be via inhibition ofAC/cAMP and possibly CREB.
Studies on the direct effects of melatonin in the PD are still scarce,
but there is solid evidence thatmelatonin inhibitsLHsecretion from
PD gonadotropes in neonatal stage, but not in adults.

Fewer studies on the direct effects of melatonin on the teleost
pituitary have been performed. They report different effects
depending on the species and the experimental conditions.
Nevertheless, recent works described a new pituitary Tsh
population responding to variation in photoperiod similarly to
PT-TSH in mammals, suggesting that a Tsh retrograde signaling
might also occur in teleosts. It is therefore crucial that future
research investigate the presence of melatonin receptors and the
responsiveness to melatonin in this cell type to verify whether,
similar to in mammals, melatonin signal is directly integrated by
Tshb (tshbb-expressing) cells in teleosts.
DISCUSSION

As shown in the present review, the response of the pituitary to
melatonin is highly plastic and differs between seasons, time of the
day, physiological status, and reproductive strategies. The
comparison between mammals and teleosts reveals a greater
knowledge gap in the latter group, leaving many open questions
on the role of melatonin in regulating the pituitary hormonal
production. In both mammals and teleosts however, the exact
pathways and cell types targeted by melatonin are largely
unknown. It is therefore crucial to clearly describe the integration
of the melatonin signal, and identify the cell types expressing
melatonin receptors, in the pituitary as well as in the brain. Multi-
color in situ hybridization or immuno-labelling and single cell
transcriptomic approaches are relevant techniques that can be
applied to identify the cell types directly targeted by melatonin.
Frontiers in Endocrinology | www.frontiersin.org 14
To validate the effects of melatonin on the different cell types a
combination of in vivo, ex vivo and in vitro studieswill be necessary,
as no single approach can produce a complete and reliable picture
by itself. For instance, caution should be taken when investigating
dissociated endocrine pituitary cells in culture, as a recent study
shows that dissociation leads to a quick cellular phenotypic change
in the pituitary cells (212). Additionally, when deciding on animal
model and experimental conditions, one should also consider the
important biological differences that might influence, or be
influenced by, a time-keeping hormone as melatonin, such as
nocturnal versus diurnal habits, different reproductive seasons or
hibernation periods. Indeed, the response in animals adapted
during numerous generations to stable laboratory conditions,
such as mice, rats, zebrafish and medaka, might diverge from the
ones in the wild.

In addition, given the seasonality of the processes regulated by
melatonin, the localization of MTNR appears to be heavily
influenced by factors such as physiological status, season, but
also time of the day. It is therefore reasonable to assume that the
expression of MTNR in some key cell types might be characteristic
of specific physiological conditions and might still remain
undetected when analyzed outside a particular time window.

Finally, when investigating the effects of melatonin on
neuroendocrine system activity, teleosts show a remarkable
plasticity as their response is more sensitive to variation in
environmental conditions as compared to mammals (1, 213).
As a consequence, it is harder to draw a general picture of the
role of melatonin on teleosts brain and pituitary, as the choice of
the season or the time of the day to perform the experiment
appear to influence the response of the pituitary gland in teleosts.

Because of this sheer number of physiological and
environmental variables, as well as significant inter-specific
variation, unravelling the full impact of melatonin on the
pituitary gland remains a challenge.
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18. Cazaméa-Catalan D, Besseau L, Falcón J, Magnanou E. The timing of
timezyme diversification in vertebrates. PLoS One (2014) 9(12):112380.
doi: 10.1371/journal.pone.0112380

19. Coon SL, Klein DC. Evolution of arylalkylamine N-acetyltransferase:
emergence and divergence. Mol Cell Endocrinol (2006) 252(1-2):2–10.
doi: 10.1016/j.mce.2006.03.039
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189. Pelıśěk V, Vaněček J. Different effects of melatonin pretreatment on cAMP
and LH responses of the neonatal rat pituitary cells. J Pineal Res (2000) 28
(4):234–41. doi: 10.1034/j.1600-079X.2000.280406.x

190. Balik A, Kretschmannová K, Mazna P, Svobodová I, Zemková H. Melatonin
action in neonatal gonadotrophs. Physiol Res (2004) 53 Suppl 1(SUPPL. 1):
S153–66. http://www.biomed.cas.cz/physiolres.
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