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Background: The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been
implicated in the pathogenesis of inflammatory diseases. We sought to investigate the
role of PCSK9 in the pathogenesis of Graves’ orbitopathy (GO) and whether it may be a
legitimate target for treatment.

Methods: ThePCSK9was compared betweenGO (n=11) and normal subjects (n=7) in orbital
tissue explants using quantitative real-time PCR, and in cultured interleukin-1b (IL-1b)-treated
fibroblasts using western blot. Western blot was used to identify the effects of PCSK9 inhibition
on IL-1b-induced pro-inflammatory cytokines production and signaling molecules expression
as well as levels of adipogenic markers and oxidative stress-related proteins. Adipogenic
differentiation was identified using Oil Red O staining. The plasma PCSK9 concentrations were
compared between patients with GO (n=44) and healthy subjects (n=26) by ELISA.

Results: The PCSK9 transcript level was higher in GO tissues. The depletion of PCSK9
blunted IL-1b-induced expression of intercellular adhesion molecule 1 (ICAM-1), IL-6, IL-8,
and cyclooxygenase-2 (COX-2) in GO and non-GO fibroblasts. The levels of activated
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and
phosphorylated forms of Akt and p38 were diminished when PCSK9 was suppressed
in GO fibroblasts. Decreases in lipid droplets and attenuated levels of peroxisome
proliferator-activated receptor gamma (PPARg), CCAAT/enhancer-binding protein b (C/
EBPb), and leptin as well as hypoxia-inducible factor 1a (HIF-1a), manganese superoxide
dismutase (MnSOD), thioredoxin (Trx), and heme oxygenase-1 (HO-1) were noted when
PCSK9 was suppressed during adipocyte differentiation. The plasma PCSK9 level was
significantly higher in GO patients and correlated with level of thyrotropin binding inhibitory
immunoglobulin (TBII) and the clinical activity score (CAS).

Conclusions: PCSK9 plays a significant role in GO. The PCSK9 inhibition attenuated the
pro-inflammatory cytokines production, oxidative stress, and fibroblast differentiation into
adipocytes. PCSK9 may serve as a therapeutic target and biomarker for GO.

Keywords: adipogenesis, Graves’ orbitopathy, inflammation, oxidative stress, proprotein convertase subtilisin/
kexin type 9, PCSK9, thyroid eye disease
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INTRODUCTION

Graves’ orbitopathy (GO) is an inflammatory autoimmune
disorder, and it is the most frequent extrathyroidal
manifestation of Graves’ disease (1). Clinical features of GO
include upper eyelid retraction, edema and erythema of the
periorbital tissue and conjunctiva, proptosis, corneal
ulceration, and optic neuropathy. Three cell types which
predominantly contribute to the development and
progression of GO are B cells, T cells, and orbital fibroblasts
(2). Stimulated by interactions with T cells and autoantibodies
produced by B cells, orbital fibroblasts play a key role in the
establishment of inflammation by producing cytokines,
chemokines, and lipid mediators. Furthermore, they
proliferate, synthesize extracellular matrix, and differentiate
into adipocytes, leading to tissue remodeling characteristic of
GO. The mainstay treatment for moderate-to-severe GO is
systemic glucocorticoids therapy (3). Due to inadequate
responses and adverse effects to glucocorticoids, however,
there have been several investigations for other possible
biological therapies (3).

The proprotein convertase subtilisin/kexin type 9 (PCSK9),
which was first reported in 2003, is the ninth member of the
protein convertase family (4). PCSK9 targets low density
lipoprotein receptors (LDLR) on the hepatic cell surface,
toward lysosomes for degradation, resulting in elevated serum
LDL cholesterol levels (5). Now, PCSK9 inhibitors have emerged
as novel therapeutics to treat cardiovascular diseases (6).
However, current data suggest that PCSK9 inhibitors may have
pleiotropic effects, affecting targets beyond LDLR (7–9).
According to other studies, PCSK9 may be a key molecule in
the pathophysiology of diseases such as atherosclerosis,
myocardial ischemia, Alzheimer’s disease, psoriasis, and fatty
liver disease (10–14). Studies on the PCSK9 in atherosclerosis, a
chronic inflammatory disorder of vessel walls, showed that
PCSK9 inhibition suppressed inflammatory cytokines
production and decreased the activity of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) and
intracellular cell adhesion molecule 1 (ICAM-1). Additionally,
silencing PCSK9 decreased oxidative stress, apoptosis,
proliferative capacity, and accumulation of macrophages (10,
14, 15). Numerous studies reporting the benefit of PCSK9
suppression in vivo and in vitro suggest that PCSK9 may be an
attractive target in chronic inflammatory disorders (16).
However, no previous studies have reported the effect of
PCSK9 inhibition in GO.

In light of what is said above, this study was designed to
investigate the role of PCSK9 in the pathogenesis of GO.We used
small interfering RNA (siRNA) to promote cleavage of
intracellular PCSK9 mRNA in orbital fibroblasts obtained from
GO and normal subjects. We tested whether PCSK9 siRNA
counteracts inflammation, proliferation, and adipocyte
differentiation in orbital fibroblasts, the main pathogenic
mechanisms in GO. In addition, we examined whether the
plasma PCSK9 levels reflect the presence and the activity of
GO using the clinical activity score (CAS).
Frontiers in Endocrinology | www.frontiersin.org 2
MATERIALS AND METHODS

Reagents
The antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA), Cell Signaling Technology (Beverly, MA,
USA), Novus Biologicals (Centennial, CO, USA), and Abcam
(Cambridge, UK). The antibodies used in the study are listed in
detail in Supplementary Table 1. PCSK9 siRNA and control
siRNA were obtained from Santa Cruz Biotechnology, Inc.
(Dallas, TX, USA). TransIT-siQUEST siRNA Transfection
reagent was purchased from Mirus Bio, Inc. (Madison, WI,
USA). The 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT) assay and Oil Red O were
products from Sigma-Aldrich, Inc. (Merck KGaA, Darmstadt,
Germany). Dulbecco’s modified Eagle’s medium (DMEM), fetal
bovine serum (FBS), penicillin, and gentamicin were purchased
from Hyclone Laboratories, Inc. (Logan, UT, USA).
Recombinant human interleukin-1b (IL-1b) and the enzyme-
linked immunosorbent assay (ELISA) kit for PCSK9 were
obtained from R&D Systems (Minneapolis, MN, USA).

Subjects and Preparation of Tissues
and Cells
Orbital tissue specimens were collected from GO subjects during
orbital decompression surgery (nine females and two males; age
38–54 years). Non-GO orbital tissue was obtained during the
course of upper (n=3) and lower lid (n=4) blepharoplasty from
patients without history or clinical evidence of any thyroid disease
(5 females and 2 males; age 36–57 years). Out of 11 GO and seven
non-GO tissues, three GO and three non-GO tissues were
randomly chosen for primary orbital fibroblast cultures. For
gene expression analysis, nine out of 11 GO tissues were
randomly selected, while all seven non-GO tissues were used.
The study protocol was approved by the Institutional Review
Board of Severance Hospital, and all participants provided written
informed consent. This research adhered to the tenets of the
Declaration of Helsinki. At the time of surgery, all GO patients
were in euthyroid state and had not been administered steroid or
radiation therapy for at least three months.

For plasma PCSK9 evaluation, 70 subjects were recruited: 22
with active GO (15 females and 7 males; age 42.41 ± 17.91 years),
22 with inactive GO (16 females and 6 males; age 40.64 ± 16.91
years), and 26 healthy volunteers (23 females and three males;
age 36.69 ± 14.20 years). GO was considered “active” based on
CAS, a grading system based on the seven classic features of
inflammation in GO (17). Out of seven, GO was considered
“active” if the CAS was ≥3. Table 1 shows the demographic,
clinical, and serologic data of the subjects.

Orbital fibroblasts were isolated from the harvested tissue and
cultured as described previously (18). After being minced, the
tissue was placed directly in DMEM/F12 (in 1:1 ratio) medium
containing 20% FBS, penicillin (100 U/ml), and gentamycin (20
mg/ml). Following incubation, tissues were maintained in
solution containing DMEM, antibiotics, and 10% FBS. Once
the growth of the fibroblasts was confirmed, the cells were treated
with trypsin/ethylenediaminetetraacetic acid and passaged in
January 2021 | Volume 11 | Article 607144

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Lee et al. PCSK9 in Graves' Orbitopathy
monolayers. Strains were stored in liquid nitrogen and only those
between the third and fifth passages were used for experiments.

Cell Viability Assay
Cell viability was assessed with an MTT assay, following the
manufacturer’s protocol (Sigma-Aldrich, Inc.). Orbital
fibroblasts obtained from GO patients were seeded into 24-well
culture plates (1 × 105 cells/well) and treated with PCSK9 and
control siRNAs (50 nM) for 10, 24, and 48 h. Thereafter, cells
were washed and incubated in MTT solution (5 mg/ml) for 3 h at
37°C. Dimethyl sulfoxide (DMSO) was applied for solubilization
and the absorbance of the converted dye was measured with a
microplate reader (EL 340 Bio Kinetics Reader; Bio-Tek
Instruments, Winooski, VT, USA) at 540 nm, with background
subtraction at 630 nm.

Quantitative Real-Time PCR
The RNA was extracted from cells using TriZol (Invitrogen,
Carlsbad, CA, USA). Out of the extract, 1 mg was reverse-
transcribed into cDNA (Qiagen, Valencia, CA, USA) and
amplified with SYBR green real-time PCR master mix in a
StepOne Plus real-time PCR thermocycler (Applied
Biosystems, Foster City, CA, USA). The sequence of primers is
listed in Supplementary Table 2. The PCR results for each type
of mRNA were normalized to the level of GAPDH, and
expressed as fold-change in the Ct value relative to the control
group using the 2-DDCt method (19).

Western Blot Assay
Equal amounts of protein (50 mg) were separated by 10% SDS
polyacrylamide gel electrophoresis. The resolved proteins were
transferred to nitrocellulose membranes and incubated overnight
with primary antibodies at 4°C. Then, the membranes were
probed with horseradish peroxidase–conjugated secondary
antibodies. The bands were detected on X-ray films (GE
Healthcare, Piscataway, NJ), and their intensities were
quantified and normalized to that of the b-actin in the
same sample.

Adipogenesis
Using a previously published protocol, adipocyte differentiation of
GO fibroblasts was induced (20). Cells were cultured in serum-free
DMEM supplemented with T3, insulin (Boehringer-Mannheim,
Frontiers in Endocrinology | www.frontiersin.org 3
Mannheim, Germany), carbaprostaglandin (cPGI2; Calbiochem,
La Jolla, CA, USA), and dexamethasone, along with proliferator-
activated receptor gamma (PPARg) agonist, rosiglitazone (10 mM;
Cayman, Ann Arbor, MI, USA) for 7 days. To evaluate the effect of
PCSK9 siRNA on adipogenesis, cells were transfected with PCSK9
siRNA for the entire 7-day differentiation period according to the
manufacturer’s instructions.

Oil Red O Staining
Cells were stained with Oil Red O as described by Green and
Kehinde (21). A working solution was prepared by diluting 6 ml
of a stock solution (0.5% Oil red O in isopropanol) with 4 ml of
distilled water. The cells were fixed with 3.7% formalin at 4°C for
1 h before being washed with PBS and mixed with Oil Red O
solution for 1 h at room temperature. The cell-solution mixture
was visualized under on a light microscope (Olympus BX60;
Olympus Corp., Melville, NY, USA).

Blood Sampling and Measurement of
Plasma PCSK9 and TBII Concentrations
Blood samples were drawn into test tubes containing sodium
citrate. Platelet-free plasma was obtained after centrifugation at
1,500 g for 15 min at 4°C and stored at −80°C until analysis.
Plasma PCSK9 levels were determined with a commercially
available ELISA kit. All samples were tested in triplicate, and
all sera were run in the same assay. The average value of three
repeated assays was used for statistical analyses. Thyrotropin
(TSH) binding inhibitory immunoglobulin (TBII) was measured
with a third-generation TBII assay using the automated Cobas
electrochemiluminescence immunoassay (Elecsys; Roche
Diagnostics GmbH, Penzberg, Germany).

Statistical Analysis
All experiments were performed in duplicate or triplicate on
samples from each patient, and the results were expressed as
mean ± standard deviation (SD). Comparisons of data between
groups were performed with the independent t-test or ANOVA.
The Bonferroni test was performed as a post hoc test. The Mann–
Whitney U-test and Kruskal–Wallis test were used for
nonparametric or not normally distributed data. Spearman’s
rank correlation coefficient was used to analyze the correlation
of plasma PCSK9 concentrations with CAS and plasma
TBII levels. The SPSS for Windows, version 20.0 (SPSS, Inc.,
TABLE 1 | Clinical and serological characteristics of patient population for ELISA.

Active GO (n=22) Inactive GO (n=22) Non-GO (n=26) p-value

Sex (male/female) 7/15 6/16 3/23 0.213
Age (years), M ± SD 42.41 ± 17.91 40.64 ± 16.91 36.69 ± 14.20 0.575
Smokers, n (%) 6 (27.27) 4 (18.18) 2 (7.69) 0.202
PCSK9 (ng/ml) 256.46 ± 53.49 223.48 ± 36.42 190.83 ± 28.77 <0.001
CAS 4.45 ± 1.47 1.36 ± 0.66 — <0.001
Duration GD (months), median (IQR) 8.55 (2–16) 7.18 (2–22) — 0.396
T3 (0.58–1.59 ng/dl), M ± SD 1.17 ± 0.25 1.17 ± 0.26 — 0.796
Free T4 (0.70–1.48 ng/dl), M ± SD 1.19 ± 0.22 1.23 ± 0.21 — 0.751
TSH (0.35–4.94 mIU/ml), M ± SD 1.40 ± 0.84 1.36 ± 1.00 — 0.605
TBII (0–1.75 IU/L), M ± SD 18.09 ± 12.26 12.99 ± 7.42 — 0.231
Ja
nuary 2021 | Volume 11 | Article
ELISA, enzyme-linked immunosorbent assay; GO, Graves’ orbitopathy; SD, standard deviation; PCSK9, proprotein convertase subtilisin/kexin type 9; CAS, clinical activity score;
GD, Graves’ disease; IQR, interquartile ranges; T3, triiodothyronine; T4, thyroxine; TSH, thyrotropin; TBII, thyrotropin-binding inhibitory immunoglobulin.
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Chicago, IL, USA) was used. A p-value < 0.05 denoted
statistical significance.
RESULTS

GO Tissues Show Increased Expression of
PCSK9, LDLR, and HIF-1a
To investigate its potential role in GO, we measured the
expression of PCSK9 in orbital tissues taken from GO and
non-GO subjects. The RT-PCR results showed that PCSK9
Frontiers in Endocrinology | www.frontiersin.org 4
transcript levels were greater in GO tissues (n=9) than in non-
GO tissues (n=7) (Figure 1A). Additionally, the mRNA levels of
LDLR and hypoxia-inducible factor 1a (HIF-1a) were higher in
GO tissues (n=9) than in non-GO tissues (n=7) (Figures 1B, C).

IL-1b Induces PCSK9 and LDLR in Orbital
Fibroblasts
We challenged GO and non-GO orbital fibroblasts with IL-1b, a
key mediator in GO (18, 22), for 1, 3, 6, 16, and 24 h. The western
blot results showed that IL-1b led the GO and non-GO
fibroblasts to increase PCSK9 and LDLR expression in a time-
A

B

C

FIGURE 1 | Expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), low density lipoprotein receptor (LDLR), and hypoxia-inducible factor 1a (HIF-1a)
mRNAs in Graves’ orbitopathy (GO) and non-GO orbital tissues. The RNA extracted from GO (n=9) and non-GO (n=7) orbital tissues was reverse-transcribed by
real-time PCR and quantified. Experiments were performed in triplicate for each donor. The results showed elevated transcript levels of PCSK9 (A), LDLR (B), and
HIF-1a (C) in GO tissues than in non-GO tissues. Data in the column indicate the mean ± SD fold elevation relative to the control.
January 2021 | Volume 11 | Article 607144

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Lee et al. PCSK9 in Graves' Orbitopathy
dependent manner (Figure 2). The increase in PCSK9 and LDLR
was more prominent in GO than in non-GO fibroblasts.

Silencing PCSK9 Suppresses IL-1b-
Induced Expression of Pro-Inflammatory
Mediators
The western blot results showed that when orbital fibroblasts
were transfected with PCSK9 siRNA, the production of
pro-inflammatory mediators, ICAM-1, IL-6, IL-8, and
cyclooxygenase-2 (COX-2), in response to the challenge with
IL-1b was significantly suppressed in GO and non-GO
fibroblasts (Figure 3).

Silencing PCSK9 Reduces Activation of
Signaling Molecules
As shown in Figure 4, the IL-1b-treatment (10 ng/ml for 60 min)
increased levels of nuclear NF-kB p65 and phosphorylated (p-)
forms of Akt and p38 in GO and non-GO fibroblasts in western
blot analyses. In GO fibroblasts, PCSK9 interference with siRNA
reduced IL-1b-stimulated expression of nuclear NF-kB p65, p-
Akt, and p-p38. In non-GO fibroblasts, the PCSK9 inhibition
suppressed IL-1b-stimulated expression of p-Akt, but not NF-kB
p65 and p-p38.

Silencing PCSK9 Inhibits Proliferation of
GO Fibroblasts
The enhanced proliferative capacity of GO fibroblasts at baseline
and in response to certain cytokines may play a role in the
pathogenesis of GO (23). According to the MTT assay results,
the proliferation of GO fibroblasts slowed down 48 h after being
transfected with PCSK9 siRNA compared to control siRNA-
treated group (Supplementary Figure 1).
Frontiers in Endocrinology | www.frontiersin.org 5
PCSK9 Inhibition Suppresses Adipocyte
Differentiation and Oxidative Stress-
Related Protein Production in GO
Fibroblasts
The transfection of differentiating fibroblasts with PCSK9 siRNA
attenuated adipogenesis on day 7 according to the Oil Red O
staining (Figure 5A). When quantified by measuring optical
density of Oil Red O-stained cell lysates at 490 nm, the same
pattern was identified (Figure 5B). Throughout adipogenic
differentiation, the PCSK9 levels gradually increased (Figure
5C), but PCSK9 siRNA substantially diminished levels of
adipogenic transcription factors, PPARg and CCAAT/
enhancer-binding protein b (C/EBPb), and mature adipocyte
marker, leptin. In addition, silencing PCSK9 markedly decreased
the levels of oxidative stress-related protein, HIF-1a, and
antioxidant proteins, manganese superoxide dismutase
(MnSOD), thioredoxin (Trx), and heme oxygenase-1 (HO-1)
(Figure 5C).

Plasma PCSK9 Protein Levels Are
Elevated in GO and Plasma PCSK9
Concentrations Show Positive
Correlations With Plasma TBII Levels
and CAS
The plasma PCSK9 levels were measured in GO and healthy
subjects by ELISA (Figure 6A). The mean plasma PCSK9 level
was significantly higher in GO patients (n=44, 239.97 ± 48.20 ng/
ml) than in healthy subjects (n=26, 190.83 ± 28.77 ng/ml; p <
0.01). Additionally, the mean plasma PCSK9 level was
significantly higher in patients with active GO (n=22, 256.46 ±
53.49 ng/ml) than in patients with inactive GO (n=22, 223.48 ±
36.42 ng/ml; p=0.01). The plasma PCSK9 level was correlated
FIGURE 2 | Western blot of proprotein convertase subtilisin/kexin type 9 (PCSK9) and low density lipoprotein receptor (LDLR) after interleukin-1b (IL-1b) treatment.
Confluent orbital fibroblasts obtained from Graves’ orbitopathy (GO) (n=3) and non-GO subjects (n=3) were treated with 10 ng/ml of IL-1b for increasing lengths of
time (0–24 h). Western blot analyses were performed to investigate the levels of PCSK9 and LDLR. The treatment with IL-1b increased the levels of PCSK9 and
LDLR in both GO and non-GO tissues in a time-dependent manner. Representative gel images are shown. Data in the columns indicate the mean density ratio ± SD,
normalized to the level of b-actin in the same sample (*p < 0.05 vs. 0 h in each group).
January 2021 | Volume 11 | Article 607144
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with TBII (r = 0.576, p < 0.001, n = 44; Figure 6B) and CAS (r =
0.631, p < 0.001, n = 44; Figure 6C).
DISCUSSION

In this study, we examined the role of PCSK9 in GO
pathogenesis. GO tissues showed increased expression of
PCSK9, LDLR, and HIF-1a. The IL-1b challenge and
adipogenic stimulation led to the increase of PCSK9
and LDLR. PCSK9 silencing with siRNA significantly
decreased pro-inflammatory cytokines production, oxidative
stress-related proteins, adipogenic transcription factors, and
adipocyte differentiation. Importantly, the plasma level of
PCSK9 was elevated in GO patients when compared to the
non-GO subjects. It also showed a positive correlation with
CAS, a measure of GO activity as well as TBII, a predictor of
GO severity (17, 24).

Numerous studies have attempted to clarify the
pro-inflammatory roles of PCSK9 in a variety of disorders
including atherosclerosis, sepsis, psoriasis, steatosis, and
myocardial ischemia (12–14, 25–30). For example, Tang et al.
suggested an atherogenic role of PCSK9 as the suppression of
PCSK9 expression in apoE null mice by means of small hairpin
RNA decreased expression of TNF-a, IL-1b, monocyte
chemotactic protein 1, Toll-like receptor 4, and NF-kB and
reduced macrophage infiltration in the atherosclerotic plaques
(26). In other in vivo and in vitro studies, the PCSK9 inhibition
Frontiers in Endocrinology | www.frontiersin.org 6
diminished pro-inflammatory cytokines production and
macrophage accumulation by inhibiting NF-kB activation (12,
27, 30). In the context of GO, however, there have been no
studies on the role of PCSK9. To the best of our knowledge, this
study is the first of its kind to identify the pro-inflammatory
properties of PCSK9 in GO. Based on our results, silencing
PCSK9 ameliorated inflammation by modulating NF-kB
pathway. Furthermore, the PCSK9 level was higher in GO
tissues compared to the control at baseline, and IL-1b, a key
mediator in GO inflammation (18, 22), increased PCSK9 levels
more prominently in GO fibroblasts than in the control. Our
study suggests that PCSK9 may serve as a therapeutic target for
GO inflammation.

Mounting evidence has shown the anti-adipogenic effects of
PCSK9 depletion (13, 31–33). Currently, PPARg and C/EBPb are
believed to be responsible for terminal differentiation of
fibroblasts into adipocytes (34). The PPARg activation leads to
the expression of adipogenic markers including leptin and fatty
acid synthase (FAS) (35). Upstream of PPARg, molecules such as
E2F1 is thought to be involved (36). Recently, a study on rat
models with alcohol-induced steatosis showed that the treatment
with alirocumab, a human PCSK9 monoclonal antibody,
attenuated expression of FAS and alleviated alcohol-induced
lipid accumulation. Moreover, PCSK9 inhibition reduced
mRNA expression of E2F1 as well as sterol regulatory element-
binding protein (SREBP)-1 and SREBP-2 (13). SREBP-1 and
SREBP-2 have been found to regulate cholesterol- and fatty acid
metabolism-related genes (37). Ruscica et al. also showed that, in
FIGURE 3 | Effect of silencing proprotein convertase subtilisin/kexin type 9 (PCSK9) on the expression of pro-inflammatory cytokines protein. Confluent fibroblasts
obtained from Graves’ orbitopathy (GO) patients (n=3) were treated with either control siRNA or PCSK9 siRNA (50 nM, 24 h). Then, they were challenged with 10
ng/ml of interleukin-1b (IL-1b) and compared to non-IL-1b-treated counterparts. Western blot analyses were conducted to compare the levels of pro-inflammatory
cytokines, intercellular adhesion molecule 1 (ICAM-1), IL-6, IL-8, and cyclooxygenase-2 (COX-2). The same experiment was repeated with fibroblasts obtained from
non-GO subjects (n=3). Representative gel images are shown. The mean density ratio ± SD from fibroblasts were normalized to the level of b-actin in the same
sample (*p < 0.05 between sicon + IL-1b and siPCSK9 + IL-1b; sicon, control siRNA; siPCSK9, PCSK9 siRNA).
January 2021 | Volume 11 | Article 607144
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201 patients with suspected nonalcoholic steatosis, hepatic
PCSK9 mRNA levels were correlated with hepatic SREBP-1
and FAS expression (31). These results are consistent with the
those of our own study; the PCSK9 inhibition attenuated
adipogenesis as identified by Oil Red O and blunted the
expression of PPARg, C/EBPb, and leptin. Furthermore,
the PCSK9 expression gradually increased throughout the
adipogenic differentiation. In this study, we present the
evidence for the adipogenic role of PCSK9 in GO. However,
whether PCSK9 directly modulates PPARg or C/EBPb activity
needs to be further investigated. Furthermore, as PPARg agonists
have recently been suggested to modulate helper T cell-related
chemokine production in GO (38), further studies are needed
to examine if PCSK9 intervention modulates PPARg-
mediated inflammation.

Adipogenesis is thought to be closely associated with
oxidative stress (39), and both are found by our study to be
significantly suppressed by the PCSK9 inhibition. Multiple
studies have proven the anti-oxidative effects of PCSK9
suppression in several disorders including atherosclerosis and
myocardial infarction (14, 40). Locally produced reactive oxygen
species (ROS) leads to the oxidation of LDL and contributes to
atherogenesis (41). Transfection of endothelial cells and vascular
Frontiers in Endocrinology | www.frontiersin.org 7
smooth muscle cells with PCSK9 siRNA substantially decreased
the production of ROS (40). In several in vitro studies, PCSK9
inhibition reduced ROS generation, while PCSK9 overexpression
produced the opposite results (14, 42–44). In an in vivo study,
PCSK9 knockout mice expressed significantly less NADPH
oxidase and subsequently less ROS in aorta (40). These results
are in line with those of our study. As antioxidants, Trx, MnSOD,
and HO-1 are induced by oxidative stress and protect tissues
from oxidative injuries (45–47). Under hypoxia, HIF-1a is
activated to increase the expression of genes involved in
adipogenesis and tissue remodeling in GO (39). Our results
demonstrated that PCSK9 inhibition blunted the level of
oxidative stress-related proteins which was induced by
adipocyte differentiation. Previously, we have found that
quercetin inhibits cigarette smoke extract-induced adipogenesis
in GO fibroblasts by reducing ROS (48). Additionally, we have
reported several molecules with anti-oxidative properties such as
resveratrol, caffeine, and curcumin suppress adipogenesis in GO
fibroblasts (49–51). Given that oxidative stress contributes to the
proliferation of orbital fibroblasts (52), the impeded proliferation
of GO fibroblasts by PCSK9 inhibition demonstrated in this
study may be attributed to the anti-oxidative property of the
PCSK9 inhibitor.
FIGURE 4 | Effect of silencing proprotein convertase subtilisin/kexin type 9 (PCSK9) on the activation of signal molecules by interleukin-1b (IL-1b) treatment.
Confluent orbital fibroblasts obtained from Graves’ orbitopathy (GO) patients (n=3) were treated with or without 10 ng/ml of IL-1b after transfection with control
siRNA or PCSK9 siRNA (50 nM, 24 h). Treatment with IL-1b (10 ng/ml, 60 min) resulted in an increase in the levels of nuclear NF-kB p65 and phosphorylated forms
of Akt and p38. The treatment with PCSK9 siRNA in GO cells significantly blunted the increases in the transcription factors. However, in fibroblasts from non-GO
subjects (n=3), the PCSK9 inhibition only suppressed the phosphorylated Akt. Representative gel images are shown. Data in the columns indicate the mean density
ratio ± SD of the bands obtained from the GO patients, normalized to the level of b-actin in the same sample (*p < 0.05 between sicon + IL-1b and siPCSK9 +
IL-1b).
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FIGURE 5 | Proprotein convertase subtilisin/kexin type 9 (PCSK9) siRNA suppresses adipogenesis and oxidative stress in Graves’ orbitopathy (GO) fibroblasts.
Orbital fibroblasts from GO (n=3) patients were cultured in adipogenic medium to induce differentiation into adipocytes for 7 days. (A) Oil red O staining showed
treatment with PCSK9 siRNA (50 nM, 24 h) attenuated adipogenesis. (B) Quantification by measurements of optical density of cell lysates at 490nm echoed the
histochemical results. The results are presented as the mean optical ratio ± SD (*p < 0.05 between sicon and siPCSK9). (C) Western blot analyses showed that
throughout the 7-day period of adipogenesis, the cell lysates of fibroblasts collected at different time points showed a gradual increase in production of PCSK9,
which was markedly decreased when PCSK9 siRNA (50 nM, 24 h) was treated. The levels of adipogenic transcription factors, peroxisome proliferator-activated
receptor gamma (PPARg) and CCAAT/enhancer-binding protein b (C/EBPb), were substantially curtailed in fibroblasts transfected with PCSK9 siRNA. The levels of
mature adipocyte marker, leptin, were also significantly reduced in the PCSK9 siRNA-treated group. The levels of antioxidants, manganese superoxide dismutase
(MnSOD), thioredoxin (Trx), and heme oxygenase-1 (HO-1), and oxidative stress-related protein, hypoxia-inducible factor 1a (HIF-1a) were significantly decreased in
the PCSK9 siRNA-transfected group. Data in the columns indicate the mean density ratio ± SD, normalized to the level of b-actin in the same sample, and
representative gel images are shown (*p < 0.05 between sicon and siPCSK9 on days 0, 3, 5, and 7 of adipogenesis).
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The changes in the level of phosphorylated forms of
transcription factors upon the transfection of PCSK9 siRNA
in GO fibroblasts indicate that a complex network of signaling
pathways may exist. In this study, the PCSK9 inhibition
decreased the activation of Akt and attenuated adipogenesis
in GO fibroblasts. Our study with siRNA transfection is
limited by the lack of mRNA data, which would have
provided additional insights to its effect at transcriptional or
translational level. However, like other studies that have
employed similar methods (53, 54), we believe that we have
shown a concrete evidence with western blot and ELISA that
PCSK9, regardless of the mechanism with which its level is
modified, affects inflammation and adipogenesis in GO. In
line with our study, Kumar et al. have previously reported that
an autoantibody against TSH receptor stimulated the
phosphoinositide 3-kinase (PI3K)/Akt pathway and induced
adipogenesis of orbital preadipocytes in GO (55). They
asserted that this pathway triggered the terminal stages of
adipogenesis. Another recent study by our group has
presented that an Akt inhibitor suppressed adipogenesis in
GO orbital fibroblasts (56). Another downstream effector of
PI3K/Akt pathway, Forkhead box O (FOXOs), has also been
demonstrated to repress excessive adipogenesis and
hyaluronan overproduction in GO fibroblasts (57). As
multiple studies, including our own, continue to highlight
the importance of the PI3K/Akt pathway in the GO
Frontiers in Endocrinology | www.frontiersin.org 9
pathogenesis, further studies are necessary to identify the
interaction between the signaling molecules as well as PCSK9.

Finally, we show that plasma PCSK9 levels were significantly
higher in active GO patients than inactive GO patients as well as
healthy subjects. These results, along with the higher PCSK9
mRNA levels in GO tissues, strongly suggest the involvement of
PCSK9 in GO pathogenesis. Moreover, the plasma PCSK9 level
revealed a strong correlation with plasma TBII level as well as
CAS. Its role in many other inflammatory and autoimmune
diseases such as systemic lupus erythematosus, rheumatoid
arthritis, and type 1 diabetes demonstrates its complex biological
activity (58–60). Identifying new biomarkers and therapeutic
targets such as PCSK9 can further our knowledge of these
disorders and lead to the development of effective treatments.

In conclusion, we demonstrated that PCSK9 inhibition
countered pro-inflammatory cytokines production, oxidative
stress-related proteins, adipogenic transcription factors, and
adipocyte formation in GO fibroblasts. The PCSK9 level
was increased during the IL-1b challenge and adipogenic
stimulation. The plasma PCSK9 level was elevated in GO
patients and positively correlated with clinical inflammation
and thyrotropin receptor antibody titer, indicating that PCSK9
is a potential biomarker for diagnosis and prognosis of GO.
Further studies are needed to establish the response to PCSK9
inhibitors in vivo and explore the use of the inhibitor as an
effective therapeutic strategy for GO.
A

B C

FIGURE 6 | Comparison of plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) between Graves’ orbitopathy (GO) patients and non-GO subjects,
and correlation analyses between plasma levels of PCSK9, thyrotropin-binding inhibitor immunoglobulin and clinical activity score (CAS). The plasma levels of PCSK9
were measured in GO patients and non-GO subjects using ELISA. The samples were assayed in triplicate. (A) The mean PCSK9 plasma level was significantly higher
in the GO patients (n=44, 239.97 ± 48.20 ng/ml) than the healthy subjects (n=26, 190.83 ± 28.77 ng/ml; p < 0.01). A single dot represents the value obtained from
a single donor. The results of Spearman’s rank correlation test between plasma levels of PCSK9 (GO patients, n=44) and (B) plasma levels of thyrotropin binding
inhibitory immunoglobulin (TBII) (GO patients, n=44) or (C) clinical activity score (CAS) (GO patients, n=44) are shown. The plasma PCSK9 concentrations showed
significant associations with the plasma TBII levels (r = 0.576, p < 0.001) and CAS (r = 0.631, p < 0.001).
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SUPPLEMENTARY FIGURE 1 | siRNA-mediated knockdown of PCSK9 in GO
and non-GO fibroblasts. GO (n=3) and non-GO (n=3) orbital fibroblasts were
transfected with PCSK9 siRNA (50, 100 nM) for 24 h. As shown in western blot
results, the level of PCSK9 was significantly decreased following RNA interference.
b-actin was included as a loading control. NC, normal control.

SUPPLEMENTARY FIGURE 2 | Effect of PCSK9 siRNA on viability of GO
fibroblasts. Orbital fibroblasts of GO patients (n=3) were seeded in 24-well culture
plates, 1 × 105 cells per well. PCSK9 siRNA (50 nM) were applied to wells for 10, 24,
and 48 h and MTT assay was conducted to test cell viability. Results are presented
as mean ± SD. Assays were carried out in triplicate and repeated at least three
times. The proliferation of GO fibroblasts was impeded in PCSK9 siRNA-treated
fibroblasts compared to the control.
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