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The centrosome apparatus is vital for spindle assembly and chromosome segregation
during mitotic divisions. Its replication, disjunction and separation have to be fine-tuned in
space and time. A multitude of post-translational modifications (PTMs) have been
implicated in centrosome modulation, including phosphorylation, ubiquitination and
acetylation. Among them is the emerging O-linked N-acetylglucosamine (O-GlcNAc)
modification. This quintessential PTM has a sole writer, O-GlcNAc transferase (OGT),
and the only eraser, O-GlcNAcase (OGA). O-GlcNAc couples glucose metabolism with
signal transduction and forms a yin-yang relationship with phosphorylation. Evidence from
proteomic studies as well as single protein investigations has pinpointed a role of O-
GlcNAc in centrosome number and separation, centriole number and distribution, as well
as the cilia machinery emanating from the centrosomes. Herein we review our current
understanding of the sweet modification embedded in centrosome dynamics and
speculate that more molecular details will be unveiled in the future.
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INTRODUCTION

The centrosome apparatus, as its name suggests, has been at the center of cell biology (1, 2).
Structurally, each centrosome contains two centrioles. In quiescence animal cells, centrioles will
form cilia, which function as sensing antenna and have been associated with many ciliopathies (35
types) due to developmental defects or homeostasis imbalance (3). In dividing cells, centrioles build
the centrosomal structure by assembling the pericentriolar material (PCM) matrix around it, thus
comprising the microtubule organization centers and exerting various cellular effects via the
microtubule cytoskeleton system. Disruption of the centrioles or centrosome structures will
wreak havoc on many biological processes (1, 2). The centrosome cycle has to be in perfect
synchrony with the cell cycle (4). It replicates as DNA synthesizes, and both occur once and only
once per cell cycle. It segregates as chromosomes separate, and emanates the spindle apparatus to
ensure faithful segregation of the sister chromatids. Therefore, the number and the timing of
separation have to be under stringent control so that a successful mitosis will ensue.

Previous investigations have unveiled that duplication, maturation, disjunction, separation and
degradation of centrosomes are fine-tuned by an intricate network of kinases, phosphatases, ubiquitin
E3 ligases (5) as well as O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). OGT is the
Abbreviations: O-GlcNAc, O-linked N-acetylglucosamine; OGT, O-GlcNAc transferase; OGA, O-GlcNAcase; PBD, polo-
binding domain; TMG, Thiamet-G; CDK1, cyclin-dependent kinase 1; MYPT1, Myosin Phosphatase Targeting Subunit 1;
PP1cb, Protein Phosphatase 1 cb; PTM, Post-translational modification.
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only writer for the O-GlcNAc modification. About 2–5% of the
glucose we consume each day is shunted into the hexosamine
biosynthetic pathway (HBP) to generate UDP-GlcNAc (6, 7),
which is the donor group of the GlcNAc moiety to the Ser/Thr
residues of substrate proteins. Now four decades’ foray into this
mysterious modification has unveiled that it could crosstalk with
other post-translational modifications (PTMs), and regulate
various biological processes, such as transcription, cell cycle and
stress response. Not surprisingly, it underlies cancer,
neurodegenerative diseases and diabetes (6, 7). However, how
O-GlcNAc dictates various aspects of centrosome dynamics has
been anecdotal. Here we review the sweet bits and pieces of
centrosome biology and attempt to fathom our future
strides forward.
O-GlcNAc MEDIATES THE CENTROSOME
NUMBER

The first inkling of implication of OGT in the centrosome comes
from cytology, as it was found in 2005 that OGT localizes to the
centrosome (8) and later to the mitotic spindle (8, 9). What is
perplexing is that both OGT and OGA overproduction cause
supernumerary centrosomes (10), suggesting that it is not a
linear relationship between O-GlcNAc levels and centrosome
numbers. It is a possible scenario that some centrosome assembly
proteins are under dynamic regulation of both OGT and OGA.

Then in 2010, a large scale proteomic study aiming to
elucidate the mitotic role of OGT was carried out (9), and 141
new proteins involved in spindle and cytokinesis were
pinpointed to be regulated by O-GlcNAcylation. Of particular
interest is the nuclear mitotic apparatus protein (NuMA1).
NuMA1 is O-GlcNAcylated at Ser1844, as revealed by the
glycoproteomic studies (9), and later shown to regulate spindle
pole cohesion (11). O-GlcNAcyated NuMA1 associates with
Galectin-3 that belongs to the lectin family. In the O-GlcNAc-
defective S1844A mutant of NuMA1, the partnership between
NuMA1 and Galectin-3 is abolished and the spindle pole
cohesion is defective, resulting in multipolar spindles. These
results suggest that centrosomal Galectin is pivotal for
centrosome integrity, via O-GlcNAcylated NuMA1 (11).

Besides centrosomal components, kinases also fine-tune the
centrosome structures. Aurora B, a member of the chromosomal
passenger complex (CPC) that coordinates the intricate process of
spindle assembly and disassembly (12), complexes with both OGT
and OGA (13). Furthermore, the mitotic master kinase—polo-like
kinase 1 (PLK1) (5) is O-GlcNAcylated in vitro (14). But whether
the interaction between these kinases and OGT directly regulates
centrosome dynamics still warrants further investigations.
O-GlcNAc GOVERNS CENTROSOMAL
DISTANCES

Totally unexpected, research from our lab discovered Thiamet-G
(OGA inhibitor) treatment will significantly distance the two
Frontiers in Endocrinology | www.frontiersin.org 2
centrosomes during interphase (15). This untimely event will
have deleterious effects on the subsequent chromosome
segregation. As the segregation of centrosomes are dictated
by PLK1 (5), we reasoned the premature centrosome
separation phenotype could be due to an upregulation of PLK1
kinase activity. Since PLK1 kinase activity is regulated by
phosphorylation at T210 in its kinase domain (16), and T210
is dephosphorylated by the Myosin Phosphatase Targeting
Subunit 1 (MYPT1)-Protein Phosphatase 1 cb (PP1cb)
complex (17), we investigated MYPT1 O-GlcNAcylation.

Although O-GlcNAcylation of MYPT1 was reported in
2008 (18), its modification site and function are yet to be
revealed. In perfect timing with our investigation, chemical
biology approaches utilizing metabolic glycan labeling and
chemoenzymatic labeling together with click chemistry has
witnessed a surge of O-GlcNAc profiling work (19, 20), and
among the proteins idenfied is MYPT1. By trial-and-error
mutagenesis studies, we showcased that MYPT1 is O-
GlcNAcylated at four major sites: T577, S585, S589 and S601.
The perfect marriage between chemistry and biology will
certainly invite many fresh opportunities.

The mechanism of MYPT1- PP1cb to dephosphorylate PLK1
has been unravelled: cyclin-dependent kinase 1 (CDK1) will
phosphorylate MYPT1 at S473, thus creating a binding pocket,
and subsequently docks MYPT1 to the C-terminal polo-binding
domain (PBD) of PLK1 (17). MYPT1 then recruits PP1cb,
bridging the phosphatase and its substrate, and PLK1 will then
be dephosphorylated (17). By biochemical assays, we provide
incisive evidence that O-GlcNAcylation almost totally negates
phosphorylation effects. By antagonizing pS473, O-
GlcNAcylation disjoins MYPT1 from PLK1, thus maintaining
PLK1 pT210 activity (15) (Figure 1).

Almost concomitantly, Pedowitz et al. (21) also studied
MYPT1 O-GlcNAcylation. They unraveled that under basal
conditions it antagonizes pT696, which is an inhibitory
phosphorylation for the myosin phosphatase, and controls
actin contraction. Like two sides of the same coin, these two
stories reveal that one modification could carry out disparate
physiological functions during distinct biological processes.
O-GlcNAc NEGATIVELY REGULATES
CILIA IN QUIESCENT CELLS

Two papers came out in 2018 and 2019, describing that
O-GlcNAc exerts a negative effect on ciliogenesis and cilia
lengths (22, 23). Yu et al. (22) first utilized DB mice that
harbor diabetic mutations in the leptin receptor, and noticed
that DB mice have fewer and shorter cilia than wild type. They
further exploited human retinal pigment epithelial (RPE-1) cells,
and serum-starved them in conjunction with distinct glucose
concentrations. Again, high glucose induces fewer and shorter
cilia. In the follow-up investigations, they manipulated cellular
O-GlcNAc levels via different approaches—glucosamine (a
precursor of UDP-GlcNAc), siRNA targeting OGA, TMG and
BZX (OGT inhibitor). And every time, they observed the
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consistent phenotype. Cytologically, OGT is also discernable at
the basal body where cilia emanate. Lastly, by feeding the DB
mice with BZX, Yu et al. discovered that decreasing O-GlcNAc
levels could rescue the ciliary defects partially. Thus the
convergence of diabetes and ciliopathy phenotypes might lie
upon O-GlcNAc imbalance.

Tian et al. took a different angle of attack. They adopted
hTERT-RPE1 and IMCD3 cells, and used siRNA targeting OGT,
OGA inhibitors including TMG and GlcNAcstatin G (SG), and
alloxan (used in this study as an OGT inhibitor) to measure the
ciliary effect of O-GlcNAcylation. Although we need to take
the alloxan result with a bit of caution (Alloxan is not a specific
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OGT inhibitor), Tian et al. also discovered a negative effect on
cilia by O-GlcNAc (23), congruent with the results from Yu
et al. (22). Mechanistically, a-tubulin and histone deacetylase 6
(HDAC6) are found to be O-GlcNAcylated. As HDAC6 is the
main deacetylase for axonemal microtubules, they demonstrated
that HDAC6 O-GlcNAcylation promotes its deacetylase
activity and thus microtubule disassembly, culminating in
cilia shortening (23). Currently, the O-GlcNAcylation sites of
a-tubulin and HDAC6 remain to be explored.
O-GlcNAc REGULATES CENTRIOLE
NUMBERS AND DISTRIBUTION

In a follow-up investigation by Yu et al. (24), Ogt+/- mice were
generated. Again, shorter ciliary lengths and fewer ciliary
numbers were observed. When they used mouse tracheal
epithelial cells (MTECs) as a model to study cilia biogenesis,
upon OGT inhibition by BZX or OSMI-1, the number and
distribution of centrioles were aberrant (24). Intriguingly,
scanning electron microscopy (SEM) reveals that BZX induces
abnormal bulbs at the cilia tips, suggestive of defective
intraflagellar transport (IFT), the intricate process to move
particles from the cellular body to and fro at the cilia or
flagellum tip (25). An in-depth characterization of OGT
centrosomal localization was carried out with a three-
dimensional structured illumination microscopy (3D-SIM) in
G0/G1 phase of U2OS cells, and OGT localizes to the outskirts
of the PCM, forming a unique and distinct localization
pattern with the known centriole components (25). Although
both elegant cytological and thorough animal studies caught
OGT at the scene of centrosomes in this paper, a biochemical
mechanistic view is still lacking, probably due to the scanty
protein amounts in the centriolar structures.

Based on the current data available, it is conceivable that O-
GlcNAcylation has a negative impact on cilia, as the cilia is the
organelle that reaches out for signals when cells starve.
FIGURE 1 | A diagram spotlights the role of O-GlcNAcylation in centrosome
separation based on our work (15). During mitosis, CDK1 phosphorylates
MYPT1 at pS473 to be docked onto PLK1. Hence, MYPT1 recruits PP1cb to
dephosphorylate and inactivate PLK1 (17). MYPT1 has been shown to be
O-GlcNAcylated (18). In our recent work (15), we demonstrated that MYPT1
O-GlcNAcylation at four major sites antagonizes pS473, dissociates MYPT1
from PLK1. Thus by elevating PLK1 pT210, O-GlcNAcylation induces
untimely separation of centrosomes.
FIGURE 2 | A summary of our current understanding of OGT in centrosome biology in its infancy. Present literature suggests that OGT regulates centrosome
numbers and distances, cilia numbers and cilia lengths, centriole numbers and distribution. However, due to the limited amount of proteins in the centrosome or cilia,
identification of OGT substrates in these vestigial subcellular structures has been quite a daunting task. The known O-GlcNAcylated proteins with their modification
sites are italicized with the proper references. Red question marks demarcate where mechanistic insights are still lacking.
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Intuitively, O-GlcNAcylation levels, as a nutrient rheostat, signal
the nutrient levels to the cells, so the cilia could be shorter in
times of abundance. The secretive role of OGT in cilia might be
just unfolding, as many a kinase that localizes to the cilium or
regulates ciliogenesis have been shown to be O-GlcNAcylated,
including protein kinase B (PKB/AKT) (26) and hypoxia-
inducible factor a (27). We reckon these kinases might also be
affecting downstream pathways to adjust the metabolic flux in
accord with O-GlcNAcylation levels. Alternatively, as Yu et al.
(24) suggests, OGT substrates might lie in the IFT pathway. A
screen might be needed to identify which IFT proteins are subject
to O-GlcNAcylation.
CONCLUSIONS

The role of OGT in the centrosome is far from complete (Figure
2). Our review is intended as a beginning for this area of research
in its infancy, rather than an end or even a mid-point. With so
many questions crying to be answered, we need more intricate
tools to manipulate the fine and subtle structures of centrosomes
or cilia. We speculate that OGT substrates may encompass
dynamic IFT components or kinases that mediate cilia
Frontiers in Endocrinology | www.frontiersin.org 4
biogenesis, and we will not be surprised if OGT catalyzes some
the core proteins in the centrosome proteome (28).

Indeed, the convergence of chemistry and biology is ushering
in a new era for our study. As chemical biology has enabled O-
GlcNAc profiling within reach (19, 20), new chemical biology
tools might circumvent questions that have impeded biologists,
such as low protein amounts or low O-GlcNAc stoichiometry. As
the entanglement of O-GlcNAc with other PTMs is ever
increasing, we expect more molecular details will be revealed
in the future to form a conceptual framework to understand this
entrancing question.
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