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Due to their secretory function, b cells are predisposed to higher levels of endoplasmic
reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These
stresses elicit changes in b cells that alter their function and immunogenicity, including
defective ribosomal initiation, post-translational modifications (PTMs) of endogenous b cell
proteins, and alternative splicing. Multiple published reports confirm the presence of not
only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the
specificities of T cells that infiltrate human islets are incompletely characterized, they have
been confirmed to include neo-epitopes that are formed through stress-related enzymatic
modifications of b cell proteins. This article summarizes emerging knowledge about
stress-induced changes in b cells and data supporting a role for neo-antigen formation
and cross-talk between immune cells and b cells that provokes autoimmune attack -
leading to a breakdown in tissue-specific tolerance in subjects who develop type
1 diabetes.

Keywords: ER stress, neo-antigen, post-translational modification, type 1 diabetes (T1D), Beta Cell (b cell),
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic immune mediated disease in which insulin-producing b cells are
destroyed leading to lifelong insulin deficiency (1, 2). The autoimmune etiology of T1D is clear and
both CD4+ and CD8+ T cells have been shown to recognize a wide variety of beta cell derived
epitopes (3, 4). However, there is an increasing appreciation that b-cell dysfunction also plays a
crucial role in disease (5–7). Emerging published work demonstrates that inflammatory cytokines
and/or reactive oxygen species (ROS) can trigger ER stress, HLA Class I upregulation, and other
deleterious changes in b cells (8, 9). ER stress, in turn, has been shown to promote post-translational
modifications and alternative mRNA splicing, thereby generating neo-sequences that have been
shown to be recognized by autoreactive T cells and autoantibodies in patients with type 1 diabetes
and animal models of disease (10, 11). Importantly, such neo-epitopes are not genetically encoded
and thought to be underrepresented in healthy tissue. Therefore, neo-epitope responses may be less
subject to the central or peripheral tolerance mechanisms that limit autoimmunity. Clearly, native
self-antigens are represented in the thymus (12), though post-translational modifications (PTMs) of
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self-antigens can generate a novel autoantigenic proteome to
which tolerance has not been developed by the immune system.
This theme has been previously described as “autoantigenesis”, a
process to indicate how proteins acquire PTMs over the
progression of disease and stimulate B and T cell autoimmunity
(13). This phenomenon is observedwith a number of autoimmune
diseases, including multiple sclerosis, rheumatoid arthritis,
systemic lupus erythematosus (SLE), and type 1 diabetes (T1D)
(13, 14). This brief review will emphasize the relevance of PTMs
that are generatedwithin the insulin producingb cells of pancreatic
islets. In addition, we will address how inflammatory stresses, such
as cytokines and ROS, have the ability to reduce b-cell function
through impaired insulin production, processing, handling, and
FIGURE 1 | Impact of inflammatory stresses on b-cell immunogenicity and function.
response and deleterious effects. In particular, viral infection and exposure to inflamm
enzymatic and non-enzymatic processes that lead to the generation and release of n
the activity of autoreactive T cells and B cells. These same processes elicit alternativ
other enzymatic modifications of key b-cell proteins, all of which can have a deleterio
changes is a compromised beta cell.
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export. Such stresses would perpetuate a continuum of
immunologic epitope spreading leading to b-cell dysfunction
and waves of immune attack over time (Figure 1).
PANCREATIC b CELLS ARE VULNERABLE
TO STRESS

ER stress and activation of the UPR can occur in any human
cell under increased demand for protein translation. Because of
their function as professional secretory cells, b cells must carry
out extremely high levels of protein translation. What this
means for the b cell is nearly constant synthesis and
Human b-cells are vulnerable to various insults that generate a cellular stress
atory cytokines elicit ER stress and ROS, which have been shown to promote
eo-epitopes. These epitopes increase the antigenicity of b-cells and provoke
e splicing, defective ribosomal initiation, SUMOylayion, phosphorylation, and
us impact on beta cell health and function. The cumulative result of these
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processing of proinsulin into active insulin in the ER. The
mature insulin is stored in secretory granules awaiting release
upon increases in blood glucose levels (15). The insulin
granules are released dynamically to maintain normal blood
glucose levels (16). This dynamic glucose flux places the b cell
in a constant state of secretion readiness to ensure there is a
perpetual flux of insulin at the ready to maintain glucose
homeostasis. To achieve this, the b cell contains a large pool
of cytoplasmic proinsulin mRNA (~20% of the total mRNA),
one of the most abundant mRNA species (16). One profound
example of physiological fluctuation in the protein-folding load
in the ER is the unique translational response of pancreatic b
cells to variations in blood glucose (17). In response to
increased blood glucose, b cells increase translation of
preproinsulin by 50-fold (18), reaching a production rate of 1
million molecules per minute (18). The preproinsulin
molecules flood the ER lumen for proper folding and
disulfide bond formation, causing tremendous ER stress. The
active production and packaging of insulin maintaining glucose
homeostasis places the b cell in a constant state of ER stress.
Although the ER of the b cell is encumbered with the major task
of insulin production in the face of dynamic glucose sensing
(described above), the ER has adapted a fail-safe program of
intracellular signaling pathways (also active in other cell types),
termed the unfolded protein response (UPR). The activation of
the UPR initiates a cascade of signaling events to quell the
activity of protein processing and folding in order to resolve the
ER burden and restore homeostasis. The adaptive unfolded
protein response (aUPR) promotes adaptation in cells
experiencing increased levels of ER stress to ensure that the
cellular production is regulated and manageable (19). To
regulate ER stress, the chaperone GRP78 releases the protein
sensors of ER stress (20). As part of this response, activated
PERK phosphorylates eIF2a to generally suppress mRNA
translation and reduces the protein burden on the ER. Also,
active ATF6 initiates new chaperone synthesis to aid with
proper prote in folding in the ER, and coincident
phosphorylation of IRE1 leads to splicing of XBP1 mRNA
and further chaperone synthesis [recently reviewed in detail
elsewhere (21, 22)]. This aUPR serves to alleviate ER stress
during times of high protein load (22, 23). However, it is known
that the UPR has two modes of the unfolded protein response
(UPR) (19, 24) which begins with protein sensors of stress in
the ER membrane (25). The aUPR (described above) occurs
early to alleviate ER stress and restore normal cellular function.
However, if ER stress is too great, prolonged or further induced
by environmental or physiological triggers, then the aUPR-
mediated recovery fails and induction of the terminal (tUPR)
initiates a specialized programmed cell death pathway (19, 24,
26–28). This switch from aUPR to tUPR has been further
described (24, 26, 28, 29), and may ultimately result from the
unmet need in bioenergetics and reducing equivalents needed
for b cell day-to-day operation leading the programmed cell
death (30, 31).

Emerging work suggests that in addition to being subject to
high levels of ER stress due to their function, b cells may be
Frontiers in Endocrinology | www.frontiersin.org 3
predisposed to increased stress and damage in subjects at high
risk of developing T1D due to disease associated genetic
variants. Indeed, a substantial proportion of candidate genes
within T1D susceptibility loci are expressed in b cells (32).
Several of these, including PTPN2, MDA5, and BACH2 have
an implicated role in modulating islet inflammation, b-cell
apoptosis, and responses to cytokines and viruses (33, 34).
These observations support a paradigm in which genetically
susceptible individuals experience higher levels of b cell stress
under physiologic conditions, leading to a greater probability
of b-cell dysfunction and immune attack. Indeed, a model was
recently proposed in which beta-cell defects may significantly
contribute to T1D (35). A key element of that paradigm is the
concept that there is an intrinsic (and to some degree
genetically driven) vulnerability of beta-cells to death and
dysfunction, which continues to drive the loss of insulin
secretion after the establishment of persistent anti-islet
autoimmunity. Indeed, it there is some evidence to suggest
that beta cell dysfunction is present even in the absence of
overt insults. For example, recent work shows that b-cell
dysfunction (evidenced by an abnormal proinsulin/insulin
ratio) precedes disease and is a common feature in subjects
with T1D (36, 37) and yet pronounced insulitis in human islets
is rare (38). One potential consequence of such intrinsic b cell
fragility and vulnerability is a continued propagation of
dysfunction in even after the resolution or diminution of
active immune attack.
ER STRESS IN b CELLS IS INFLUENCED
BY IMMUNOLOGIC AND ENVIRONMENTAL
FACTORS

It understood that cytokines play a crucial role in b cell damage.
Although the precise mechanisms of responsiveness to cytokines
are species specific, the induction of ER stress and/or apoptosis
by cytokines in b cells is indeed important and key general
aspects of cytokine-induced apoptosis are conserved in mice,
rats, and humans (39). In particular, proinflammatory factors
such as IL-1b, TNF-a and IFN-g have been shown to play
important roles in eliciting ER stress. Many other physiological
and environmental triggers that are associated with T1D have
also been shown to enhance ER stress in b cells, including viral
infection (40–42), exposure to chemicals (43–46), dysglycemia
(47), and the intrinsic demands of insulin secretion (as
delineated above).

ER stress may be a common downstream pathway that
contributes to the development of T1D. However there is
some disconnect, in that the progression of immune cell
infiltration leads to the deposition of cytokines at the b cell.
In all likelihood, an intricate interplay between genetic
predisposition, the immune system, and environmental
factors precipitates T1D in humans. As described above, one
feasible bridge between genetics, the immune system, and
environmental factors are type 1 interferons (T1-IFNs) (48).
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Type 1 interferons (T1-IFNs) are well known for inducing
antiviral factors that limit infection by regulating innate and
adaptive immune responses. Furthermore, as described above,
several T1D genetic risk loci coincide with genes that are
associated with innate and adaptive responses to T1-IFN
(33, 34). Additional support that T1-IFN play a role in T1D
is that these cytokines are a known constituent of the
autoinflammatory milieu within the pancreas of patients with
T1D. The presence of IFNa/b is correlated with characteristic
MHC class I (MHC-I) hyperexpression found in the islets of
patients with T1D, suggesting that T1-IFNs enhance b cell
recognition by autoreactive cytotoxic CD8+ T lymphocytes and
insulin-producing pancreatic b cells through increasing MHC I
expression (48). Of course, cytokine induced b cell apoptosis is
only one of the possible outcomes. An important scenario in
which cytokine related effects could occur is through viral
infection—specifically enteroviral infection with Coxsackie
virus (CVB). It is well known that viral infection leads to a
type I interferon response at the target tissue site (49). This
serves to mobilize the immune system to the site of infection to
initiate the clearance of the pathogen. Viral infection facilitates
the recruitment of accessory cells and T cells to the islets (50)
leading to site directed production of inflammatory cytokines,
particularly INF-a, INF-b, IFN-g, tumor necrosis factor (TNF)
and IL-1b (51). The importance of these cytokines in b-cell
destruction has been exhaustively demonstrated in NOD mice
and rat models of diabetes mellitus (52–54). CVB infection
accelerates disease onset in young non-obese diabetic (NOD)
mice with established insulitis—likely acting as an accelerant to
the break in tolerance as a result of type 1 and type 2 cytokines
(55–57)—and elicits bot ER stress (58–60) and the release of
intracellular Ca2+ (41, 42, 61) upon entry into b cells (62, 63).
Interestingly, Ca2+ flux also facilitates the induction of ER stress
during CVB infection (40, 62–66). While ironclad proof of
direct causality has remained elusive, CVB infection is highly
associated with T1D onset in humans (67–75). Furthermore, a
number of studies have defined footprints of CVB infection in
the islets, demonstrated through the presence of RNA and VP1
antibody staining (70, 74, 76–80). More specifically, evidence is
mounting that enteroviruses such as CVB could be involved in
perpetuating the break in self-tolerance by increasing islet b cell
specific inflammation (28, 81–84), thereby providing a more
inflammatory milieu (85, 86) that promotes the optimal
activation of virus reactive and self-reactive T cells (87–94).
This idea has been supported by a number of elegant studies
demonstrating that CVB infection selectively activates certain
pathways that allow a tunable ER-stress and unfolded protein
response (UPR) that favors viral amplification (60, 75) and
persistent infection (67, 73, 74, 95–98) without the induction of
premature apoptosis and death. Finally, recent work
demonstrates that enterovirus family members show a strong
association with islet autoimmunity in human T1D patients
(99), are capable of infecting islets, and show that a sizeable
percentage of type 1 diabetic patients have prolonged/persistent
enterovirus infection associated with gut mucosa inflammation
(98, 100).
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STRESSED b CELLS EXHIBIT INCREASED
IMMUNOGENICITY

A key observation in murine studies that has been subsequently
supported by parallel studies of human beta cell lines is that there
is increased immune recognition of stressed b cells. For example,
multiple studies show that endoplasmic reticulum (ER) stress in
b cells increases cytosolic calcium Ca2+ and the activity of tissue
transglutaminase 2 (tTG2), leading to the generation of
deamidated neo-epitopes (10, 101–103). Our work and other
published studies demonstrated increased immunogenicity of
beta cell peptides following enzymatic modifications at specific
residues which are crucial for HLA binding and presentation,
T cell receptor recognition, or both (10, 104, 105). Indeed, the
progression of T1D and beta cell dysfunction are characterized
by an accumulation of autoantibodies against beta cell antigens
(106) and the activation of auto-reactive T cells, which have been
shown to infiltrate pancreatic islets (107, 108). Furthermore, we
have shown that subjects with T1D have elevated frequencies of
T cells that recognize citrullinated and deamidated epitopes from
b cell antigens, and that T cells with some of these specificities
can be found in the pancreatic lymph nodes of organ donors with
T1D (10, 105, 108). Hence, it is plausible that T cells that
recognize citrullinated and deamidated epitopes, as a result of
ER stress induced Ca2+ flux and activation of tTG2 enzymes,
become activated and expanded in subjects who progress to
develop T1D, likely playing a role in the pathogenesis of the
disease. Notably, many of the enzymes which are responsible for
the introduction of protein modifications, including tTG2
(responsible for deamidation), peptidyl arginine deaminase
(PAD) enzymes (responsible for the introduction of citrullinate
into proteins and peptides), and various cysteine proteases (e.g.
calpains), which may participate in peptide transpeptidation-
reactions (leading to the formation of hybrid insulin peptides or
“HIPs”) are Ca2+-dependent enzymes (109–111). HIPs belong to
a new family of autoantigens in T1D, which are targeted by
diabetes triggering T cells in mice, and that have been shown to
be recognized by T cells in the peripheral blood of T1D patients,
and by T cells identified in the residual pancreatic islets organ
donors with T1D (112, 113).

A central pathway that contributes to the enhanced
immunogenicity of stressed b cells is the development of neo-
antigens and epitopes, which has been shown to occur by a
variety of enzymatic and non-enzymatic processes that have
been reviewed elsewhere (114). Several published studies
illustrate the genetic risk factors associated with autoimmune
diabetes, particularly the associations with susceptible HLA class
II haplotypes (115). The most likely contribution of HLA class II
proteins to disease is through selection of a potentially
autoreactive CD4+ T cell repertoire (116). These same HLA
class II molecules have been shown to have an increased capacity
to bind and present peptides with post-translational
modifications (10, 117). Furthermore, it has been clearly
shown that autoantibodies and autoreactive T cells recognize
multiple beta cell antigens, including novel stress-related
specificities formed through alternative splicing and defective
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Piganelli et al. Stress and Neo-Epitopes in T1D
ribosomal initiation that have been only recently appreciated (11,
118, 119). Therefore, mounting evidence implicates the
formation of neo-epitopes as one important means of
circumventing immune tolerance.

PTMs also change many other features of protein chemistry,
including primary and tertiary structure, biological (and/or
enzymatic) functions, and proteolytic degradation (antigen
processing) that are important in creating both toleragenic and
immunogenic self-peptides. Clearly, the way in which a self-
protein is processed by antigen presenting cells may break
immune tolerance (120, 121). The modification of amino
acid(s) critical for the recognition and cleavage by certain
proteases can affect the peptides generated or the rate in which
they are generated. For example, the lack of N-glycosylation of
the neuronal glutamate receptor subunit in Rasmussen’s
encephalitis (a severe form of pediatric epilepsy) exposes a
granzyme B cleavage site that is otherwise inaccessible to the
enzyme (121). Additionally, the presence of citrulline residues in
peptides of myelin basic protein (MBP) increases its rate of
digestion by cathepsin D (122). Tissue stress, both cytokines and
ROS, amplifies the accumulation of PTMs that induce disease in
the host. Several factors control the ability and rate of PTMs that
occur in a given protein. Flanking residues near an epitope
sequence of amino acids significantly influence how the site
may be modified. Spontaneous isoaspartyl modification occurs
most frequently at Asp/Asn-Ser or Asp/Asn-Gly amino acid
motifs where serine or glycine adjacent sites are critical for
modification (123–125). The environment of a modifying
enzyme (such as in the pancreatic islet) is also important since
they are compartmentalized in intracellular organelles, the
endoplasmic reticulum, or in extracellular spaces. For example,
protein and/or DNA methylation require both the presence and
cellular proximity of methylases (DNA methyltransferases or
protein methyltransferases) along with the cellular source of
methyl donor groups, S-adenosylmethionine (SAM) (126).
Finally, features within the beta cell protein itself, such as
previous modifications, will affect how a particular residue is
modified (127).

It could be said that T1D is an autoimmune disease for which
evidence of how modified autoantigens contribute to
pathogenesis is currently emerging. One key example of this is
the evolving understanding of chromogranin A as a disease
relevant antigen. Studies by Stadinski and colleagues
demonstrated that chromogranin A is recognized by disease
relevant T cells; specifically, the WE14 peptide (a natural
cleavage product derived from chromogranin A) stimulated
diabetogenic CD4 T cell clones and reactivity of those clones
with islet preparations was abrogated by knocking out
chromogranin A (128). However, further studies showed that
the antigenicity of WE14 (chromogranin A fragment) is greatly
increased by treatment with transglutaminase; this enzyme that
is known to modify peptides through deamidation and also
through cross-linking so either could contribute to the
observed change in immunogenicity (129). Studies that are
more recent strongly suggested that the most potent ligand for
that T cell clone is a hybrid peptide formed between WE14 and a
Frontiers in Endocrinology | www.frontiersin.org 5
fragment of insulin (111, 112), implicating cross linking as the
most likely mechanism.

Certain self-antigens appear to elude central and peripheral
tolerance mechanisms. Previous work from our laboratory and
others has identified the presence of autoreactive T and B cells
even in the peripheral repertoire of normalmice and healthy human
subjects (11, 130). Autoreactive cells can escape deletion because
both cryptic peptides and posttranslationally modified proteins are
underrepresented in the thymus, leading to impaired negative
selection of these potentially self-reactive T cells (131, 132). We
have shown that protein modifications alter both the antigenicity of
self-proteins and the intracellular signaling properties of
lymphocytes, leading to aberrant autoimmune responses (131,
133). As one example, the spontaneous conversion of an aspartic
acid to an isoaspartic acid induces both T and B cell immunity to
model self-antigens (14, 134). The presence of isoaspartyl
modifications alter the immune processing and presentation of self
peptides as indicated earlier since proteases and peptidases are not
able to cleave on the carboxyl side of the isoaspartic acid
modifications (135). Isoaspartyl modifications alter the structural
integrity of histone H2B as well as trigger autoantibodies to H2B,
characteristic of systemic lupus erythematosus (SLE) (136).
Similarly, isoaspartyl modification of the SLE autoantigen Sm
snRNP amplifies lupus autoimmunity and is bound by SLE patient
autoantibodies (137). Finally, T lymphocytes that acquire isoaspartyl
protein modifications have a hyperproliferative phenotype due to
increased phosphorylation of ERK andAkt, characteristic of human
SLE and murine models of disease (138–142).

PTMs often arise spontaneously, but are amplified as a
consequence of cellular activation, inflammation, and cellular
stress. These modifications include deamination, acetylation,
glycosylation, citrullination, phosphorylation, and isoaspartylation.
One unique form of modification, carbonylation, is the non-
enzymatic addition of aldehydes or ketones to amino acid
residues via a metal-catalyzed reaction. This PTM has not fully
been studied in the initiation of T1D, although extensive oxidative
carbonylation is a component of diabetic complications (143). For
example, it has been demonstrated that islet lysates treated with
copper and ascorbate generate new glutamic acid decarboxylase
(GAD65) aggregates that react with T1DM patient sera (144).
Importantly, neo-epitopes formed in peripheral tissues by these
diverse mechanisms but underrepresented in the thymus could be
expected to be recognized with high affinity by self-reactive T cells.
As an example, certain HIP epitopes activate T cell clones at
extremely low peptide doses (111, 112).
POSTTRANSLATIONAL PROTEIN
MODIFICATIONS MAY ALTER THE
BIOLOGIC FUNCTIONS OF CELLS

Beyond the autoimmune responses clearly defining ‘biomarkers’
of the onset and perpetuation of T1D, PTMs also have the
potential to alter the metabolic pathways and function of the beta
cell. As one example, glucose metabolism in humans is carefully
regulated by the activity of glucokinase (GCK), a glucose sensor
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and a protein highly expressed by pancreatic beta cells. GCK
catalyzes a principle rate controlling step of glucose metabolism
needed to trigger insulin release, and in the liver, where it has a
role in glycogen synthesis; reviewed in (145). While not the topic
of the present review, a number of genetic mutations of GCK
lead to a variety of clinical manifestations including MODY
(maturity onset diabetes of the young), hyperinsulinism, and loss
of function (145).

Several metabolites, including glucose itself and insulin,
influence the transcription of GCK. GCK regulation is a
network of cellular processes that coordinate with the
metabolic state of the beta cell. PTMs clearly alter the tertiary
structure of proteins, particularly relevant to the metabolic
properties of GCK. In particular, GCK assumes an “open” and
“closed” conformational state that regulates binding to glucose
and to other allosteric macromolecules. A number of PTMs of
GCK that both increase and decrease metabolic activity have
recently been described (145). For example, attachment of Small
Ubiquitin-like Modifier proteins (SUMOylation) or S-
nitrosylation can shift the conformational state of GCK to
increase its catalytic activity for glucose (though only a small
fraction, about 5%, of the GCK pool is SUMOylated in beta cells).
Interestingly, SUMOylation has been shown to have broader
effects in controlling beta cell survival and oxidative stress, such
that either its overexpression or conditional ablation leads to
imparted b cell function (146). Glucokinase regulatory protein
(GKRP) inhibition of GCK is modulated by PTMs. Nuclear
translocation of GCK is impaired by SUMOlyation, though this
PTM also stabilizes GCK catalytic activity. Identification of the
specific PTMs that alter the association of GCK with Ubiquitin-
like domain (ULD) are a target of therapeutic intervention by
several groups (145). All of these conformational states
of GCK alter the downstream interactions with GKRP,
phosphofructokinase biphosphatase-2, ULD, and propionyl-
CoA Carboxylase b subunit. Ubiquitin-like domain (ULD)
proteins also interact with and reduce GCK activity over the
course of glucose metabolic pathways (145). ULD protein
interactions with GCK are highly dependent on native
structure. Recent studies (Yang, James, and Mamula, in
preparation) have identified the presence of citrulline
modifications that alter the Km and Vmax of GCK, in addition
to the presence of autoantibodies and T cells specific for citrulline
GCK epitopes. The repair of citrulline modifications may indeed
be yet another therapeutic strategy to maintain the normal
metabolic state of beta cells under inflammatory stress.
Frontiers in Endocrinology | www.frontiersin.org 6
CONCLUSIONS

In this brief review, we have recounted how protein and peptide
modifications, prompted by b cell stress and responsible for the
formation of neo-epitopes appear to play a role in in the
immunopathology of type 1 diabetes. Changes in b cell
immunogenicity are easily attributable to recognition of neo-
epitopes and antigens, but further research could reveal
additional means through which stress-induced changes can
encourage immune attack. Emerging research increasingly
supports that stress and protein modification can compromise b
cell function. Therefore, stress related pathways appear to elicit
relevant changes in b cells altering both their immunogenicity and
biological function. These effects appear to combine with genetic
variants that promote b cell fragility and susceptible HLA
haplotypes that are more prone to select a potentially
autoreactive repertoire. This paves the way for a self-reinforcing
dialogue between immune cells and b cells that provokes either
sustained or recurrent autoimmune attack, eventually leading to
the clinical onset of diabetes. The most elusive factor that remains
to be elucidated are environmental factors such as viral infection,
the footprints of which can be seen in the islet, which probably
play a crucial role in initiating progression toward disease.
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