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Lipids are highly diverse biomolecules crucial for the formation and function of cellular
membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids
additionally serve for the formation of the epidermal barrier and as surface lipids, together
regulating permeability, physical properties, acidification and the antimicrobial defense.
Recent advances in accuracy and specificity of mass spectrometry have allowed studying
enzymatic and non-enzymatic modifications of lipids—the epilipidome—multiplying the
known diversity of molecules in this class. As the skin is an organ that is frequently
exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is
an ideal organ to study epilipidome dynamics, their causes, and their biological
consequences. Recent studies uncover loss or gain in biological function resulting from
either specific modifications or the sum of the modifications of lipids. These studies
suggest an important role for the epilipidome in stress responses and immune regulation
in the skin. In this minireview we provide a short survey of the recent developments on
causes and consequences of epilipidomic changes in the skin or in cell types that reside in
the skin.
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INTRODUCTION

The lipidome of keratinocytes (KC), the dominant cell type of the basal layer of the epidermis is
made up mainly of phospholipids, cholesterol, and triacylglycerides. Differentiation of living KC
into dead corneocytes, a controlled cell death process that continuously renews the epidermal
barrier (1), drastically changes the KC’s lipid composition several times during the process. The last
living (granular) epidermal layer contains cells with lamellar bodies containing glucosylceramides,
phospholipids, and sphingomyelin which are further metabolized to produce the stratum corneum
(SC) lipids, a mixture of free fatty acids (FFAs), cholesterol and ceramides (2, 3). The SC lipids form
the lipid matrix, a flexible connection of low water permeability between the corneocytes which
remain from terminal differentiation (4) and the FFAs contribute to the required acidification of the
SC (5). Part of the surface lipids derive from the sebum, a mixture of TAG, wax esters, squalene and
FFA, produced by holocrine secretion of terminally differentiating cells of the sebaceous gland, a
lipid producing skin appendage. Most biological consequences of epilipidomic modification take
n.org January 2021 | Volume 11 | Article 6070761

https://www.frontiersin.org/articles/10.3389/fendo.2020.607076/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.607076/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:florian.gruber@meduniwien.ac.at
https://doi.org/10.3389/fendo.2020.607076
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.607076
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.607076&domain=pdf&date_stamp=2021-01-21


Gruber et al. Skin Epilipidome in Stress
place in the living layers of the epidermis or in the dermal
compartment underneath; nonetheless SC lipids are susceptible
to modifications. Some of these modifications are ROS-mediated
(squalene oxidation), while others depend on enzymatic
cascades, as for example in the formation of the lipid envelope
where hydroxyl ceramides are esterified to corneocyte proteins
by specific transglutaminases.
Modification of The Skin Epilipidome by
Ultraviolet Radiation
The best-studied oxidative modifier of skin lipids is solar
radiation and wavelength bands thereof, which are used alone
or in combination with photoactive chemicals as therapy for
various skin diseases. The action of UV radiation (UVR) on
human skin depends on wavelength and can induce acute
inflammation-, immunosuppression, or cell death (6). The
latter is elicited by combining UVR with photoactive drugs to
specifically target cancer- or immune system cells. UVR can
cause both enzymatic and non-enzymatic modification of lipids.
The long-wavelength UVA (320–400 nm) oxidizes lipids in
absence of enzymes (7, 8) but also shorter wavelength
radiation can non-enzymatically generate oxidized lipids via
free radical mechanisms (9). Cholesterol, phospholipids, free
fatty acids, and squalene are targets for non-enzymatic lipid
oxidation and yield bioactive products. Enzymatic synthesis of
oxidized lipids, most prominently eicosanoids and related
oxidized polyunsaturated fatty acids (PUFAs) results from UV
activation of phospholipases, lipoxygenases and cyclooxygenases
(10–12). Most of the work on enzymatic generation of
eicosanoids [rev. in (10)] has been done on the response to
Frontiers in Endocrinology | www.frontiersin.org 2
clinically relevant short wavelength UVB irradiation. This may
lead to an underestimation of non-enzymatic effects to solar UV
exposure which are mostly elicited by longer wavelength
radiation. Similarly biasing may be that UV-regulated
eicosanoids (and related FA derived mediators) are investigated
mainly in their free form, while a large fraction of the modified FA
may be presently attached to more complex lipids.

Previously it was observed that the UVA-photo-oxidation of
PUFA esterified to phospholipids is more efficient than photo-
oxidation of the same PUFA in the free form, probably due to
increased UVA induced singlet oxygen generation in the PL
esterified configuration of the PUFA (13). Indeed, Leung et al.
found in HaCaT cells exposed to UVA little effect on n-6 PUFA
and their non-enzymatic oxidation products immediately after
exposure (14) but detected elevation of enzymatically modified
hydroxides of docosahexaenoic acid (DHA). The authors
conclude that HaCaT cells required 24 h to return to
PUFA homeostasis.

In primary human dermal fibroblasts, our group identified
more than 500 features corresponding in retention properties to
polar and oxidized phosphatidylcholines (PCs) that were induced
immediately after irradiation with UVA (15), and also in primary
human keratinocytes we found significant elevation of 173 OxPC
species immediately after irradiation. In both cell types, the
elevated species comprised also non-enzymatic PUFA-PC
oxidation products such as PC-hydroperoxides and hydroxides,
di-carboxylic and carbonyl group containing PC species. In the
keratinocyte investigation we found that even at the high UVA-1
fluence of 40 J/cm² the cells recover, and most lipid species return
to baseline levels within 24 h, insofar as the KC appear to limit
especially the amount of highly reactive carbonyl containing
lipids. The restoration of phospholipid redox (or epilipidome)
FIGURE 1 | Formation routes and action spectrum of modified lipids in the skin.
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homeostasis involves the antioxidant response, autophagy, the
unfolded protein response and, as recent findings suggest, the
transcriptional regulator NUPR1 (16). Conversely, in vitro
oxidized PUFA-PC are potent inducers of autophagy and Nrf2
(17, 18). These are mechanisms and signaling pathways that can
be assigned to the protective, pro-resolving spectrum of oxidized
phospholipid action. At the same time these lipid extracts or in-
vitro oxidized PAPC preparations contain phospholipids with
known pro-inflammatory activity and highly reactive carbonyl
compounds (19, 20). A detailed investigation of the quantities of
individual lipid species and localization of the lipids, their
functional groups and their adducts will be next steps for
elucidating the biological net effect of epilipidomic
modifications on (phospho-) lipids through oxidative stressors
in the skin. Elaborate mass spectrometric methods are required
for structural analysis of aldehyde adducts to proteins [rev in
(21)]. Because even as antibodies to protein-lipid adducts and the
dinitrophenylhydrazine method to investigate protein
carbonylation are widely used, lipid oxidation products and
especially malondialdehyde can show not only high diversity in
the type of modification of proteins (and thereby yielding very
different epitopes) (22), but also interfere with the detection of
other adducts (23).

The dietary intake of fatty acids affects the systemic and
cutaneous composition of systemic free fatty acids and the
composition of phospholipids to which these fatty acids are
dynamically esterified. It also affects the potential enzymatic and
non-enzymatic oxidation products that will form after UV
exposure. Supplementation with eicosapentaenoic acid (EPA)
and a subsequent UV exposure led to a shift in the UVA induced
eicosanoids that were recovered from skin suction blisters from
arachidonic acid metabolites (prostaglandin E2 and 12-HETE)
towards EPA metabolites (prostaglandin E3 and 12-hydroxy-
eicosapentaenoic acid, respectively) which have less pro-
inflammatory activity (24). When administering docosahexaenoic
acid (DHA) to cultured fibroblasts, we observed an elevation of
DHA-containing phospholipids which were highly susceptible to
photo-oxidation. Only in Nrf2 deficient cells this increased oxidation
susceptibility led to increased expression of inflammation markers.
Therefore, both the type of UV-induced lipid signalingmediator and
the cell’s capability to limit peroxidation may determine the
epilipidomic effect on UV mediated inflammation regulation. UV
not only can enzymatically generate immunomodulatory platelet
activating factor (PAF), but PAF-like lipids can also result from free
radical action on phospholipids. PAF and PAF-like lipids relay both
acute inflammatory and delayed immunosuppressive UV effects,
and potentially elicit systemic signals by releasing microvesicles from
KC (25).

The effects of UV exposure are not restricted to cellular lipids.
Also the sebum is susceptible to modification. Hydroperoxides of
squalene generated by UV exposure have been identified in vitro
and in vivo (26, 27), and as squalene is a major component of the
epidermal surface lipids, its peroxidation products including also
reactive aldehydes (28) were proposed as sensors conveying
metabolic and inflammatory responses to UV radiation (29).
One study even suggested that corneocyte dust containing high
Frontiers in Endocrinology | www.frontiersin.org 3
levels of oxidized squalenemay be a relevant environmental irritant
(30). The full spectrum of immunomodulatory actions of (UV-)
oxidized squalene and other sebaceous lipids is discussed in (31),
where the epidermal NLRP3 inflammasome is suggested as the
cellular component that senses and relays inflammatory signaling.

An amplification of photo-damage is elicited by photosensitizers
in photo(dynamic) therapy. Porphyrins and their derivatives have
hydrophobic properties that locate them to membranes of target
cells, allowing to kill those with light through photosensitized ROS
generation. At the same time, this treatment leads to massive
oxidation of (phospho) lipids (32), and it remains to be elucidated
whether oxidized lipids interfere with- or contribute to the
therapeutic efficacy. Lipotoxicity upon oxidative stress is mainly
exerted by aldehydolipids and was reviewed in (33). In the skin
context, the OxPL POVPC was toxic in melanocytes in the
micromolar range (32), at which (34) we detected this lipid after
exposure to physiologic fluences of UVA in other cell types (15).
THE SKIN EPILIPIDOME IN
INFLAMMATION

The two major chronic inflammatory skin diseases associated
with impaired barrier function, psoriasis and atopic dermatitis
(AD), affect composition and ordering of the epidermal barrier
lipids and composition of basal epidermal, dermal, and systemic
lipids [reviewed in (10, 35, 36)]. Metabolites attributable to the
epilipidome are regulated and likely contribute to the disease, but
functional data are yet limited. 9- and 13-hydroxyoctadecadienoic
acids (9- and 13-HODE) were significantly elevated in plasma
samples from psoriatic patients, as was 7-hydroxycholesterol. In
skin biopsies from the same patients the free and esterified levels
of 8- and 12-hydroxy-eicosatetraenoic acids (8- and 12 HETE)
and 9- and 13-HODE were accordingly elevated, but also
eicosanoids with known anti-inflammatory properties (37). First
data where resolvin D1 was applied on patient KC and reduced
interleukin synthesis by these cells indicate that small pro-
resolving mediators of the epilipidome that are topically applied
or generated in situ could be useful for the treatment of psoriasis
(38). At the same time the pro-inflammatory components of the
epilipidome likely contribute to the inflammation. Interestingly, a
phospholipase that is transferred via exosomes to Langerhans
cells seems to process psoriasis specific antigens (39). Thus, clear
spatial localization of lipid metabolites, e.g. with high resolution
mass spectrometric imaging and detailed functional studies are
needed to fully understand the contribution of the epilipidome
in psoriasis.

In the sera of juvenile AD patients, leukotriene B4 (LTB4),
thromboxane 2 (TXB2), prostaglandins, HETE and HODE were
found elevated, and lipidomic analysis could distinguish between
clinically relevant subgroups of patients with high versus low
immunoglobulin E levels (40). Among the distinguishing
markers lysophosphatidyl-ethanolamine (18:2), thromboxane b
2 (TXB2), and 11-, 12-dihydroxyeicosatrienoic acid (DHET) can
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be attributed to the epilipidome. TXB2 and 11, 12-DHET were
found elevated in skin tissue lipid samples in a comparable study
(41), that came to the conclusion that the ratio of pro-
inflammatory to pro-resolution mediators was increased in the
patients, especially PPARalpha agonistic oxidized lipids. These,
especially 12-HETE mediate inflammation and disturb
differentiation in AD organotypic skin models (42). Further
research will elucidate the contribution of non-enzymatically
formed isoforms or mimetics to the downstream signaling of
these enzymatically generated mediators in skin inflammation.
Agonism or signaling via prostaglandin receptors, PPARs, and
pattern recognition receptors (PRR) through ROS mediated
changes to lipids in other context has been reported (43–45).
MODIFICATIONS OF THE SKIN
EPILIPIDOME BY EXPOSURE TO AGING,
CHEMICAL IRRITANTS, DRUGS, AND
OTHER STRESSORS

Highly reactive lipid oxidation products and their adducts to other
macromolecules accumulate in the skin that prematurely aged due
to sun exposure (46, 47). However, also chronologic aging of the
skin at the cellular level and senescence of cells are similarly
associated with lipoxidizing redox events, for example ROS
accumulation in mitochondrial dysfunction and in senescence
related chronic inflammation (48). The skin’s cellular composition
as well as the synthetic and metabolic fidelity changes during the
mammalian lifespan, and these changes leave traces in the skin’s
lipidome and epilipidome. Those epilipidomic changes introduce
a novel, autonomous layer of signaling for complex exposure–
response relationships (49) in cellular stress, aging, and
inflammation. Recently, elevated leukotriene generation was
identified as a feature of senescent fibroblasts that promotes
lung fibrosis (50), and we found compatible changes in the
oxidized phospholipidome of senescent dermal fibroblasts (51).

The skin is exposed to temperature fluctuations, which likely
affects the dynamics of enzymatic- and ROS-mediated
epilipidomic modifications. One study monitored barrier lipids
of acne and control patients over the course of a year, together with
trans-epidermal water loss (TEWL) measurements and assessment
of acne severity. The authors found that in acne-affected skin the
ceramide species Cer[NH] and Cer[AH] were significantly
reduced. This effect was greatest in winter and correlated with
the highest TEWL measurements. Ceramide species with 18-
carbon species of 6-hydroxysphingosine appeared to be most
significantly reduced, an example of the diverse consequences
that oxidative modification of lipids has in epidermal barrier
function (52). Compatible with the latter finding, a (redox-)
lipidomic study (53) on SC lipids from volunteers receiving
glucocorticosteroids (GC) identified that the barrier damage,
which is a side effect of GC therapy, was associated with
reduction of ceramides with an esterified omega-hydroxy acyl
chain. Furthermore, anti-cancer chemotherapy can affect the skin
Frontiers in Endocrinology | www.frontiersin.org 4
epilipidome, shown in a murine melanoma model, where
chemotherapy generated, probably due to ROS generation, PAF-
receptor agonistic lipids which negatively affected anti-tumor
immunity (54). In murine epidermis exposed to the carcinogenic
chemical irritant 12-O-tetradecanoylphorbol 13-acetate (TPA), we
found strong epilipidome modification. Phospholipid
hydroperoxides were elevated three days after the last treatment,
and we found that peroxiredoxin 6 is an important regulator of
epidermal lipid (per) oxidation in vivo (55). Cigarette smoke (CS) is
a lifestyle-related environmental stress for the skin, and exposure of
KC to CS increases the formation of carbonyl (4-hydroxy-2-
nonenal; 4-HNE) adducts which likely result in part from lipid
oxidation (56), and the immunosuppressive PAF-like lipids (57). A
novel therapeutic option for dermatological wound- and
inflammation management is the directed application of beams
of cold atmospheric plasma (CAP) which contains highly dynamic
matter, to tissue (58). One consequence when this treatment is
applied to surface lipids is a massive change in the skin epilipidome
(59), and it remains to be investigated whether epilipidomic
changes contribute to the efficacy of the treatment which appears
to involve activation of the antioxidant response (60).

Whereas most of the studies discussed so far have investigated
the modification of fatty acid residues, Maciel and colleagues
reported that the radical generating 2,20-azobis(2-
amidinopropane) dihydrochloride (AAPH) modifies the
headgroup of phosphatidylserines in cultured keratinocytes,
adding an additional layer of complexity and novel potential
biological consequences to the epilipidome (61). Beyond the
oxygen-mediated modifications to lipids, the complexity of the
epilipidome can be increased by sulfonation of lipids (62)
nitration and nitroxidation of phospholipids, observed in vivo
in diabetes models and under metabolic stress [Rev. in (63)] and
several nitro- and nitroso modifications of unsaturated PC and
PS have been characterized (64). Nitro fatty acids were also
found in dermal fibroblasts upon virus infection and impaired
interferon gamma signaling (65) by modulating the
palmitoylation of the adaptor molecule stimulator of IFN genes
(STING) which led to inhibition of interferon release, and the
authors suggested the pharmacological potential of these lipids in
diseases caused by abnormally high STING activity.
DISCUSSION AND OUTLOOK—
CONNECTION OF THE EPILIPIDOME WITH
OTHER NON-CANONICAL REGULATORS
AND LOCALIZATION OF EPILIPIDOMIC
MODIFICATIONS WITHIN THE SKIN

Although the importance of the epilipidome for the regulation of
cellular processes is clearly evidenced (66), little is known about its
interaction with other non-canonical regulators of cell fate (“epi-
omics”), such as the epigenome, epitranscriptome, epiproteome
or epimetabolome. As all of these “epi-omics” are influenced by
oxidative stress, it is well conceivable that oxidized lipids further
January 2021 | Volume 11 | Article 607076
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exacerbate the effects of the original redox stressor. For example,
4-HNE is formed by lipid peroxidation and is highly reactive
towards cysteine, lysine and histidine residues. Thereby, protein
adducts are formed which do not only impinge on the
epiproteome (67), but also on the epigenome through covalent
modification of histones. Histones are common advanced
lipoxidation endproducts (ALEs), and some of them are
associated with human disorders, such as systemic lupus
erythematosus or Alzheimer’s disease (68). ALE formation
impairs the interaction of histones with DNA and consequently
leads to increased vulnerability of exposed DNA stretches to
oxidative stress (69, 70). Similarly, chromatin reader, writer and
eraser enzymes might be covalently modified by oxidized lipids
and thereby their function might be altered. Besides histone
acetylation, the epigenome is shaped by methyltransferases,
adding methyl groups to bases of DNA. The metabolite S-
adenosyl-methionine (SAM) might represent an important link
between the different layers of “epi-omics”, because it acts as the
universal methyl group donor for most DNA, RNA, lipid, and
protein methylation reactions. Phospholipid methylation is the
major consumer of SAM and SAM availability in cells is limited.
Thus, changes in themethylation of phospholipids strongly reflect
on methylation reactions of other substrates. Ye and colleagues
provided evidence for this phenomenon by demonstrating that
loss of phospholipid methylation causes hypermethylation of
histones as well as of the major phosphatase PP2A (71). In
contrast to DNA methylation, chemical modifications of
different RNA species came into focus only recently (72), and
might be subject to similar redox- and metabolism-based
connections with the epilipidome (73–75). Moreover, RNA
modifications were already implicated in the interaction of
specific RNA molecules with lipid bilayers (76). N6-adenosine
methylation of ribosomal RNA (rRNA) by METL-5 represents an
interesting example for a complex crosstalk between the different
layers of “epi-omics” in Caenorhabditis elegans. Methylation of
A1717 on 18S rRNA enhances selective ribosomal binding and
translation of CYP-29A3 mRNA. This enzyme is required for
oxidation of eicosapentaenoic acid to eicosanoids and modulates
heat stress resistance (77). Oxidized lipids might also directly
influence selective protein synthesis through oxidation of
ribosomal proteins (78). Since the synthesis of post-translational
protein modifications, such as glycosylations, is tightly
synchronized with translation, the epiproteome might be
regulated by the epilipidome as well.

The novel gold standard methods for redox- and other
epilipidomic investigations are typically based on high
resolution mass spectrometry (HRMS), often in combination
with chromatographic separation and require intensive
bioinformatic post-processing. These methods and their
application on the lipidome, redoxlipidome and especially the
skin are the topic of recent reviews that are suggested to the
reader (35, 66, 79–85). The emerging technology of mass
spectrometry-based imaging (MSI) has the unique feature to
reveal the distribution of analytes within a tissue allowing the
detection, localization and identification of multiple lipid species
in an area of interest. Ionization techniques like secondary ion
Frontiers in Endocrinology | www.frontiersin.org 5
mass spectrometry (SIMS) (86), matrix assisted-laser desorption/
ionization (MALDI) or desorption electrospray (DESI) (87) are
the methods of choice allowing sensitive measurements. One
tissue section can be used for consecutive measurements in
positive and negative ion modes depending on the lipid class
under investigation (88). However, low concentrations and ion
suppression effects can lead to low ion intensities making lipid
identification difficult. However, low signal intensities in respect
to concentration levels of lipid peroxidation products or method-
inherent ion suppression effects makes lipid identification by
tandem MS often infeasible and HRMS (i.e. Fourier Transform
Ion Cyclotron or Orbitrap) is indispensable. The novelty of MSI
in the context of skin research is reflected by the limited number
of publications available. Few papers focusing on sample
preparation (89), few studies are available giving a general
overview of lipid changes in skin during wound healing (90),
in reconstructed skin equivalents (91) studying lipid profiles over
time and in ex vivo human skin samples (92). Worth mentioning
is research on the effect of topically applied compounds on lipid
changes in the skin (93, 94). Despite the promising future of MS
imaging, limitations have to be considered and challenges have to
be met. One limitation is the rather low spatial resolution
achieved with most instruments. (Nano)DESI provides spatial
resolutions of approximately 40 to 100 μm, and conventional
MALDI measurements can be carried out at pixel sizes down to
10 μm, still larger than most mammalian cells. As a result, each
pixel represents the average lipid profile of maybe multiple cells
and not of individual cells within the tissue. Reducing the spot
size to a single cell level is therefore one of the most important
endeavors in MSI research and instrument development (95).
SIMS on the one hand has the potential to measure at a few nm
spot size (approximately 30 nm), easily reaching cellular levels.
However, SIMS is not a soft ionization technique, fragmenting
lipid species and providing only lipid class information by head
group analysis but not the full molecular information one is
usually striving for. MALDI on the other hand is allowing the
detection of intact lipid species at rather low resolution, being
therefore the most often used method so far. But MALDI shows
different ionization efficiencies for different lipid classes, making
a comprehensive analysis for the entire lipidome a challenge,
choosing the appropriate matrix is key (96). In summary, combining
a multimodal approach at high spatial and mass resolution
information on the skin’s epilipidome with immunohistological
features of individual cells, their activation- and differentiation
state, their metabolic configuration and their (epi-) transcriptome
will be an important task in the imminent future that will help
elucidate the contribution of the epilipidome to skin biology
(Figure 1).
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