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The pituitary is a master endocrine gland that developed early in vertebrate evolution and
therefore exists in all modern vertebrate classes. The last decade has transformed our
view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized
collection of cells that respond to hypothalamic stimuli by secreting their content.
However, recent studies have established that pituitary cells are organized in tightly
wired large-scale networks that communicate with each other in both homo and
heterotypic manners, allowing the gland to quickly adapt to changing physiological
demands. These networks functionally decode and integrate the hypothalamic and
systemic stimuli and serve to optimize the pituitary output into the generation of
physiologically meaningful hormone pulses. The development of 3D imaging methods
and transgenic models have allowed us to expand the research of functional pituitary
networks into several vertebrate classes. Here we review the establishment of pituitary cell
networks throughout vertebrate evolution and highlight the main perspectives and future
directions needed to decipher the way by which pituitary networks serve to generate
hormone pulses in vertebrates.

Keywords: pituitary, networks, plasticity, vertebrates, evolution
INTRODUCTION

Biological variation is a defining characteristic in the process of species evolution and adaptation.
Variation in morphology, physiology, or behavior within species is a prerequisite for evolutionary
processes, like natural selection, to occur. In an ever-changing natural world, the organisms able to
respond more efficiently to those changes are better fitted to their environment and could be selected
(1). In this context, highly plastic systems are also adaptive since the information from both external
and internal environments is better integrated. An example of such a highly plastic system is the
pituitary gland, which secretes several key hormones that maintain homeostasis in all
vertebrates (2).

The pituitary gland is embryonically derived from Rathke’s pouch and is therefore considered to
be of ectodermal origin (3, 4), although at least in fish, a small percentage of pituitary endocrine cells
have endodermal origins (5). The pituitary of all vertebrates consists of three anatomically and
developmentally distinct structures called the neurohypophysis or posterior pituitary, the
adenohypophysis, or anterior lobe and the intermediate lobe, all of which function in close
interdependence with the hypothalamus. The neurohypophysis comprises the neural lobe
n.org January 2021 | Volume 11 | Article 6193521
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(mainly oxytocin- and vasopressin-secreting neuroendocrine
terminals in mammals and their homologous isotocin and
vasotocin in non-mammalian vertebrates), the median
eminence (the functional link between the hypothalamus and
the anterior lobe), and the infundibulum. The intermediate lobe
is mainly composed of melanotrophs that regulate skin
pigmentation. The anterior lobe of the pituitary, which is the
main focus of this review, is populated by five types of secretory
cells: somatotrophs, gonadotrophs, lactotrophs, thyrotrophs, and
corticotrophs, that may be identified by their hormone
compos i t ion and the i r re sponse to hypotha lamic
neurohormones. In mammals, these cell types follow a similar
pattern of stimulus-secretion coupling that regulates the
neuroendocrine axes and allows the preservation of
homeostasis (6).

In all vertebrates, the main driver of pituitary secretion is the
hypothalamic input. Factors released from hypothalamic neuron
terminals into the pituitary portal system bind to their cognate
receptors on target pituitary cells and elicit a signaling cascade
that induces release (or inhibition) of hormone secretion from
the pituitary (7) into the vascular system in a pulsatile manner,
the pattern of which is critical in regulating the activity of the
downstream target organs (2). Yet the individual cellular
dynamics in vitro do not recapitulate the whole gland pulse
generation needed for physiological actions. For example, in vivo,
GH-secreting cells produce massive GH pulses (up to 1,000-fold
rise) in response to physiological cues (8, 9), whereas these
pulses are significantly weaker in vitro (10). The same
dependence of hormone pulse generation on the tissue context
has been observed in gonadotrophs (11–14), corticotrophs (15–
17), and lactotrophs (18, 19). Thus, in order to generate this fine-
tuned and coordinated secretion, a large-scale communication
system must exist within the anterior pituitary that is critical for
the ability to generate hormone surges.

In recent years, the use of high resolution imaging in
combination with large-scale cell activity recordings has
revealed the homotypic and heterotypic network arrangement
of the mammalian pituitary cells (i.e., intercellular connectivity
between the same secretory cell type or between different cell
types, respectively). Research in this field has pointed out the
relevance of the network organization in coordinating the
synchronized and rhythmic secretion of hormones (16, 20).
Intriguingly, the existence of cell networks has been identified
in all major groups of vertebrates. As an example, in fish, which
represent the most basal group of vertebrates, when the
gonadotroph network connectivity is disrupted, the hormone
secretion is compromised, as well as its biological significance
(21, 22). It can be concluded from these facts that a) pulse
generation is achieved thanks to cell networks, b) the importance
of the pulse mode of secretion is revealed by studies in which its
production is limited, and is followed by physiological
perturbations in the target organs of regulation, and c) cell
network formation, which is essential for the organization of
these pulses, is conserved throughout vertebrate evolution (2).

Despite the clear importance of pituitary homotypic and
heterotypic networks in the coordination of hormone
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pulsatility, research into this subject has been limited. Here, we
review the current knowledge and methodological approaches to
assess the function of pituitary networks throughout vertebrate
evolution. The mechanisms involved in pulse generation, as an
adaptive and plastic process that promotes the rhythmic
secretion of hormones in vertebrates, will be discussed from a
cell network perspective. We then explore the evolution of these
networks in different groups of vertebrates, from fish to
mammals and discuss the importance of the cellular networks
in the phenotypic plasticity. We conclude that a comparative
approach to the study of pituitary networks is fundamental to the
comprehension of the system both under normal and
pathological conditions. It is important to clarify that factors
such as the well-established hypothalamic drive, the peripheral
tissues and the environment are fundamental in the generation
of hormone pulses and should be integrated in order to
understand the system as a whole. However, the pituitary
gland has its own local and plastic modes of autonomic
regulation and its interaction with the hypothalamus is a
complex two-ways regulation.
HYPOTHALAMIC CONTROL OF THE
PITUITARY GLAND IN VERTEBRATES

Over the course of vertebrate evolution, the general morphology
of the pituitary gland has remained constant, with three main
lobes whose function depends on the integration of signals
originating from hypothalamic nuclei and from the systemic
circulation (23). While a general anatomic plan is observed in the
pituitary gland of all vertebrates (Figure 1), the specific
arrangement of the endocrine cells (Figure 2), as well as the
way by which their communication with the brain is executed,
show great variation across taxa.

Teleost pituitaries in particular exhibit an important
deviation from the masterplan of the tetrapod pituitary in
respect to the anatomy of the hypothalamus-pituitary interface.
Studies of fish pituitaries found that in ancient forms such as
cartilaginous fish, sturgeons, and gars the hypothalamic fibers
terminate and release their content onto the basal membrane
separating the neurohypophysis from the adenohypophysis. The
secreted hypothalamic factors then diffuse through the
connective tissue and are uptaken by the pituitary vascular
system that delivers them to their pituitary target cells (24).
This neuro-vascular mode of delivery was perpetuated in the
tetrapod evolution and is the dominant mode by which the
hypothalamus exerts its effect on pituitary cells in all known
tetrapods (24) (see Figure 1). However, studies of teleost
pituitaries revealed a unique characteristic that was not found
in any other vertebrate: hypothalamic fibers crossed the
basement membrane that separates the neuronal tract from the
adenohypophysis and formed terminals adjacent to endocrine
cells (see teleost fish in Figure 3) (25–31). This unique
characteristic drew so much attention, that a direct,
neuroglandular mode of regulation was considered the main
mode operating in teleosts.
January 2021 | Volume 11 | Article 619352
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The development of transgenic fish with labeling of three
components of the HP axis (GnRH3 cells, gonadotropes and
blood vessels) enabled researchers to re-visit the existing dogma.
Upon the examination of the GnRH tracts in pituitaries labeled
for gonadotropes it became clear that the direct neuroglandular
mode of regulation cannot be considered as the dominant route
of gonadotrope regulation. This is because not all gonadotropes
are contacted by GnRH terminals and because the vast majority
of these terminals are not in the vicinity of the gonadotropes
(32). By using transgenic fish with labeled blood vessels it became
apparent that the GnRH terminals are in much closer association
with the pituitary afferent vessels than with the gonadotropes
(see the teleost fish in Figures 3 and 5). This organization
strongly suggests that, at least in zebrafish, GnRH signals reach
their pituitary targets through the blood or through diffusion
rather than via direct neuro-glandular contacts. A dominant
neuro-vascular interaction is also observed in other species and
other hypothalamus-pituitary axes (31–36).

The distinction between a direct, neuroglandular mode of
regulation versus an indirect, neuro-hemal mode of
hypothalamic factor delivery has important consequences over
the functional physiology of the hypothalamic pituitary axis. A
direct, neuroglandular mode of communication would require
considerably smaller concentrations of hypothalamic factors to
be secreted since the secretagogues will be delivered directly to
the target cell. Such a direct communication mode may also
Frontiers in Endocrinology | www.frontiersin.org 3
affect the timescale of the regulation as a very temporally precise
signal could be delivered to the target cells resembling the
timescales of communication between neurons. Moreover, if
the anatomical interactions between terminals and cells are
very precise, it would make the variety of hypophysiotropic
signals largely redundant as the specificity of the regulation
could be achieved by controlling the type of neuron contacting
a specific pituitary cell type rather than by different
secretagogues. To date, there is no evidence to suggest that
teleost pituitaries differ in any of these aspects from the more
widely studied mammalian pituitary.

While it is admittedly difficult to evaluate the functional
contribution of the different delivery modes, at least from a
quantitative point of view, the direct, synaptic-like contacts
between terminals and their pituitary targets seem to play a
less important role than previously thought in the regulation of
pituitary secretion. Instead, diffusion from terminals through the
pituitary tissue to the target cells (either passive, or, like in
tetrapods, assisted by local blood flow), appears to be the
dominant way by which pituitary endocrine cells receive their
hypothalamic signals. Therefore, the anterior neurohypophysis
of teleosts may act as a functional median eminence that is
embedded into the pituitary in teleosts. The evolution of the
hypothalamo-pituitary axis has recently been thoroughly
reviewed by Trudeau and Somoza (37) and interested readers
are encouraged to refer to this excellent review for more detail.
FIGURE 1 | Phylogeny of the principal groups of vertebrates and anatomical pituitary organization (anterior-caudal-dorso-ventral orientation). Terminal branches of
the phylogenetic tree show a representative organism of each clade (A, jawless fish; B, cartilaginous fish; C, ray-finned fish; D, lungfish; E, amphibian; F, reptile that
includes birds; G, mammal) and their sagittal representation of the main structures in the pituitary gland according to (23). Median divergence times from the
TimeTree database were used to construct the tree, numbers in the phylogeny are million years.
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In the next section we briefly cover the principal mechanisms
involved in the maintenance of homotypic and heterotypic cellular
networks in the pituitary, by means of cell-cell contacts or paracrine
communication. Those mechanisms are present in all vertebrates
but their contribution may vary depending on the communication
with the hypothalamus, vascular arrangement of the pars distalis,
distribution of cell types in the gland (regionalized or scattered), and
formation of heterotypic networks (see Figures 1 and 2).
MODES OF COMMUNICATION

Gap Junctions
Gap-junctions (GJ) are transmembrane channels that allow the
free cell-to-cell exchange of cytoplasmic molecules of <1,000
daltons molecular weight. The intercellular communication
through GJ is an important source in the transport of
cytoplasmic constituents (including water and ions), metabolic
substrates (such as sugars, amino acids, nucleotides), and second
messengers (mainly calcium, IP3, and cAMP) between cells. In
the pituitary gland, gap junctions are an important mode of
communications in all studied vertebrates. For example, gap
junctions have been shown to couple fish pituitary cells (38, 39).
In the rat, cells show a high level of intercellular coupling
through gap junctions, where lucifer yellow diffusion was
Frontiers in Endocrinology | www.frontiersin.org 4
found up to 300-microns away from its site of injection (40).
In addition, the transport between cells was primarily in
lactotrophs, somatotrophs and folliculostellate cells (FS cells).
Only a few LH, TSH, and ACTH cells were labeled (40). In all
vertebrates gap junctions are considered a critical component in
the coupling of pituitary cells and allow a coherent transmission
of signals and the formation of cell networks (2, 19, 22, 41–48).

In terms of cell activity, Guérineau and collaborators have
demonstrated the fundamental role of gap junctions in the
synchronization of electrical activity (49). By multicellular
measurement of spontaneous intracellular calcium mobilization
in tissue preparations, the authors found the presence of
clusters of pituitary cells that were in close proximity to each
other and rhythmically coactive. As small molecules (Lucifer
yellow, 457 Da), but not large molecules (Texas Red, 3 000 Da)
spread between the co-active cells, in combination with the
observation that a gap-junction blocker reduces the spread of
synchronization, it was concluded that coordination between
neighboring secretory cells is mediated by gap junctions. Of
particular importance, the connected cells were principally of
the same phenotype but not all the adjoining cells from the
same phenotype were coupled. This fact indicated that the global
response of secretory cells during hypothalamic stimulation
involves, as we shall see, other mechanisms of cell communication
that are not mutually exclusive.
FIGURE 2 | Sagittal representation of the endocrine cells distribution in the pituitary gland of vertebrates. The distribution of cell types has been modified over the
evolution of vertebrates. In agnathans and teleosts, here represented by the sea lamprey and Nile tilapia, respectively, cells are markedly regionalized. Amphibians
and reptiles present a regionalized distribution of some cell types, but others are scattered through the pars distalis. In contrast, the mammalian secreting cells are
widely scattered throughout the lobe. In lampreys there is only one cell type producing glycoprotein hormone (GPH, a gonadotropin homologue) and thyrostimulin
(TSN, a TSH homologue). Additionally, teleost fish possess a unique cell type that produces somatolactin, the somato-lactotroph, not shown. A, anterior or rostral; P,
posterior or caudal; D, dorsal; V, ventral.
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Changes in gap junction expression patterns have been linked
to plasticity in the pituitary gland. Modifications in connexins 43
and 26 expression (subunits of gap junctions), have been
reported in rodents, following physiological challenges and
Frontiers in Endocrinology | www.frontiersin.org 5
aging (50–54). For example, GJ expression is modified
according to the stage of the estrous cycle, probably reflecting
the plasticity of cell connectivity during the generation of
hormone pulses. Indeed, other authors have reported that
FIGURE 3 | The gonadotroph network and the relation with the hypophyseal portal system in vertebrates. Midsagittal view of the pituitary gland in relation to the
hypothalamus (anterior at the left, dorsal to the top) using confocal microscopy. Shown are immunostainings for LHb (green) in five different species of vertebrates
(zebra fish, Danio rerio; axolotl, Ambystoma mexicanum; bullfrog, Lithobates catesbeianus; lizard, Sceloporus aeneus; mouse, Mus musculus). In contrast to
tetrapods, where LH-containing gonadotrophs are well distributed in the pars distalis, in teleost these cells are confined to the rostral pars distalis. The merge detail
column is a power magnification of the precedent, showing that gonadotrophs establish cell-cell contact to form an interdigitated network and reveal that this pattern
of cell organization is extended to all vertebrates. Note that the vascular network pervades the pars distalis and gonadotrophs form process to the capillaries (red,
lectin-rhodamine), with the exception of zebrafish. DAPI counterstain is shown in blue. Dashed lines mark the three main regions of the pituitary. HYP, hypothalamus;
PD, pars distalis; PI, pars intermedia; PN, pars nervosa; ME, median eminence. Scale bars represent 400 mm in whole-gland views and 20 mm for merge detail.
January 2021 | Volume 11 | Article 619352
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estrogens play an important role in their regulation, since the
absence of testosterone and estradiol downregulate the number
of gap junctions by a quarter or more compared to intact rats (46,
55–57). Other experiments show that factors such as
hydrocortisone, have a suppressive effect on the GJ formation
between FS cells and between endocrine pituitary cells (58).

Folliculostellate Cells
A population of glial-like cells, the FS cell network, is present in
the pituitary gland of all major taxa of living vertebrates, and in
mammals these non-endocrine cells comprise about 5–10% of
the anterior pituitary cell mass (39, 59–62). These agranular cells
have a characteristic stellate shape with long cytoplasmic
processes, and arranged as a 3D anatomical network that
extends over the whole gland in mammals (48, 53), aves (62),
amphibians (63), and in fish (39). FS cells respond to a large
variety of external and internal stimuli and produce growth
factors and cytokines, such as fibroblast growth factor (FGF)-2,
vascular endothelial growth factor (VEGF)-A, follistatin, and IL-
6, all of which potentially have paracrine effects and regulate the
activity of neighboring hormone-secreting pituitary cells (64).

The FS cell network has been suggested to wire the endocrine
cells of the pituitary by relaying relevant signals throughout the
gland. Secretory cells in the pituitary are intertwined through the
vasculature and the FS network. The wave propagation of ions as
Ca2+, and small molecules as IP3 or cAMP, through GJ within the
FS cell network, allow synchronized excitability within the
anterior pituitary gland (48, 65). Although, the distance and
velocity in which the information can propagate to parenchymal
cells has not been investigated yet, there is evidence supporting
that the anterior pituitary possesses an intrinsic system of
communication, that allows long-distance transmission of
information within its parenchyma (66, 67). FS cells may have
a central role in this process due to their gap-junction mediated
network properties, and the expression of a large variety of
signaling molecules. Hence, distant endocrine cells might
receive coordinated information from both systemic molecules
through the vasculature and paracrine signals primarily coming
from the FS-cell network (48).

In mammals, it has been reported that FS cells can generate
different responses in groups of endocrine cells surrounded by
their cytoplasmic processes, thus forming functional clusters
(66–68). Interestingly, it has been observed that GnRH-neuron
projections converge not only at the blood capillaries, they are
also adjacent to FS cells in the pars tuberalis (68, 69). Still, gap
junctions between the GnRH-neuron terminals and FS cells, as
well as GnRH-induced calcium response in FS cells have been
recognized (69–71). In this sense, in addition to the vascular
system, cell signaling in the FS network generated by
hypothalamic stimuli, may be a route to propagate signals
throughout the pituitary (66–69, 72, 73). In this respect, the
unique anatomy of the teleost pituitary may provide interesting
insights, since stellate cells have been reported to form dense
networks around the neurohypophysis that penetrates deep into
the parenchyma of the adenohypophysis (39). As a hypothesis to
be proved, some endocrine cells may receive the signals only
Frontiers in Endocrinology | www.frontiersin.org 6
from the pituitary portal system and others could additionally
integrate signals propagated by the FS-cell network, according to
their distribution in the pituitary (70) (see Figure 2).

Paracrine Communication
Paracrinicity is the process of short-distance communication
between cells by substances released within the same tissue. The
substance reaches its target by diffusion in the extracellular space
or by direct contact formation (juxtacrine factors). More than
100 compounds in the pituitary have been identified as paracrine
or autocrine factors (64). They include the neurotransmitters,
growth factors, cytokines tissue factors such as annexin-1 and
follistatin, hormones, ATP, NO, among others (64). The majority
of paracrine or juxtacrine molecules, act through G-protein
coupled receptors, with inhibitory (Gi) or excitatory (Gs)
action, activating in most cases voltage gated channels activity
and intracellular [Ca2+], as well as a whole host of other receptor
types capable of affecting down-stream kinase and protein
phosphorylation status (74). Paracrine signaling is a slow
diffusion process, which occurs over seconds to minutes. This
process of molecular diffusion is one of the main scenarios for
possible organization and communication presumably sufficient
to account for coordinated endocrine cell population activity and
surge hormone output (74). However, this diffusion process
seems to lack the directionality that would allow the formation
of homo- or heterotypical networks, unless evidence is found to
show that it could be a process directed through, for example, the
interaction of molecules with the extracellular matrix. A more
spatially precise intercellular signaling may be accomplished in
the form of juxtacrine factors, as annexin 1 (formerly lipocortin-
1), a phospholipid-binding protein which is predominantly
expressed by the FS network (74).

In mammals, an extended review by Denef summarizes the
paracrine interactions in the pituitary gland (64). The first
evidence of the possible paracrine relationship between
endocrine cells was established from gonadotrophs and
lactotrophs, where the stimulation of gonadotrophs secretion
with gonadotropin-releasing hormone (GnRH) triggers prolactin
secretion (PRL) (75). More complex relationships were
established between gonadotrophs and somatotrophs, in which
it was observed that in aggregates of these two cell types, the
GnRH stimulation produce an initial inhibition of GH release,
whereas after GnRH stimulation, a rapid rebound secretion of
GH was observed, suggesting that GnRH had both inhibitory and
stimulatory actions on GH release (76). Gonadotrophs have a
large number of secreted peptides who are potential candidates
for a paracrine action. Some of these peptides modulate
corticotroph activity when added exogenously to pituitary cell
preparations (64). An inverse relation between lactotrophs and
gonadotrophs was also established by the inhibition of LH
secretion in hyperprolactinemia condition (77).

Other possible paracrine interactions imply coordination
between different pituitary endocrine cells. For instance, the
hypothalamic-pituitary-adrenal axis that is activated during
stress. In this condition, there is a need to increase the
metabolic rate in order to maintain body temperature, and this
January 2021 | Volume 11 | Article 619352
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process is regulated by the hypothalamic-pituitary-thyroid axis
(78). Further example of crosstalk with the HPT axis is during
pregnancy and lactation, in which energy consumption has to be
adapted. The mechanisms involved in the regulation of these
homeostatic changes are still largely unknown but paracrine
interactions are likely to be involved in the heterotypic network
communication (64).

In fish, paracrine interactions between pituitary cells have
been shown to comprise an important regulatory layer of
pituitary cell function and probably operate at a slower
timescale than gap-junction mediated transmission. Perhaps
one of the most interesting aspects of this communication
mode in fish is the interplay between the growth and
reproductive axis through the paracrine effects of LH on GH
cells. Studies in grass carp have shown that both GH and LH
have a stimulatory effect on GH expression and release whereas
GH has an inhibitory effect on LH release (79). Cross
communication between the growth and reproductive axes in
fish is also achieved via the activin/inhibin/follistatin pathway as
these genes are expressed in the pituitary and have known effects
on gonadotropin expression (80–83) and the GH-LH interaction
(84). The expression and secretion of somatolactin (SL), a
member of the GH/prolactin family, has been shown to be
autoregulated by the two SL isoforms (85, 86) as well as by
kisspeptin (87), a hypothalamic hormone that in fish is also
produced in the pituitary gland (88). Other proposed autocrine
and paracrine effects between different axes in the fish pituitary
have been proposed such as the effect of NKB produced in
gonadotropes (89) on lactotrophs and somato-lactotrophs (90).
Secretoneurin-a, a potent stimulator of gonadotropes in goldfish
is produced in lactotrophs of the rostral pars distalis and may
link the two axes via paracrine effects on the gonadotropes of the
proximal pars distalis (91). Recent findings in long-term culture
adult medaka female pituitary, showed that, Fsh cells which do
not possess Gnrh receptors start to express them, allowing Fsh
cells to produce Lh. These observations suggest that in vivo, a
paracrine signal inhibits Gnrh receptor expression in Fsh cells
and maintains their mono-hormonal identity (21, 35, 92).

It is also possible that paracrine factors not just mediate
homotypic and heterotypic network formation, but also could
have a priming effect on axis function because in PRL cells, the
increased organization associated with lactation persists for
months after weaning and leads to enhanced function (93).
Despite a large body of evidence, we are still far from
understanding the full effect of paracrinicity on network
formation, because it is technically difficult to isolate this
process from others such as communication between GJ or
electrical conduction in FS cells.
FUNCTIONAL PITUITARY NETWORKS
IN VERTEBRATES

Fish
One of the unique features of the fish pituitary is a high level of
regionalization in the distribution of endocrine cells [(37, 94) and
Frontiers in Endocrinology | www.frontiersin.org 7
Figures 2 and 3]. This compartmentalization of the cells results
in homotypic clusters of cells that favor direct cell-cell
interactions and the formation of homotypic cell networks. Yet
despite this unique topology, the study of cell networks in fish
pituitaries has lagged behind that of mammals. The first evidence
for direct cell-cell communication in fish pituitaries was the
discovery of electrotonic cell coupling in the tilapia pituitary (38).
Using double-patch electrophysiology on live pituitary slices, this
groundbreaking work has shown for the first time the existence
of gap-junction mediated communication between teleost
pituitary cells. However, at the time, the type of coupled cells
was unknown. Since then, many of the new insights regarding
pituitary networks in fish were drawn from three model species:
the zebrafish (Danio rerio), the Japanese medaka (Oryzias
latipes), and Nile tilapia (Oreochromis niloticus). In these
species, the generation of transgenic fish with labeled pituitary
cells (35, 95–98) was an important turning point as it provided
the opportunity to study topological cells networks in 3D and
opened the way to functional studies of cell-cell interactions.
Interestingly, in all three species, the main study of pituitary
networks has concentrated on the gonadotrope cells of the
anterior pituitary, leaving future studies to focus on other cell
types. One of the reasons for this specific focus on gonadotropes
stems from the fact that in fish, as opposed to tetrapods, LH and
FSH are secreted from discreet cell populations rather than from
a single cell type. This feature makes teleosts a particularly
attractive model to study the differential regulation of LH and
FSH secretion.

Studies in these three teleost species confirmed the existence of
functional gonadotrope networks in fish. In tilapia and zebrafish,
we have shown that LH cells are connected by gap junctions (22).
In medaka, Karigo and co-authors used calcium imaging to show
that in the intact gland LH cells exhibit a high level of
synchronization in their activity (98) although the mode by
which the cells communicate was not investigated. More
recently, working with pituitary slices from medaka, Hodne et
al. have used precise calcium uncaging in individual LH cells to
show that the calcium signal can propagate to neighboring cells in
a both homo-and heterotypic manner, leading to the conclusion
that LH cells act as a relay for GnRH signals to FSH cells (35). The
importance of the functional coupling has been revealed by its
effect on hormone secretion from tilapia pituitaries. Application of
gap junction blockers decreased GnRH-induced LH release from
perfused pituitary fragments seven-fold (22), underscoring the role
of the network in mounting an efficient response to hypothalamic
stimuli. Interestingly, while tilapia LH cell output is highly
attenuated by application of gap-junction blockers, FSH release
remains largely unaffected. In medaka, calcium activity of FSH
cells also seems to be less synched compared to their LH
counterparts suggesting that the lower level of coupling between
FSH cells may be a common feature offish FSH gonadotropes. The
notion that FSH cells act individually while LH cells mount
coordinated responses is also evident in their secretion patterns
since the induction of gonadotropin secretion in vivo causes a
considerably stronger fold increase over basal levels in LH
compared to FSH (89, 99–101).
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Long extensions have been described in fish gonadotropes
both in situ and in culture (32, 95, 102, 103). It is difficult to
postulate as to the function of these processes but two plausible
options are that these appendages are used for cell-cell
communication or as a bridge between the cells and the
vasculature. One line of evidence from cultured medaka cells
(102) suggests that these processes do not relay signals between
cells but are instead used for cell motility which serve to bring the
cells together thus promoting cell-cell contacts and the formation
of a network. It is hard to evaluate whether the processes serve
the same role in vivo as in the adult medaka pituitary the cells are
highly clustered yet the projections are still observed (102).
Findings from the zebrafish model suggest that these processes
are more likely to operate as extensions of the cells toward the
vasculature than for intercellular communication. In the
developing zebrafish, FSH cell extensions are clearly oriented
in one direction: toward the primary plexus of vessels entering
the pituitary (32). The aforementioned cytoplasmic processes are
all directed toward the afferent vessels and terminate on their
endothelium. This finding is even less surprising when
considering the fact that not only metabolites are acquired
from the blood, but also GnRH signals. At this early
developmental stage no contact between gonadotrope and
GnRH terminal exists. However GnRH fibers do reach the
primary plexus, thus their output is carried through the blood
to reach the developing gonadotropes (32). In addition to
receiving blood-borne signals through the processes, these
projections can also be used to deposit hormones to the
circulation. In fact, medaka LH cell projections have been
shown to develop large varicosities around the process-vessel
junctions (102). It therefore seems more likely that the
gonadotrope extensions are used to access the circulation than
to mediate cell communication, though further investigations
into this aspect are required.

While the study of pituitary cell networks in fish is still in its
early stages, it is clear today that these networks developed early
during vertebrate evolution and their function was conserved in
higher vertebrates. In order to fully appreciate the role and
function of pituitary networks in fish, future studies will have
to extend the focus onto other pituitary cell types and probe the
plasticity of these networks in response to physiological
challenges that require the modulation of pituitary output.

Amphibians
Metamorphosis
The process of metamorphosis in vertebrates is well represented
by the post-embryonic morphological remodeling in
amphibians, where changes in physiology and behavior also
occur. During metamorphosis, the neuroendocrine system
plays a major role orchestrating the modifications at cellular
and molecular levels in tissues by thyroid hormones (104–106).
Particularly, a peak of thyroid hormone secretion marks the
beginning of the process and the thyrotrophs, from the
hypothalamus-pituitary-thyroid axis, exert a direct action over
the production of this peak (107). As thyroid hormone continues
to stimulate tissue remodeling, a continuous activity of
Frontiers in Endocrinology | www.frontiersin.org 8
thyrotrophs in the pituitary is also needed to maintain the
secretion levels of the former (108, 109). Thus, thyrotrophs
must shift plastically the secretion pattern by remodeling their
structure and their relation with other cellular types within the
pituitary and feedback loops in the axis (108, 110).

It is noteworthy that TSH secretion during amphibian
metamorphosis is stimulated by CRF, the hypothalamic factor
from the stress axis and not by TRH (111, 112). It is now
understood that in amphibians, TRH activates TSH secretion in
thyrotrophs of metamorphosed individuals but not in larval ones
as reported in the bullfrog, reflecting that the thyrotroph
plasticity is modified ontogenetically (113, 114). This
phenomenon implies that thyrotrophs express receptors for
TRH and/or that corticotrophs may regulate TSH secretion
through paracrine communication (110, 115, 116). To date, the
physiological and structural relationship between corticotrophs
and thyrotrophs in the process of metamorphosis and whether a
heterotypic network is formed remains to be elucidated, but it is
possible to speculate about their intimate relationship, based on
the shared main hypothalamic factor that regulates these cells
types and also that the stress axis participates actively during the
metamorphosis and its developmental plasticity (110, 117–120).
Furthermore, cell plasticity in other pituitary cell types is also
observed during metamorphosis. For example, when the
salamander Hynobius retardatus was arrested prior to
metamorphosis, an increase in the number of TSH-secreting
cells was observed as well as an increase in bihormonal
phenotypes such as TSH-PRL and TSH-GH, presumably
involving transdifferentiation (121, 122).

The hypothalamus-pituitary-thyroid axis is also intertwined
with the reproductive axis, where amphibian TSH in
combination with gonadotropins has been demonstrated to
trigger gonadal maturation (122, 123). Metamorphosis may
modify gonadal maturation under environmental influence as
demonstrated in urodels with neoteny, the heterochronic process
where the larval phenotype is retained but organisms are sexually
mature (124). Studies comparing the modification in the
pituitary networks before and after metamorphosis in
pedomorphic species (e.g., Ambystoma mexicanum; see Figure
3) with those with direct development (e.g., the bullfrog; see
Figure 3) may reveal some of the molecular mechanisms
involved in network plasticity, but also about its interaction
with the hypothalamus (125–127).

MSH Cells
Melanotrope cells are essential for amphibian camouflage via
secretion of alpha-melanophore-stimulating hormones (a-
MSH), a hormone derived from the POMC protein (128, 129).
The melanotroph cells are restricted to the pars intermedia; in
contrast to other secretory cells in anterior pituitary that are
heterogeneously distributed and where heterotypic contacts are
formed. The cluster organization of melanotrophs, must permit a
fine coordination in response and a-MSH secretion, and
probably involves gap junctions since expression of connexins
(Cx43) has been reported (130, 131). The vascular system is a
second candidate for melanotrope cells organization and
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remodeling. In fact, in normal conditions, the pars intermedia is
poorly vascularized compared to the adenohypophysis (see
Figure 3), the capillary networks are present at the borders
between the neural lobe and intermediate lobe (Figure 1).
However, in transgenic frogs (Xenopus laevis) that overexpress
VEGF-A in the pars intermedia, there is a complex formation of
a vascular network (132). VEGF-A, the vascular endothelial
growth factor, is involved in the formation of the vascular
system during the development of the hypothalamus-pituitary
system, and in the transgenic Xenopus, the increase of the
vascular network has several consequences in the pars
intermedia. First, these new capillaries are distributed around
the lobules formed by melanotrophs. Second, the intermediate
lobe is up to 3.5-fold greater than in control frogs as a
consequence of melanotroph hypertrophy and hyperplasia, but
the pars distalis is not reorganized. The implication of these
results pointed to the active role of the vascular network in
pituitary function and homeostasis. Further studies will be
required to understand the effect of the vasculature in the pars
distalis where cell networks are differentially disposed to the
capillaries (see Figure 3). Specific modifications in the vascular
system of animal models, as the example offered here, may also
reveal how endocrine diseases emerge as vascular problems
(2, 133).

Reptiles and Birds
The establishment of cellular networks in the reptilian pituitary
has not been studied directly, but the available literature indicates
that homotypic and heterotypic networks may exist. For
example, close contact between cells from the same lineage
(including thyrotrophs), cluster formation, and cytoplasmic
extensions have been reported by immunohistochemical
studies (134–136). Due to their phylogenetic position between
amphibians and mammals, reptiles gain relevance in the study of
evolutionary transitions in the pituitary structure and function.
Of particular importance may be the investigation of the
chronological appearance of pituitary cell types, a process
where ontogeny probably does not recapitulate phylogeny.
Based on the work of Yamaki and collaborators, it has been
demonstrated that the sequential development of endocrine cells
in the mammalian pituitary varies largely in other vertebrates
without a clear pattern, even close species show diversity in
pituitary developmental programming (137). As an example, the
establishment of the gonadotroph network upon the
corticotroph scaffold, as described in mammals (138) may not
be the case in turtles or fish, where corticotroph cell distribution
is principally restricted to the rostral pars distalis, although
gonadotrophs are widely distributed in the lobe (Figures 2 and
3). Comparative cell lineage in combination with other methods,
such as lineage tracing, single RNA sequencing, and functional
studies will reveal the mechanisms underlying the structure of
pituitary networks, the heterochronic appearance in vertebrate
development and their plasticity.

Mammals
Of all vertebrates, pituitary networks in mammals, and
particularly in mice, have been studied in the most
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comprehensive manner and their existence has been
demonstrated in lactotrophs, gonadotrophs, somatotrophs,
corticotrophs, and folliculostellate cells (2, 16, 19, 20, 48). The
modes by which mammalian pituitary cells communicate have
been described earlier. Unlike in other vertebrate classes, works
in mammals have focused not only on the existence of pituitary
cell networks, but also on the way by which these networks
modulate their function to meet the changing demands of
the animal.

Lactotrophs
The process of lactation requires a big amount of prolactin
production and secretion from pituitary by lactotrophs. Milk
production requires a 10–50-fold increase in prolactin secretion
and involves a marked decrease of dopamine production by
neurons in the hypothalamus (18, 139). Dopamine normally
inhibits prolactin secretion through dopamine receptors coupled
to inhibitory G-proteins that block the voltage gated calcium L-
channel and change the membrane potential, but also through a
short-loop feedback mediated by prolactin itself. However,
during lactation DA-producing neurons switch from inhibiting
prolactin secretion to promoting its release by secreting
enkephalin (139). Although necessary, these hypothalamic
changes do not account for the major alterations that support
the increase in prolactin secretion (2).

In 2012, Hodson and collaborators reported the existence of
physiological and morphological plasticity in the lactotroph
network that reinforce the secretion activity of these cells and
were not directly dependent on hypothalamic activity (19). First,
from experiments of intracellular calcium measurements in
lactotrophs, it was shown that during lactation, the network
functional connectivity is more robust as both calcium coactivity
between pairs of cells and correlation in calcium profiles
increase. Remarkably, in virgin mice the network connectivity
of lactotrophs is low and only few cells harbor the majority of
these connections. In contrast, in lactotrophs from lactating mice
there is an increase in the proportion of significantly correlated
cells and new nodes emerge. This last characteristic of the
network persists after weaning, even months after the lactation
event is over. Second, increase in connectivity is not a direct
result of the decrease in dopamine production, since in virgin
mice treated with a dopamine-receptor antagonist, an increase in
functional connectivity is not observed. Furthermore, the
interruption or decrease in suckling stimulus during lactation
significantly reduces this functional network at values to those
observed in virgin mice. Third, the coordinated functional
activity in the network is directly dependent on structural
connectivity due to lactotroph hypertrophy and gap junctions.
When a gap junction blocker was applied to the lactotroph
network from a lactating female, the connectivity resembled
the network of virgin mice. Finally, the plastic transition of
this network remains assembled and is crucial in subsequent
lactation events that are characterized by a prolactin secretion
improvement (19). The effects of the lactotroph network
reconfiguration on other networks, for example gonadotrophs
and reproductive axis, and the heterotypic interactions remain
open questions, but their physiological relevance is clear.
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Gonadotrophs
Another process where the hypothalamic regulation of pituitary
does not account for the shift in hormone release is offered by
gonadotrophs and LH secretion throughout the estrous cycle. LH
and FSH secretion are necessary for follicle maturation and
ovulation in females but they are differentially secreted through
the reproductive cycle (140). For example, in proestrus the pattern
of LH pulse secretion turns into a surge mechanism that has been
largely seen as a consequence of the GnRH surge, the main
stimulating factor of gonadotrophs in the hypothalamus.
However, GnRH stimulus per se is not the causal phenomena for
the significant increase in responsiveness and secretion by
gonadotrophs (140, 141).

In vitro, it has been reported that during diestrus, the
gonadotroph response to GnRH is limited and just a small
proportion of the population present intracellular calcium
activity (142). High concentrations of GnRH (100 to 1,000
nM) are necessary in this state of the cycle to produce the
whole-population response, but the amount of LH secretion does
not increase significantly. On the other hand, in proestrus, low
GnRH concentrations are sufficient to trigger a whole population
response and, more importantly, the majority of gonadotrophs
secrete a larger amount of LH. Despite the increase in
gonadotroph responsiveness and LH secretion during proestrus
that depend upon GnRH receptor expression, these processes
also involve the gonadotroph network reconfiguration and its
relation with vasculature (143).

From experiments ex vivo, where tissue interactions are
preserved, the gonadotroph network reveals dynamic and
plastic adaptation in proestrus through an increase in cell
number (probably involving cel l proli ferat ion and
transdifferentiation). Gonadotrophs also increase cell-cell
contacts (involving cell motility), and the increase of
protrusions toward other gonadotrophs and to the vascular
systems (141, 143). Taken together, these cell modifications
and changes in responsiveness to GnRH during the estrous
cycle, account for the regulation in the rhythm and mode of
LH secretion at different phases of the reproductive cycle. The
plasticity in gonadotrope cells at the molecular, cellular and
population levels and a comparison of shared mechanisms
between fish and mammals has been recently reviewed and for
a more in-depth description the reader can refer to (21, 144).

Plasticity in gonadotrophs is canalized in a context-
dependent manner: inputs from the reproductive axis as well
as from the environment are interpreted within the network to
activate or attenuate the system output. For example,
testosterone, estradiol, and GnRH have been reported to
stimulate the LH secretion, cell proliferation, and GnRH
receptor expression when present at certain concentrations and
rhythmicity, but may desensitize the network and inhibit the LH
production and secretion when present for prolonged periods of
time or higher concentrations (21, 145).

Most factors involved in the network establishment are
necessary but not sufficient for a complete explanation of the
mechanisms involved in the gonadotroph function as a network.
GnRH is an element that triggers the network response since the
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intrinsic activity of gonadotrophs is not particularly synchronized
and is not associated with gonadotropin secretion (see Figure 4)
(147). Furthermore, the amount of gonadotropin secretion is
influenced by the balance of hormones in the reproductive axis
and includes a reconfiguration in the network connectivity and
this change is associated but is not a consequence of the GnRH
stimulus (141, 143). Such connectivity is principally constructed
through soma-soma contact and cytoplasmic extensions in which
gap junction-mediated intercellular communication or cytosolic
connection are involved. However, if the gonadotroph network is
wired only by cell-cell contact, one could expect that cells in close
proximity to each other, should present a similar pattern of
response and form clusters where degrees of synchronization
may be highest (19, 47). Interestingly, the analysis of clusters by
correlation in the patterns of calcium mobilization shows that
distant cells respond to GnRH similarly, but cells in contact or
surrounded by capillaries may exhibit different responses,
indicating that other mechanisms such as paracrine
communication or connectivity with FS cells play an important
role in the network function (64, 148, 149) (Figure 4). In
addition, the functional and structural connection in the
gonadotroph network is plastic and remodels throughout the
estrous cycle, probably following the physiological demand
during the proestrus of an LH surge (143). The variety of
molecules and processes involved in the network formation,
their relative contribution, as well as their degree of plasticity
requires further investigation.

Heterotypic Interactions
The homotypic network organization of gonadotrophs and
lactotrophs discussed before provide evidence for its
physiological relevance and plasticity. GH-secreting cells are
the third population in pituitary that are organized in a
homotypic network. This network is reconfigured during
puberty with a sexually dimorphic pattern, probably as a result
of different and dynamic feedback exerted by gonadal steroids (8,
150, 151). To date, the homotypic GH-cell network is the most
extensively studied population in the anterior pituitary. There is
evidence demonstrating the intimate interaction of the
somatotroph network with other cellular types forming
exquisitely arranged heterotypic networks, and when these
interactions are disrupted, there are important repercussions
at the gland-level hormone secretion (150, 152–155). For
example, the ablation of somatotrophs at different degrees,
compromises the pituitary production of TSH, PRL, LH, and
ACTH, resulting in a modified ultrastructural composition of the
cells and pituitary hypoplasia (152, 156, 157). Importantly, GH-
cell ablation also impairs cell-cell communication between this
homotypic network and other cell types, instead of causing GH
reduction. The mechanisms of buffering the complete loss of
somatotrophs in this model suggests an overproduction of the
lineage from progenitor cells and a reduction in the generation of
other lineages (152, 156, 157). Other possibilities could reflect
transdifferentiation from different cell types since lactotrophs
have been reported to decrease in number in these conditions,
and it may also reflect the plastic function of multiresponsive
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FIGURE 4 | Reconfiguration of the gonadotroph network throughout the reproductive cycle. (A) Intracellular calcium recordings in ex vivo preparations of mouse
pituitary loaded with the calcium sensor Fluo 4-AM (green) and rhodamine for vasculature (red). Monitoring of calcium activity was performed on the ventral side of
the gland under an epifluorescence stereomicroscope and continuously perfused with Ringer’s solution [methods as in (146)]. Color traces show the intracellular
calcium activity of individual gonadotrophs in response to 10mM GnRH, indicating clusters of gonadotrophs surrounded by vasculature with a similar (pink and
yellow boxes), or heterogenous (blue box) calcium response. (B) Heatmap and network organization of basal calcium activity of correlated pairs of gonadotropes
from a male mouse. Gonadotrophs stimulated with GnRH in male mouse (C), female mouse in diestrus (D), and proestrus (E) showed an increase in synchronized
calcium activity compared to basal activity. Notice that the overall correlation values are similar between diestrus and proestrus, as well as their connectivity. Bars in
the heatmaps indicate sorting of gonadotropes by correlation but not by spatial proximity, while groups of gonadotrophs surrounded by vasculature are represented
with the same color in bars. Network maps were plotted using qgraph and significant pairs (edges) of correlated cells (nodes) are shown (P < 0.05).
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cells that have been observed to increase under several
physiological challenges (158, 159). However, the mechanisms
involved in this process remain to be explored.

Less understood is the ontogeny of the homotypic and
heterotypic networks in the pituitary gland. The observation of
the complex arrangement of networks leads to the question
regarding the developmental origin of cellular interactions and
two options are possible. First, it is possible that at the point of
cell proliferation of one lineage, cells never lose the contacts
(such as cytonemas) and form a continuum allowing high
synchronicity of activity and identity prevalence of the
homotypic networks, as observed in the first stages of
spermatogenesis (160). Alternatively, the cells might appear
isolated, establish a position in the gland, and after that, the
lineages could acquire the connectivity observed in adulthood.
The available literature revealed that the second option is
observed during development in the corticotroph and
gonadotroph networks (138). Corticotrophs and gonadotrophs
first appear in the ventral side of the pituitary as small cells
without cytoplasmic projections, and isolated from other cells of
the same lineage. Then, corticotrophs reshape their morphology,
penetrate into the adenohypophysis, and interconnect with other
corticotrophs and with the vasculature through cytoplasmic
projections (138). Gonadotrophs follow the same pattern and
it is reasonable to speculate that the organization of other
networks in the gland also appears just after terminal
differentiation (16, 138).

The sequential differentiation of cell types in the pituitary also
suggests that homotypic interactions establish first and the
heterotypic networks appear later, although the lineages that
are developmentally older have a repercussion over the newborn
cells and lineages (156, 161). For example, LH-positive cells first
appear in the ventral surface of the pituitary at embryonic day
17.5 when the homotypic network of corticotrophs is already
established. LH cells then form a homotypic network using the
corticotroph network as a scaffold. In fact, blocking cell
differentiation of the POMC lineage leads to an increase in the
number of LH-expressing gonadotrophs that are mainly located
where corticotrophs should be distributed (138, 162).

One may ask whether the increase of the gonadotroph
population after the interruption of corticotroph establishment
during development is due to a physical or morphogenetic
constraints exerced from corticotrophs to the other
populations. The idea that corticotrophs and gonadotrophs
probably arise from a common precursor, suggests that the
extended gonadotrophs lineage in deficient POMC cell
differentiation is more than expansion of the former in an
“empty niche,” reflecting a complex feedback between
networks. For example, the transcription factor Tpit, expressed
exclusively by POMC cells, exerts a negative effect over SF1, the
transcription factor associated with the establishment of the
gonadotroph phenotype (162, 163). This and other molecular
interactions (e.g., pit-1 blocking the expression of the
gonadotroph-like phenotype in thyrotrophs throughout
GATA-2), suggests that a molecular interplay exists between
cell lineages and results in an equilibrium of cell populations (16,
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138, 164). The dynamic equilibrium achieved during ontogeny
could persist to adulthood and shift to different points of
equilibrium in a context-dependent manner, with the
possibility of return to previous states, revealing the substrate
of a highly plastic gland with cell populations that are able to
navigate toward alternative phenotypes [see for example Sox2-
expressing cells in adult organisms (156, 159, 165, 166)].

To date, other heterotypic interactions between the five
mammalian adenohypophyseal populations have not been
investigated but there are reasons to speculate about their
relation and interdependence. First, the interlocked cell
arrangement of gonadotrophs and corticotrophs was
uncovered recently only by 3D image analysis that is hidden
under classical 2D microscopy analysis (138). In this sense,
thyrotrophs, the less abundant secretory population, may
reveal a 3D continuous distribution in the pituitary [but see
(130)]. Second, under diverse physiological challenges,
transdifferentiation between cell types occurs independently of
their ontogenetic proximity. For these reasons, the proportion of
multi-responsive and multi-hormonal cells are constantly
fluctuating, and different phenotypes such as lacto-
somatotrophs, somato-gonadotrophs, gonado-lactotrophs have
been observed (144). Finally, as we have mentioned before in this
work, paracrine communication may play an important role in
heterotypic communication, although its full implications are
not yet clear (64).
CONCLUSIONS

Despi te var ia t ions in the hypotha lamus-p i tu i tary
communication and the organization of the cell populations
within the gland, pituitary cell networks have persisted
throughout evolution, revealing their pivotal role in the ability
of the pituitary to mount effective responses to hypothalamic and
systemic stimuli. Two major elements allow the formation of
networks in the pituitary gland: cell-cell contacts and diffusible
factors, both present in vertebrate species, although with
different preponderance. For example, in fish, where cell types
are present in clusters and hypothalamic innervation invades the
pituitary gland (see Figure 5), the secreted factors by these
neurons near the vasculature reach their pituitary targets by
diffusion. However, as not all cells in a cluster (see gonadotrophs
from Figure 5) are in close proximity to neuron terminals and
capillaries, a synchronized response is also achieved by gap
junctions. Furthermore, the relevance of the vascular systems
may reside in the delivery of nutrient and oxygen supply as well
transport of pituitary outputs to the blood circulation,
meanwhile paracrine and FS cells could produce a balance
between distinct secretory cells and neuroendocrine axes. In
contrast, in mammals, where the endocrine cells are
distributed along the gland and the hypothalamic neurons
secrete to the vasculature in the median eminence, a smaller
proportion of the network could receive hypothalamic factors by
diffusion (Figure 5). It seems that homo and heterotypic
communication allow coordinated propagation of signals
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FIGURE 5 | A multimodal communication between the hypothalamus and pituitary cell networks. Shown are sagittal sections (20 mm) of 4% paraformaldehyde fixed
tissue, anterior at the left, dorsal to the top. Immunocytochemistry for gonadotrophs containing the LHb subunit (green) and GnRH neurons (gray), species as in
Figure 3. The distribution of gonadotrophs in the pars distalis, proximal to the hypothalamus, have remarkable cell-cell contacts in the tetrapod species, in teleost
these cells are exclusively found in the rostral pars distalis forming a clear-cut cluster. The gonadotroph network arrangement is highly influenced by the vascular
system (red; lectin-rhodamine), since these cells have cytoplasmic extensions to the capillaries. In tetrapods, the GnRH-producing neurons extend their projections to
the median eminence where GnRH is secreted to the capillaries. In contrast, the GnRH neurons in teleost unfold throughout the pituitary and establish at the
boundaries of the gonadotroph patch, following the vascular system. Note the close proximity between gonadotrophs and GnRH at the median eminence of
tetrapods. DAPI is shown in blue for counterstain. Scale bars represent 200 mm.
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between distant cell subpopulations, that may be enhanced
through FS cells, paracrine factors and gap junction in small
spaces (100 mm). Moreover, in other cell types that are less
proximal to the median eminence (e.g., thyrotrophs), probably
the hypothalamic signals are initially delivered through the
vasculature and propagated by FS afterward. In summary,
plasticity and evolution of the pituitary gland is the tinkering
of existing parts combined in new ways rather than the creation
of new parts.

In all vertebrate species, different physiological changes such
as development, metamorphosis, reproductive cycles, stress, and
metabolism require different pituitary outputs, not limited to
large changes in the amount of secreted hormones, but also in
timing and pulse frequency. Therefore, the gland and its
interactions with the hypothalamus, organs, and tissues of
the body are constantly being remodeled. The integration of
all signals and the generation of hormone pulses, is the
result of the plasticity of pituitary cell homotypic and
heterotypic networks. Therefore, the interaction between
these endocrine networks, are an important driver of the
organism homeostasis.

The plasticity of hormone secretion in the pituitary gland has
largely been seen as the result of changes in the hypothalamic
input and pituitary-intrinsic modulations such as cell
proliferation, cell size modifications, transdifferentiation, and
multi-responsiveness. However, this review and other authors
have contributed to the discussion of the elements that support
the complexity of hypophysial plasticity. Several elements are
involved to achieve this plasticity and have been discussed in
detail (16, 20), these are: a) gain of function, by integration of
stimuli from neuroendocrine axis and systemic information in the
interaction of axes, as GH and PRL-networks, whose coordinated
response to GHRH and TRH, respectively, is not seen when cells
are dispersed; b) plasticity for hormone secretion, during changes in
physiological demand, as seen in puberty when the GH axis is
highly active and there is an increase in male somatotroph
clustering associated with large amplitude of GH pulses; c)
experience-dependent response , that is improved as a
consequence of repeat demand, as mentioned in lactotrophs
during the process of lactation; d) network support of
transcriptional synchronization, when gene transcription follows
a rhythmic pattern at the population level that is lost in dispersed
cells, as it happens in lactotrophs; e) redundancy through
modularity, although all the cells in a homotypic network are
connected, there are subgroups of cells connected more strongly
than other, this fact promotes certain independence of activity,
and perturbations in a given region not necessarily affecting the
whole network given the possibility of local homeostasis.

It is noteworthy that, despite their enormous functional
importance, the study of pituitary networks is still in its
infancy. In the last years there has been more literature
focusing on the study of the pituitary as a system with
functional networks. The term “network(s)” associated with
the pituitary gland, as a main topic, first appeared in scientific
literature in 1990, with the study of avian adenohypophysis and
the effect of a serotonin precursor on thyrotrophs and the
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follicle-stellate network (167). In the next years, the concept of
pituitary networks became popular and just in the last 10 years,
890 publications have been reported using the term network as a
topic, according to The Web of Science Core Collection.
Research of pituitary networks refers to different levels of
interaction including protein-protein, protein-DNA, protein-
metabolite, and cell homotypic and heterotypic networks (20).
Accordingly, this young research field is highly productive and
growing rapidly, showing the relevance of the cellular
interactions when studying plasticity of the gland under
diverse physiological demand.

So far research has focused mainly on the mammalian model
of mice and, more recently, on fish. Research in both of these
organisms has relied heavily on transgenic animal models that
allow the identification, monitoring and manipulation of specific
cell populations in live tissue as well as 3D imaging of the cell
networks. Extending the study of functional pituitary networks to
other vertebrate classes will be greatly assisted by the generation
of transgenic animals in these taxa.

The development of genetically encoded calcium indicators
(168) and in vivo imaging techniques (169) are expected to play an
important role in advancing our understanding of the function
and plasticity of pituitary cell networks in the coming years. These
methods will allow researchers to extend the study of these
networks from slices to freely moving and behaving animals and
will therefore significantly increase the physiological relevance of
our insights. Furthermore, single-cell transcriptomics (5, 170) and
precise genome editing through viral delivery (171) will allow
researchers to reveal the molecular machinery that drives the
function and plasticity of pituitary cell networks, the relative role
played by the elements that establish these networks and the
relevance of the multimodal communication in the hypothalamus-
pituitary system.
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