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Crustaceans—and arthropods in general—exhibit many unique aspects to their
physiology. These include the requirement to moult (ecdysis) in order to grow and
reproduce, the ability to change color, and multiple strategies for sexual differentiation.
Accordingly, the endocrine regulation of these processes involves hormones, receptors,
and enzymes that differ from those utilized by vertebrates and other non-arthropod
invertebrates. As a result, environmental chemicals known to disrupt endocrine processes
in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that
disrupt endocrine processes in crustaceans are often not endocrine disruptors in
vertebrates. In this review, we present an overview of the evolution of the endocrine
system of crustaceans, highlight endocrine endpoints known to be a target of disruption
by chemicals, and identify other components of endocrine signaling that may prove to be
targets of disruption. This review highlights that crustaceans need to be evaluated for
endocrine disruption with consideration of their unique endocrine system and not with
consideration of the endocrine system of vertebrates.

Keywords: endocrine disruption, neuroendocrine disruption, ecdysteroid signaling, color change,
sexual differentiation
Abbreviations: AG, androgenic gland; AGH, androgenic gland hormone; CCAP, crustacean cardioactive peptide; CHH,
crustacean hyperglycemic hormone; Cyp19, aromatase; EcR, ecdysone receptor; EDC, endocrine disrupting chemical; EH,
eclosion hormone; ETH, ecdysis triggering hormone; FAMeT, farnesoic-O-methyl transferase; HMGCR, 3-hydroxy-3methyl-
glutaryl coenzyme A reductase; IAG, insulin-like androgenic gland factor; MET, methoprene tolerant; MF, methyl farnesoate;
MfR, methyl farnesoate receptor; MIH, moult inhibiting hormone; NE, norepinephrine; NMDAR, N-methyl-D-aspartate
receptor; PCBs, polychlorinated biphenyls; PDH, pigment dispersing hormone; PoA, ponasterone; RPCH, red pigment
concentrating hormone; RPCHR, red pigment concentrating hormone receptor; RNAi, RNA interference; RXR, retinoid-X-
receptor; SRC, steroid receptor coactivator; US EPA, United States Environmental Protection Agency; XO/SG, X-organ/sinus
gland; 5-HT, 5-hydroxytryptamine, serotonin; 20E, 20-hydroxyecdysone.
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INTRODUCTION

Over the last two decades, both the scientific community and the
lay public have become increasingly aware of the risk associated
with endocrine disruption. Environmental authorities in Europe,
the United States and many other countries are preoccupied with
the identification of Endocrine Disrupting Chemicals (EDCs)
and their effects on human health and wildlife. In 2012, a report
on the state of endocrine disruption was composed under the
auspices of the United Nations Environment Program (UNEP)
and the World Health Organization (WHO). This report stated
that in spite of numerous reports of reproductive disorders,
skewed sex ratios and intersex phenomena, the understanding
of endocrine disruption in invertebrates—including crustaceans
—was limited (1). Since then some progress has been made, but
knowledge about the effects of EDCs on the endocrine system of
crustaceans remains scarce and concerns mainly pesticides
designed to disrupt moulting in insects (2, 3). Among the vast
array of chemical compounds listed on the Toxic Substances
Control Act (TSCA) inventory (US EPA)—and many others not
regulated under the TSCA—there will certainly be many other
chemicals that have the potential to interfere with the crustacean
endocrine system.

With about 68,000 extant species of crustaceans described—
and still more to be discovered—these predominantly aquatic
invertebrates form a large and very diverse arthropod taxon (4–
6). As predators, scavengers, or filter feeders, they take important
positions within the aquatic ecosystems at various levels of the
food web. They also provide high-value fishery products and
contribute with over 14 million tons—of which half are wild
stock captures—to about 8% of the worldwide seafood
resources (7).

This ecological and economical wealth is, however,
endangered by habitat loss, climate change, pollution,
overexploitation, invasive species and other anthropogenic
stressors (8). In the early nineties, drastic declines of
amphipods were reported in some of the Great Lakes (9, 10).
Similarly, populations of the amphipod Gammarus lacustris
significantly declined in the Selenga River delta, the main
tributary to Lake Baikal (11). Although pollution, such as
polychlorinated biphenyls (PCBs) or pulp mill effluents,
respectively, were given consideration, the actual cause-effect
relationships were complex and difficult to establish. Massive
decreases in blue crab populations of Chesapeake Bay occurred
in the nineties, where spawning stock abundance declined by
about 80% (12). Similarly, catches of the edible crab, Cancer
pagurus, in the English Channel were halved from 2012 to 2018
with no clear cause for this decline (13). Even if overfishing,
increasing temperatures, and ocean acidification are contributing
causes, reproduction impairment due to endocrine disruption
could be adding to the declines, or hampering the recovery of
stocks. A contribution of EDCs in these declines of marine and
freshwater crustaceans is difficult to discern. Firstly, it is generally
challenging to determine the quantitative contribution of
individual challenges to population sustainability. Secondly, it
is difficult to identify endocrine disruption without knowing how
to measure it. In any case, no prominent example of endocrine
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disruption, comparable to imposex in prosobranch gastropods, is
known for crustaceans. Examples of intersex that appear to be
related to pollution have been reported for different crustacean
species (14–19). But no cause-effect relationships have
been established.

The assessment of endocrine disruption in crustaceans can be
approached either from the perspective of the molecules
suspected to cause endocrine disruption, i.e., effects of
established EDCs, or from the perspective of the endocrine
targets of EDCs, i.e., crustacean endocrinology. Environmental
chemicals that have been classified as EDCs, are, for the most
part, compounds that interfere with the vertebrate hormone
system. Strenuous effort has been made to demonstrate
possible endocrine disrupting effects of such EDCs in
crustaceans (20–30). Although effects on growth and
reproduction are often reported, most studies failed to
demonstrate that endocrine mechanisms were involved. The
generally high concentrations that are necessary to produce
negative consequences for growth or reproduction suggest that
the observed effects were merely a result of overt toxicity (e.g.,
(31, 32). More specific assays are being developed that use
elements of the crustacean endocrine system, such as reporter
assays for the ecdysteroid and methyl farnesoate receptors,
measurement of 20-hydroxyecdysone (20E) titers, or assays for
chitobiase activity (33–38). Nevertheless, establishing reliable
testing protocols for endocrine disruption in crustaceans
remains challenging and widely ignores the importance of
neurohormonal regulation for the control of many
physiological functions in crustaceans.

This review argues in favor of a more arthropod specific
approach to endocrine disruption in crustaceans.
EVOLUTION OF THE INVERTEBRATE
ENDOCRINE SYSTEM

Endocrine systems are key features of evolution reflecting
metazoan diversification (39). Metazoan endocrine systems have
evolved from a common bilaterian ancestor before the divergence
of protostomes and deuterostomes more than 600 million years
ago (40, 41). Specialized neurosecretory cells were already present
in the pre-bilaterian cnidarians and neurohormonal signaling
persists as a major endocrine component in both, the
protostome and deuterostome lineages (42–44). The arthropods
diverged within the protostome lineage some 500 million years
ago (45). Unique aspects to the physiology of the arthropods,
including crustaceans, required the development of unique
endocrine pathways to regulate these physiological processes.
For example, arthropods lost the capacity to synthesize
cholesterol (41, 46). This loss of cholesterol synthesis may have
limited opportunities for the evolution of steroid hormones, which
utilize cholesterol as a precursor. However, this loss may have also
promoted the evolution of methyl farnesoate (MF) in crustaceans
and juvenile hormone in insects, which do not utilize cholesterol,
into functional hormones (41). The divergence of the arthropod
endocrine system has been deepened further by the evolution of an
March 2021 | Volume 12 | Article 587608
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exoskeleton in arthropods, which requires moulting for growth
and reproduction (47). Endocrine signaling processes were
required to regulate moulting and coordinate this process with
those operative in growth and reproduction.

While the endocrine systems of the two major arthropod
taxons, crustaceans and insects, share many commonalities,
divergences also occurred. For example, both groups possess
the capacity to produce MF. However, insects possess a
cytochrome P450 monooxygenase, which epoxidates MF to
form juvenile hormone III (48). This latter hormone regulates
many of the processes in insects that are under the control of
methyl farnesoate in crustaceans. Crustaceans produce a family
of hormones known as crustacean hyperglycemic hormones
(CHHs) (49, 50). These hormones regulate a myriad of
processes including aspects of moulting, reproduction, and
energy generation. Only a single member of this family, the
ion transport peptide, is known to exist in insects. This insect
hormone controls ion transport (51, 52).

The presence or absence of nuclear receptors, i.e., ligand-
regulated transcription factors, reflects the separation of steroid
hormone signaling within the endocrine systems of crustaceans
and vertebrates. The evolution of these receptors was shaped by
whole genome duplications and losses combined with the
evolution of neofunctionalization or subfunctionalization among
duplicate receptors (39, 53–55). Importantly, arthropods lack
receptors of the steroid receptor subfamily 3, which include the
estrogen and androgen receptors. This may represent the loss of
the progenitor of this subfamily (56, 57). However, subfamily 3
receptors are also absent in the ascidian Cionia intestinalis, a
deuterostome invertebrate distantly related to vertebrates (55, 58).
This latter observation suggests that subfamily 3 nuclear receptors
evolved later in chordate evolution, long after protostomes and
deuterostomes diverged (59, 60). This hypothesis is supported by
the appearance of sex steroid receptors, including the estrogen
receptor, in the cephalochordate Amphioxus (61, 62). The
ecdysteroid receptor (EcR) of arthropods does not belong to the
subfamily 3 nuclear receptors, but is an ortholog of the vertebrate
liver X and farnesoid X receptors, which are members of the
subfamily 1 nuclear receptors (63).

The loss and gain of functions and elements of the endocrine
system, such as nuclear receptors or neuropeptide hormones in
arthropods is likely to be related to the invention of a new body
plan with an exoskeleton (64). The exoskeleton constrains
growth and the impermeable cuticle limits gas and ion
exchange with the environment. Moulting solves the first
problem, while the second problem requires organs for gas
(and ion) exchange, such as the gills in crustaceans or the
tracheae in insects, both of which have similar organogenetic
origins. Sanchez-Higueras et al. (65), demonstrated that trachea
develop as serial homologues to the ectodermal prothoracic
gland and the corpora allata, which have their counterparts in
the Y-organ and the mandibular organ of crustaceans (see also
(43)). These endocrine glands produce ecdysone and juvenile
hormone/MF, respectively, i.e., insect/crustacean hormones
related to moulting and metamorphosis. Hence, these findings
link the evolution of arthropod hormones and endocrine organs
Frontiers in Endocrinology | www.frontiersin.org 3
with the evolutionary innovation of an exoskeleton. As a matter
of consequence, the homology of endocrine organs and gills
provides evidence for the integration of environmental cues into
physiological responses, such as respiration, osmoregulation and
growth by an endocrine system specific to arthropods.

Crustaceans and vertebrates share the principal concept of
connecting neural, neurosecretory, and endocrine components
(58). Yet, the endocrine systems of arthropods and vertebrates
have evolved independently and differently since more than 540
million years ago when crustaceans and deuterostomes appeared
in the early Cambrian (66, 67). As a matter of consequence, they
have little in common. The fundamental difference between
arthropod and vertebrate endocrine systems has implications for
determining endocrine disruption. Exogenous substances that
alter functions of the endocrine system are, for the most part,
likely to be different for crustaceans and vertebrates. Substances
designed to interfere with the insect endocrine system (i.e., insect
growth regulating insecticides) by their design have significant
potential to interfere with the crustacean endocrine system, but are
much less likely to interfere with the endocrine system of
vertebrates. Conversely, steroid hormone functional analogs are
highly likely to disrupt endocrine regulated processes in
vertebrates, but are much less likely to disrupt endocrine
signaling in crustaceans. The most conserved elements
associated with the endocrine regulation of physiological
functions shared by both, arthropods and vertebrates are the
upstream control of neurosecretory processes by biogenic
amines. Besides their function as neurotransmitters and
neuromodulators, biogenic amines, such as serotonin, can also
serve as neurohormones circulating in the blood stream and
affecting peripheral organs like ovaries.
ENDOCRINE REGULATION OF MOULTING

The monophyly of arthropods is based on a sclerotized
exoskeleton (68). To allow for growth, the cuticle has to be
shed and renewed periodically. Moulting, i.e., ecdysis, is a
distinctive characteristic of the crustacean life cycle (69), which
involves a complex interplay of numerous neuropeptide and
steroid hormones (Figure 1), thereby covering key features of the
endocrine system of crustaceans. As such it is an endpoint par
excellence for endocrine disruption in crustaceans. In many
cases, moulting in crustaceans is also related to reproductive
periods by alternating cycles of moulting and reproduction, as in
Daphnia (80, 81), so that perturbations of ecdysis, may also affect
reproductive phases.

The crustacean moult cycle is divided into five major stages
comprising numerous substages [Figure 1; (69, 82)]. During the
intermoult stage (C4), the neuropeptide moult-inhibiting hormone
(MIH) represses ecdysteroid synthesis. The proecdysial period
begins with the apolysis of the old exoskeleton, during which the
membrane layer and the endocuticle are degraded and their
building materials are partially resorbed (D1–D3). Simultaneously,
the new exoskeleton is synthesized. A surge of ecdysone during
premoult triggers downstream events that lead to the extrication of
March 2021 | Volume 12 | Article 587608
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the animal from its carapace (E). Despite the long history of
endocrine research in crustaceans, the hormonal regulation
of these events still lacks precise knowledge of some factors, such
as homologs of ecdysis-triggering hormone (ETH) and eclosion
hormone (EH). The function of these neuropeptides is well
described for insects, but awaits further elucidation in crustaceans.
More recent work also suggests a yet unknown role for corazonin in
the control of moulting (83). Eventually, CHH and crustacean
cardioactive peptide (CCAP) are tightly linked, respectively, with
ecdysial water uptake and the onset of the behavioral motor
program by which the animal extricates from its carapace.
Tanning and sclerotization of the new cuticle are under the
control of bursicon, another neuropeptide hormone. At large, the
complex control of moulting described in the following, which
involves many other hormones beyond MIH and ecdysone,
provides various targets for endocrine disruption in crustaceans.

Neuro-Endocrine Regulation
Almost 70 years after Passano (84) proposed the existence of
MIH secreted by the major neurohemal organ in decapod
crustaceans, the X-organ/sinus gland (XO/SG) complex of the
eyestalk (reviewed in (85, 86)) and the characterization of the
respective neuropeptide by Webster and Keller in 1986 (87),
the main features of neuroendocrine moult control are generally
accepted for decapods. According to this regulatory model, the
activity of the moulting gland (i.e., Y-organ) is inhibited by MIH
Frontiers in Endocrinology | www.frontiersin.org 4
during intermoult, thus subjecting ecdysteroid signaling to the
negative control by neuropeptides from the XO/SG (Figure 1)
(69, 72, 88–90). Evidence is provided by experiments removing
eyestalks or XO/SGs, which results in shortened moult intervals
and higher moult frequency (72). This inhibition of ecdysis in
eyestalk/XO/SG-ablated animals can be restored with extracts
from the SG. Dynamic variations of MIH during the moult cycle
as well as decreases of MIH stored in the SGs and circulating
MIH in the hemolymph during pro- and postecdysis further
corroborated the role of MIH in neuro-endocrine regulation of
ecdysis (70, 88, 90, 91). Furthermore, Techa and Chung (70)
suggest a feedback control by which elevated ecdysteroid
concentrations in the hemolymph stimulate mih-expression,
but inhibit MIH-secretion. As a matter of consequence, high
amounts of MIH are stored in the SG during ecdysis and released
during post-moult, resulting in low ecdysteroid titers. Hence, any
perturbation of synthesis, storage and release of MIH from the
XO/SG could result in modifications of Y-organ inhibition,
ecdysone synthesis and the resulting circulation of ecdysteroid
levels (e.g., (92)).

MIH is not the only factor controlling ecdysteroid secretion
from the Y-organ. During proecdysis, the Y-organ becomes
progressively less sensitive toward MIH-mediated inhibition of
ecdysteroid production (88, 89, 93, 94), most likely due to
modifications in intracellular signaling cascades following
binding of MIH to its G-protein coupled receptor. Little
A

B

C

FIGURE 1 | Endocrine control of moulting in decapod crustaceans (Malacostraca). (A) Organs directly involved in the control of moulting (release of CCAP and
bursicon by the central nervous system and/or the pericardial organ as well as release of CHH by paraneurons of the fore- and hindgut not shown): MIH and CHH
from the X-organ/sinus gland-complex negatively inhibit the synthesis of ecdysone by the moulting gland (Y-organ); MOIH (and in some species CHH) negatively
inhibit the synthesis of MF, the stimulatory activity for ecdysteroid synthesis has been reported in several studies; ecdysteroids of the major forms 20E and PoA
stimulate the epidermis via its corresponding EcR to decalcify and to lyse the membrane layer and the old cuticle by proteases, chitinase and chitobiase, and to
synthesize material for the new cuticle. (B) Dynamic hemolymph titres of (neuro-)hormones involved in the control and/or physiological processes during moulting
and ecdysis over an entire moult cycle. (C) Moult stages and main modifications of exoskeleton and growth (non-proportional presentation with respect to duration
of each period). Abbreviations: CCAP, crustacean cardioactive peptide; CHH, crustacean hyperglycemic hormone; EcR, ecdysteroid receptor; MF, methyl
farnesoate; MIH, moult-inhibiting hormone; MOIH, mandibular organ-inhibiting hormone; 20E, 20-hydroxyecdysone; PoA, ponasterone (A) 1 (70); 2 (71); 3 (72); 4 (73);
5 (74); 6 (75); 7 (76); 8 (77); 9 (78); 10 (79).
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attention has been given to the role of CHH in the inhibition of
ecdysone synthesis. Albeit, CHH is 10-fold less effective in
inhibiting the Y-organ, its levels are roughly 10-fold higher
than those of MIH. Chung and Webster (88), therefore, argued
that CHH could have an equivalent role to MIH in the negative
control of ecdysteroid synthesis. The situation is further
complicated by the implication of other neurohormones in
moulting (Figure 1). Notably, CCAP displays considerable
dynamics during ecdysis (75) and increases massively during
late ecdysis when the animals actively exuviate. Phlippen et al.
(75) explain this surge of CCAP by its mytropic action, thus
potentiating muscle contraction while the animals withdraw
from their old exoskeleton, and by its effect on cardiovascular
functions regulating hemolymph flow and pressure.
Interestingly, CHH released from paraneurons of the fore- and
hindgut rises about 100-fold during ecdysis, followed by the
surge of CCAP, both reaching their maximum at late ecdysis and
decreasing rapidly in newly moulted animals (74) (Figure 1).
Injections of CHH at physiological concentrations were able to
initiate ecdysis through swelling as a result of isosmotic water
uptake by the hindgut, suggesting a role of CHH in ion and water
uptake during moulting, similar to the function of the
homologous ion transport peptides in the hindgut of insects
(74). Eventually, bursicon, another neuropeptide hormone
produced by the central nervous system overlapping with
CCAP is massively released from the pericardial organ into the
hemolymph when ecdysis is completed and remains significantly
elevated during early postmoult (76) (Figure 1). Its consistent
presence throughout the moult cycle at about one quarter of its
concentration during ecdysis gives rise to further cuticle-
associated functions of bursicon during moulting (95).

Interestingly, the nature of hindgut CHH, CCAP, and
bursicon and their role in ecdysis bear resemblance to
neuropeptides involved in the ecdysis of insects. Because any
spontaneous release of, notably, CCAP could be excluded, the
existence of yet non-identified ecdysis-inducing factors similar to
ETH and EH of insects would complete the overall picture of
ecdysis in crustaceans (75). Indeed, analyses of the Daphnia
pulex genome, suggest that such factors may exist in crustaceans
(96, 97). More recently, carcikinin, an ortholog of ETH was
identified in Carcinus maenas (98) and ETH genes were found in
several crustacean transcriptomes [see (99) for references].
Injection of ETH into the crayfish Cherax quadricarinatus
prolonged the moult period, suggesting a role in the control of
the moult cycle in decapod crustaceans (99). Similarly, EH was
identified in the shrimp Exopalaemon carinicauda, and displayed
highest expression levels during premoult, while gene-silencing
lead to a delay in moulting and reduced rates of ecdysis (100).
Furthermore, the virtually exclusive expression of a G-protein
coupled receptor for corazonin in the Y-organ indicates a role for
this neuropeptide in the control of ecdysis (83). Despite these
promising results, the roles of ETH, EH, and corazonin in
crustacean ecdysis await further characterization.

Ecdysteroids
Ecdysteroids are the predominant hormones responsible for
moulting and other processes in crustaceans. Ecdysteroid
Frontiers in Endocrinology | www.frontiersin.org 5
metabolism is relatively well understood owing to advances in
insect biochemistry and conserved pathways between insects and
crustaceans. While crustacean ecdysteroids and their nuclear
receptors are similar to those of insects, they differ in the number
of hormones and in the number and structure of the receptor
isoforms (101).

The concentrations of ecdysteroid hormones circulating within
crustaceans vary during the moult cycle, and depending on the
species, either gradually or quite rapidly spike to start a period of
ecdysis or moulting (Figure 1) (102). Ecdysteroids and the
enzymes responsible for breakdown of the chitin skeleton have
been measured through various molecular and cellular assays
targeting gene expression and/or enzyme synthesis, respectively.

Enzyme Synthesis and Inactivation
Ecdysteroid biosynthesis is divided into two stages (103). The
first stage involves the conversion of cholesterol, derived from
diet, to 5b-diketol and the second stage converts 5b-diketol to
secreted products. Depending on the species, four major secreted
products are ecdysone, 3-dehydroecdysone (3DE), 25-
deoxyecdysone (25dE), and 3-dehydro-25-deoxyecdysone
(3D25dE) (103). A large number of ecdysteroidogenic enzymes
and associated genes have been identified in insects and other
arthropods (104) with a large degree of conservation in the
crustaceans (105, 106). For example, orthologs of nmg/sro, spo,
phm, dib, sad, and shd have been identified in the D. pulex
genome (46, 107, 108).

Both the increase and subsequent rapid decline in ecdysteroid
titers are critical to moulting. The cytochrome P450 hydroxylase
cyp18a1 is primarily responsible for the inactivation of the
hormone, rendering it susceptible to further modification and
elimination (103, 109).

The inhibition of cytochrome P450s by chemical compounds
is a widespread mechanism (110), which could interfere with the
multiple hydroxylation reactions catalyzed by the cytochrome
P450s encoded by the “Halloween genes” (104). For instance,
several classes of fungicides function by inhibiting cytochrome
P450-mediated demethylation of sterols that are critical
components of fungal cell membranes. Some of these
compounds are also capable of inhibiting cytochrome P450s of
non-target organisms that are involved in steroid biosynthesis.
Exposure of Daphnia magna to the demethylase inhibiting
fungicides fenarimol, pyrifenox, prochloraz, triadimefon, and
propiconazole delayed moulting and/or caused developmental
abnormalities in neonates (111, 112). Mechanistic studies
revealed that fenarimol exposure reduced ecdysteroid levels in
daphnids and that co-exposure with 20E protected against the
delay in moulting and developmental abnormalities caused by
this fungicide (113). These results are consistent with the
hypothesis that fenarimol elicited toxicity by inhibiting
cytochrome P450s involved in ecdysteroid synthesis.

Receptor-Mediated Activation
Ecdysteroid hormones, such as the major forms 20E and
ponasterone A (PoA), bind to the ligand-binding domain of
the EcR and activate the expression of primary early ecdysteroid
responsive genes, such as E75 and E74 and early late genes such
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as HR3 and HR4 (114, 115) (see also reviews by (116, 117)).
These transcriptional regulators drive the “late genes”
responsible for metamorphosis, moulting, and/or ovarian
development (114, 118–120). For ligand binding, the EcR
forms a heterodimer with the retinoid-X-receptor (RXR), the
ortholog of the insect ultraspiracle (121). The RXR contributes to
DNA-binding and helps to stabilize the EcR-ligand binding
pocket and allows for flexibility in ligand binding (122, 123).
Unliganded EcR-RXR is a repressor of transcription (123).

An account of the transcriptional activities of some of these
late genes during premoult and ecdysis is given by Li et al. (124).
Notably, genes involved glucosamine synthesis, corresponding to
the formation of material for a new cuticle, were upregulated
during the premoult, whereas genes encoding chitin synthase
and several chitinases were upregulated during ecdysis and
postmoult stages. Consequently, enzymes such chitobiase
(125), N-acetyl-b-glucosaminidase (126) or chitin synthase
(127) can be used as biomarkers for EcR-induced late genes
provided that the xenobiotic concentrations are low and act via
EcR-signaling rather than inhibiting the enzyme itself or exerting
non-specific effects on gene-expression. Furthermore, enzyme-
expression and activity have to be put in the perspective of the
precise moulting stage (127, 128).

Disruption of Ecdysteroid Signaling
Several targets exist at which environmental chemicals might
interfere with ecdysteroid signaling. These include disruptions in
ecdysteroid synthesis, ecdysteroid inactivation, and interactions
with the EcR. The neuroendocrine regulation of ecdysteroid
signaling also may provide targets of disruption, though few
definitive examples of such disruption exist. Overall, the XO/SG-
Y-organ-EcR axis of malacostracan crustaceans offers an
endocrine signaling cascade similar to the mammalian
hypothalamus-pituitary-gonadal-ER axis.

Modulation of Ecdysteroid Levels
Studies have reported on the ability of environmental chemicals
to alter the expression of ecdysteroid biosynthetic or
biotransformation enzymes. For example, exposure of the
copepod Tigriopus japonicas to 20 mg·L–1 atrazine resulted in a
reduction of mRNA transcripts for several enzymes involved in
ecdysteroid biosynthesis and biotransformation (129).
Unfortunately, impacts on ecdysteroid levels were not
established. A generalized reduction in relevant gene
expression levels suggest that atrazine may have disrupted
common neuro-endocrine control of these genes, or that the
high concentration of atrazine used resulted in overt toxicity
presented as an overall decrease in transcription.

Exposure of the Chinese mitten crab, Eriocheir sinensis, to the
pharmaceutical carbamazepine reduced hemolymph ecdysteroid
levels and epidermal chitobiase activity. Carbamazepine
exposure also increased chh and mih-expression; while,
decreasing EcR and RXR mRNA levels. Taken together, these
effects suggest that carbamazepine may have perturbed the
neuroendocrine control of ecdysteroid synthesis resulting in a
decrease in ecdysteroid levels and a down-regulation of
ecdysteroid-regulated genes. These perturbations in the
Frontiers in Endocrinology | www.frontiersin.org 6
ecdysteroid-signaling pathway also resulted in delayed
moulting (130).

Ecdysteroid Receptor Agonists/Antagonists
Plants produce compounds with ecdysteroidal activity, presumably
to serve as an endocrine-disrupting defense against invading insects
(e.g., (131)). Similarly, EcR-agonist activity has been exploited as a
mode of action of some next-generation non-steroidal insecticides
(132). The insecticidal EcR-agonist tebufenozide only weakly
activated the D. magna EcR in a reporter two-hybrid assay (133).
Similarly, tebufenozide, along with the related diacylhydrazines
halofenozide and methoxyfenozide were weak agonists in a
reporter assay containing the shrimp Neocaridina davidi-EcR
(34). De Wilde et al. (33), however, could not confirm
accommodation of tebufenozide into the ligand binding pocket of
the shrimp Neomysis integer and found no effect of 100 µg
tebufenozide·L–1 on nymphal development and moulting. Taken
together, these results are consistent with the manufacturer’s report
that the diacylhydrazine insecticides exhibit low specificity for EcRs
of non-target arthropods (132). They may, however, displace 20E
and/or PoA from the binding site by competitive binding (34).

A recent in silico study by (134) identified 274 potential non-
steroidal EcR-ligands. Furthermore, the screening of 8795
compounds listed in the US EPA’s ToxCast chemical library
revealed 34 potential agonists including the diacylhydrazines
insecticides and numerous pharmaceuticals, such as non-steroidal
anti-inflammatory drugs containing pyrazolone derivatives, or
members of the amphenicol antibiotic family. Using the
Drosophila melanogaster BII cell assay, Dinan et al. (135) detected
no EcR-agonist activity among 80 environmental chemicals.
Bisphenol A, diethylphthalate, some polycyclic aromatic
hydrocarbons, naphthalenes, pesticides, and pharmaceuticals were
weak antagonists in this assay. Notably, estradiol, progesterone, and
testosterone as well as synthetic steroids neither displayed agonist,
nor antagonist activity, except for two compounds, 4-androstene-
3,17-dione and 17a-ethinylestradiol, which were weak antagonists.

Despite the lack of anti-ecdysteroidal activity associated with
testosterone reported by Dinan et al. (135), weak EcR-antagonist
activity of testosterone was reported in daphnids (136). Exposure of
D. magna to micromolar concentrations of testosterone caused a
concentration-dependent delay in moulting and an increase in
developmental abnormalities among neonates. Co-exposure with
20E protected against this toxicity of testosterone. Testosterone did
not lower endogenous 20E-levels, but rather appeared to antagonize
the EcR, based upon competition assays between testosterone and
20E in ecdysone-responsive Drosophila Kc cells. While these results
suggest that testosterone is anti-ecdysteroidogenic in daphnids, the
results have little environmental relevance to environmental
androgens due to the high concentrations required to elicit
a response.

Gene Product Changes
Several studies have reported on the impacts of exposure to
pollutants, pharmaceuticals, and vertebrate hormones on
expression profiles of mRNAs or proteins along the ecdysteroid
signaling pathway. Expression of ecr was elevated from exposure of
prawns, Macrobrachium potiuna, to glyphosate-based herbicides,
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ethinylestradiol (estrogen), 4-hydroxytamoxifen (anti-estrogen),
17a-methyltestosterone (androgen), and cyproterone acetate
(anti-androgen) (30, 137). Exposure of the intertidal mud crab
Macrophthalmus japonicas to bisphenol A and di-(2-ethylhexyl)
phthalate significantly elevated ecr expression levels (138). Studies,
such as these are indicative of exposure to potential endocrine
disrupting chemicals. However, whether the exposure actually
results in apical disruption remains equivocal in the absence of
demonstrated consequences of the molecular alterations.

Conversely, several studies have reported on effects of
chemical exposure on apical endpoints, such as moulting. Zou
(139) identified 33 compounds that have been shown to delay,
impede, or advance moulting in crustaceans. While such studies
inform on the toxicity of the chemicals to crustaceans, they do
not provide insight on whether the effects elicited are actually
due to endocrine disruption.

Neurohormone Activity Modulation
The negative control of ecdysteroid synthesis by MIH and by
CHH is under the control of biogenic amines, notably, serotonin
(5-hydroxytryptamine, 5-HT). Evidence suggests that the
hyperglycemic action of 5-HT is due to the direct stimulation
of CHH neurons (50, 140, 141). Indeed, 5-HT-immunopositive
efferent axons to the medulla terminalis and the XO-neuropile
have been demonstrated (142). The excitatory role of 5-HT on
these XO-neurons was shown by Sáenz et al. (143). Therefore,
serotoninergic stimulation of the release of neurohormones from
the XO/SG-complex is likely to be a general phenomenon that
applies to CHH as well as to MIH or mandibular organ inhibiting
hormone (MOIH). The effects of fluoxetine on ecdysteroid levels
in C. maenas demonstrated that fluoxetine, a selective serotonin
reuptake inhibitor, significantly decreased 20E-levels at 0.5 and
0.75 µM after 8 and 4 h, respectively (92). Because, this effect was
even more rapid and more pronounced with 0.5 µM 5-HT, but
no effect of 5-HT or fluoxetine on 20E-levels could be observed
in eyestalk-ablated animals, it was concluded that the mechanism
leading to reduced 20E would be the inhibition of ecdysteroid
synthesis by 5-HT-stimulated release of MIH. Interestingly,
low ecdysteroid levels appeared to relate to an increased mih-
expression in this study.

To date, only few studies examined the effects of pollutants on
neuroendocrine processes that control moulting in crustaceans
and only recently has MIH been proposed as a biomarker of
endocrine disruption in crustaceans (30). This may be explained
by the difficulties to quantify MIH-levels in the hemolymph, due
to its 10 times lesser concentrations as compared to CHH and
because of the pulsatory release of these neuropeptides from the
SG (88, 144). Thus, mih-expression has been used to evaluate the
effects of EDCs on the neuroendocrine regulation of moulting (30,
92, 137). Gismondi (30) and de Melo et al. (137) found an over-
expression ofmih in response to estrogen agonists and antagonists
as well as antiandrogenic and androgenic compounds and a
glyphosate-based herbicide. Because 20E equally increased mih-
expression in the study of Gismondi (30), probably by the
feedback control described by Techa and Chung (70), it was
concluded that EDCs interfering with vertebrate steroid hormone
signaling could affect mih-expression via an ecdysteroid related
Frontiers in Endocrinology | www.frontiersin.org 7
pathway, but without any further mechanistic explanation. The
fact that very different compounds, which either activate or
block the estrogen receptor or interact with other steroid
receptors and even glyphosate all stimulated mih- as well as
ecr-expression rather points to other, non-specific effects.
Nevertheless, increased expression of mih may lead to an
increased synthesis and release of this neuropeptide with the
potential to modulate ecdysis.

Vertebrate-Type Sex Steroids
Whether or not crustaceans utilize estrogen, androgen, and
progestogen signaling pathways has been debated for decades
(145). Evidence in support of these signaling pathways is based
largely upon observational studies; while, evidence against the
existence of these signaling pathways is supported by genomic
investigations and evolutionary biology. Interaction with the EcR
is often cited as a mechanism by which vertebrate-type sex
steroids function in crustaceans. However, as discussed above
such interactions typically occur at high, non-physiologic levels.

Evidence in Support
Presence of the Hormones
The detection of vertebrate-type sex steroids in crustaceans
was often cited in earlier literature as evidence that these
hormones are of physiological significance in these organisms
(146, 147). These include 17b-estradiol and testosterone in
amphipods (148) and crayfish (149), pregnenolone in brine
shrimp (150), and progesterone in shrimp (151). Several
studies report that vertebrate-type steroid levels vary with the
ovarian development cycle suggesting some functionality related
to this process (discussed in (152)). However, the mere presence
of a hormone in an organism does not indicate that the chemical
possesses a signaling role in that organism. The hormone may be
present as a consequence of dietary uptake or as a non-functional
intermediate or metabolite of a biosynthetic pathway (153–156).

Responses to Exogenous Steroids
Many studies have demonstrated physiological responses of
crustaceans to exogenously administered steroid hormones.
For example, administration of 17b-estradiol advanced ovarian
development (29) and stimulated vitellogenesis in female
decapods (28). This compound also suppressed vitellogenesis-
inhibiting hormone gene-expression, which was presumably
responsible for the effects on ovarian development (28). While
17b-estradiol administration to crayfish stimulated vitellogenin-
mRNA accumulation in the hepatopancreas, progesterone
administration increased vitellogenin protein levels in the
hemolymph of crayfish (157).

The provision of exogenous 17b-estradiol and progesterone
support suggestions of a role for these hormones in crustacean
reproduction. Some studies, however, indicate that estrogens
downregulate monoamine oxidase activity (158–160) and may,
therefore, increase 5-HT-levels that directly influence ovarian
development. Furthermore, administration of testosterone
has largely resulted in detrimental effects. Administration
of testosterone to water fleas suppressed embryo development
(136) and decreased lipid storage (161). These effects
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were attributed to the ability of testosterone to elicit anti-
ecdysteroidal activity.

Responses to Endocrine Disruptors
Several investigators have reported on the negative effects of
estrogenic and anti-androgenic compounds on crustaceans.
Estrogenic compounds, such as diethylstilbestrol, endosulfan,
Aroclor 1242, and diethylphthalate delayed moulting in D.
magna (162, 163). Studies that have shown neuroendocrine
disruption by some of these compounds [Table 1; (172, 173,
176–178)] may provide an explanation for these observations
and would situate their effects upstream of ecdysteroid signaling.

The anti-androgen cyproterone acetate severely reduced
growth of D. magna without eliciting any discernible effect on
moult frequency (145). Effects of several anti-androgens
(cyproterone acetate, linuron, vinclozolin, p,p’-DDE) on the
reproductive system of copepods revealed varied effects,
although consistent among the treatments were degeneration
of spermatocytes and deformed spermatophores (163).

Evidence Against
Lack of a Critical Enzyme for Estrogen Biosynthesis
Aromatase (CYP19) is responsible for the metabolic conversion
of androstenedione to estrone and testosterone to estradiol. It is
thus critical to the synthesis of estrogens. CYP19 is a product of
chordate evolution (187) and has not been detected among the
protostome invertebrates. Notably, CYP19 is absent from the
D. pulex genome (159, 188). While it is possible that estrogens
are synthesized in crustaceans via an alternative metabolic
pathway, we are aware of no support for this premise.

Lack of Sex Steroid Receptors
Arguably, the greatest evidence against a role of vertebrate-type
sex steroids in crustaceans and other Ecdysozoans is the lack of
sex steroid hormone receptors (see Section 2). Immunochemical
studies have suggested the presence of estrogen receptor a in
Gammarus fossarum (27), androgen and estrogen receptors
in the mud crab (189), and progesterone and estrogen
receptors in crayfish (190). However, immunochemical assays
are prone to false positive results due to cross-reactivities or non-
specific binding to abundant proteins (191). In the latter studies,
putative estrogen receptor co-localized with the other receptor
evaluated (progesterone receptor in crayfish and androgen
receptor in crab) indicating that antibodies in the same studies
may have all been binding to the same abundant protein.
Further, results from these studies were inconsistent with
estrogen receptor detected in the cytosol from crayfish and
membranes of the crab.

We are aware of no reports of the identification of high-affinity
sex-steroid binding proteins, indicative of receptors, in
crustaceans. Importantly, no sex steroid receptor genes were
found in the genome of D. pulex (57). Similarly, the sequenced
genomes of the ecdyzoans D. melanogaster and Caenorhabditis
elegans revealed no androgen, estrogen, or progesterone receptors
[discussed in (27)]. The dominant consensus among researchers is
that sex steroid receptors were lost in the lineage leading to the
evolution of arthropods (54) and are not present in crustaceans.
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High Exposure Concentrations of Hormones and EDCs Are
Typically Required to Elicit a Response
Steroid, and similar acting, hormones regulate physiological
processes such as development, growth, metabolism, and
reproduction. Thus, the action of these chemicals, via receptor-
mediated signal transduction, typically does not result in rapid,
overt responses by the organism (e.g., acute responses). Rather,
acute responses to these chemicals are largely the consequence of
some ancillary response to high exposure concentrations of the
chemical (e.g., membrane disruption). In contrast, receptor-
mediated responses to the chemical present as long-term
consequences, such as alterations in development or
reproduction (e.g., chronic responses). These chronic responses
are often, though not always, elicited at exposure concentrations
significantly below those that elicit acute responses. The
magnitude of the difference between concentrations of a
chemical that elicit acute versus chronic responses is a
function, in part, of the binding affinity of the agonist to
responsive receptor protein. Hormones bind their receptors
with high affinity and, thus, chronic responses to the hormone
are typically elicited at concentrations orders-of-magnitude
below concentrations that elicit acute toxicity (e.g., high acute/
chronic ratio; see Table 2, 20E).

Compounds known to be endocrine active in crustaceans
typically elicit an acute/chronic ratio of 10–1,000 (Table 2A).
The chronic responses listed in Table 2A are due to disruption of
ecdysteroid and MF-signaling. Compounds known to act in
vertebrates via estrogen and androgen signaling pathways,
typically elicit acute/chronic ratios in crustaceans of <10
(Table 2B). The latter suggests that chronic responses of
crustaceans to these vertebrate EDCs are not elicited through
interaction with a hormone receptor.

The strongest evidence for the susceptibility of crustaceans to
vertebrate sex steroid agonists are those studies that have shown
effects of 17b-estradiol on reproductive system development.
Studies cited above reported stimulatory effects of 17b-estradiol
on crustacean vitellogenesis (28, 157). However, 17b-estradiol
treatments also have been shown to have a negative effect or no
effect on crustacean vitellogenesis (194). Exposure of daphnids to
the estrogens diethylstilbestrol and bisphenol A had no effect on
vitellogenin mRNA levels (195). 17b-Estradiol has been shown to
interact with the ecdysteroid receptor at sufficiently high
concentrations (196), thus some effects of estrogen injection,
the common mode of administration in these studies, may have
been the consequence of low affinity interaction of the estrogenic
hormone with the ecdysteroid receptor.
ENDOCRINE REGULATION OF COLOR
CHANGE

Neuro-Endocrine Regulation
Active color changes are termed “morphological” in the case of
slow color changes established over weeks and months, whereas
the rapid type that can take place in minutes to hours is termed
“physiological” (197, 198). In arthropods, coloration and
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reversible color change have evolved together with the
development of an exoskeleton (197). Hence, color may be
produced by pigments embedded in the pigmented layer of the
endocuticle, or by pigment-containing cells in the epidermis
(199). Accordingly, morphological color changes are related to
moulting, notably, in terms of ontogenetic color changes (200,
201), whereas physiological color changes are produced
by chromatophores.

Rapid color changes in most crustaceans rely on the dispersion
and aggregation of pigments within stellate cells containing
pigment granules. Generally, monochromatic chromatophores,
i.e., black-brown melanophores, red erythrophores, yellow
xanthophores, and white leucophores, are intimately arranged
in clusters called chromatosomes so as to produce a wide variety
of colors (197, 198, 202–204). The dispersion of pigment granules,
i.e., their migration from the cell center into the ramifications of
the chromatophores renders the coloration more intense, whereas
the opposite is the case when the pigment granules aggregate
within the center of the cell. Dispersion and aggregation of
pigment granules can be completed within half an hour in
Crangon up to 2 h in Carcinus or Macrobrachium (83, 205–
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208). Aggregation and dispersion are regulated by an antagonistic
system of neuropeptide hormones composed of red pigment
concentrating hormone (RPCH, or simply PCH) and pigment
dispersing hormone (PDH) with its isoforms a- and b-PDH (198,
203). Notably, RPCH represents a highly conserved neuropeptide,
which, in all decapods so far investigated, has an identical
sequence (209, 210).

The antagonistic neurosecretory control of rapid color
changes belongs to the best-studied hormonal systems in
crustaceans [reviewed in (198, 202, 203)]. Indeed, RPCH and
PDH have been the first neuropeptides to be characterized in
crustaceans (211, 212). It has been established long ago that the
eyestalk of decapod crustaceans is the source of hormones
regulating color change in crustaceans (202). This was
confirmed by Mangerich et al. (213), who localized the main
perikarya of RPCH-secreting cells adjacent to or within the XO
of C. maenas andOrconectes limosus, respectively. More recently,
Alexander et al. (83) confirmed the presence of about 30
perikarya located in the XO, which project into the SG. A
similar situation was shown for PDH, with the majority of
PDH-perikarya located between the medulla interna and the
TABLE 1 | Disruption of neuroendocrine pathways in crustaceans.

Species Chemical Concentration* Effect Endpoint Reference

Procamburus
clarkii

CdCl2 5 mg·L–1 Stimulation of CHH release; reduction of CHH responsiveness Glycaemia (164)

Uca pugilator CdCl2 10 mg·L–1 Inhibition of PDH synthesis Color change (165)
U. pugilator CdCl2 10 mg·L–1 Reduction of NE-mediated PDH release from SG Distal pigment

migration
(166)

P. clarkii CdCl2
HgCl2

0.5 µg/g body weight
(injection)

Inhibition of 5-HT mediated VSH release Ovarian growth (167)

U. pugilator CdCl2 1 mg·L–1 Increase of VIH secretion from SG Ovarian growth (168)
Chasmagnathus
granulata

CdCl2
CuCl2

0.5 mg·L–1

0.1 mg·L–1
Reduction of VIH secretion from SG Ovarian growth (169)

Palaemon elegans CuCl2 0.1 + 0.5 mg·L–1 5-HT mediated increase of CHH release from SG Glycaemia (170, 171)
Barytelphusa
guerini

DDT 2 mg·L–1 (injection) Increase of CHH release from SG Glycaemia (172)

U. pugilator PCB 8 µg·L–1 (Aroclor1242) Reduction of NE-mediated PDH release from SG Color change (173)
Oziotelphusa senex
senex

Fenitrothion 0.1 mg·L–1

0.5, 1, 2 mg·L–1
Increase of VIH secretion from SG
Increase of CHH release from SG

Ovarian growth
Glycaemia

(174)
(175)

U. pugilator Naphthalene 10 mg·L–1 Inhibition of VSH release Ovarian growth (176)
U. pugilator Naphthalene 2.54, 7.83, 9.98 mg·L–1 Inhibition of NE-mediated melanin dispersion Color change (177, 178)
U. pugilator Fluoxetine

Fluvoxamine
20 µg/animal
20 µg/animal

Increased 5-HT mediated red pigment dispersion, reduced red
pigment concentration

Color change (179)

U. pugilator Reserpine
Bretylium

20 µg/animal
20 µg/animal

Increased NE-mediated melanin concentration, reduced melanin
dispersion

Color change (180)

U. pugilator,
P. clarkii

Opioids 10–10 –10–8 mol/animal Increase of VIH secretion from SG
Inhibition of VSH release

Ovarian growth (181, 182)

Daphnia magna Fluoxetine 40 µg·L–1 Increase of offspring production under limiting food conditions via 5-
HT signaling

Reproductive
output

(183)

Carcinus maenas Fluoxetine 0.5 nM (injection) Stimulation of CHH (and MIH) release from SG Glycaemia,
ecdysteroids

(92)

C. maenas Fluoxetine 0.5–1nM (inject.) 5-HT mediated activation of heart and-scaphognathites Cardioventilatory
activity

(184)

Erichoeir sinensis Carbamazepine 0.01–10 µg·L–1 Increase of chh and mih-expression Ecdysteroids,
moulting

(130)

Daphnia pulex Fluoxetine
Citalopram

1 µM
1 µM

Increase of male production under short-day photo-period via
glutamate/monoamine signaling

Male sex
determination

(185)

Crangon crangon Fluoxetine 0.1, 10, 100 ng·L–1 Increased 5-HT mediated red pigment dispersion Color change (186)
March 202
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*All concentrations correspond to waterborne exposures unless otherwise stated.
CHH, crustacean hyperglycemic hormone; MIH, moult inhibiting hormone; NE, norepinephrine; PDH, pigment dispersing hormone; SG, sinus gland; VIH, vitellogenesis inhibiting hormone;
VSH, vitellogenesis stimulating hormone; 5-HT, 5-hydroxytryptamine, serotonin.
icle 587608

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Knigge et al. Endocrine Disruption in Crustaceans
medulla lateralis of the eyestalks of C. maenas and O. limosus
(214), the axon terminals of which may project into the SG.
Hence the major neurosecretory structures of RPCH and PDH
are located within the eyestalk from where these neurohormones
are released into hemolymph that transports them to the
respective epithelial target cells. Because pigment dispersion
and aggregation in eyestalk ablated animals could be observed,
extra-eyestalk sources of RPCH and PDH have been considered.
Indeed, RPCH-cells were found in small numbers in the brain,
the thoracic ganglia and the circumoesophageal commissure as
well as PDH-cells in the thoracic and connective ganglia (83, 213,
215). However RPCH and PDH of some of these cells may rather
serve as a neurotransmitter instead of being implied in color
change [e.g., (216)].

A model for signal transduction and intracellular signaling
cascades upon binding of RPCH to a G-protein coupled receptor
has been proposed for the freshwater shrimp Macrobrachium
olfersii (207, 217). In this model, RPCH activates cyclic
guanosine monophosphate (cGMP) and Ca2+ second
messenger cascades, which in turn stimulate a protein kinase
to phosphorylate a myosin II molecular motor. As a result,
pigment aggregation is effectuated by the movement of
pigment granules along actin filaments in the chromatophore
[for details see (198, 218)]. More recently, highly specific RPCH
receptors (RPCHR) have been cloned and functionally
deorphanized in D. pulex and C. maenas (83, 210). The
RPCHR of C. maenas bound RPCH at doses lower than 0.001
nM (EC50 0.02nM). A dose of as low as 0.1 pmol effectively
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induced pigment aggregation in erythrophores in vivo within
5 min and the effect was stronger and longer lasting when the
concentrations of RPCH were increased to 1 and 10 pmol,
respectively (83). The RPCHR of D. pulex, on the other hand,
bound Daphnia-RPCH at an EC50 of 0.065 nM, but binding of
crustacean RPCH was at least two orders of magnitude less
efficient. Insect adipokinetic hormone did equally activate the
Daphnia-RPCHR in a dose-dependent and only slightly less
efficient manner than Daphnia-RPCH (210).

Potential Sites of Endocrine Disruption
The capacity to change color and to adapt to the surrounding
luminance may be impaired by pollutants as different as metals,
such cadmium or mercury (165), organic chlorine compounds,
like PCBs and naphthalene (173, 177), or drugs that affect the
levels of biogenic amines (179, 180, 219) (Table 1). In spite of the
high concentrations that were employed in these studies,
the authors could exclude toxicity and plausibly demonstrate
that the respective compounds caused neuroendocrine
disruption by affecting the neurotransmitters responsible for
the release of, notably, PDH, or the synthesis of the latter. For
instance, Aroclor 1242 appeared to reduce norepinephrine (NE)
titers in the XO-neuropile (173), thereby reducing the dispersion
of black pigment in the chromatophores. Similar observations
were made for naphthalene (177). In both studies, the authors
took care to verify that neither the chromatophores were affected,
which were still able to respond to extracts from the eyestalk
containing PDH, nor was the neural tissue damaged. In the case
TABLE 2 | Acute and chronic toxicity values for crustaceans exposed to (A) compounds that disrupt ecdysteroid or methyl farnesoate signaling and (B) compounds
that disrupt estrogen or androgen signaling.

Species Chemical EC50 (mg·L–1)1 MATC (mg·L–1)1 Acute/chronic ratio Chronic endpoint

A. Endocrine active chemicals in crustaceans
Water flea (Daphnia magna) Tributyltin 1.67 0.14 11.9 Reproduction
Opossum shrimp (Americamysis bahia) Tributyltin 2.2 0.37 5.9 Growth/reproduction
Water flea (Daphnia magna) Methoprene 340 15.7 21.6 Development
Opossum shrimp (Neomysis integer) Methoprene 320 10 32 Moulting
Water flea (Daphnia magna) Pyriproxyfen 80 0.070 1,143 Reproduction
Opossum shrimp
(Neomysis integer)

Pyriproxyfen 65 –

Scud (Gammarus fossarum) Pyriproxyfen – 1.5 432 Reproduction
Water flea (Daphnia magna) Ponasterone 1753 <12.53 >14 Moulting
Water flea (Daphnia magna) 20-Hydroxyecdysone 2,4573 883 28 Moulting
Water flea (Daphnia magna) Azadirachtin 680 82 8.3 Reproduction
Water flea (Daphnia magna) Tebufenozide 17,370 62 280 Reproduction
Opossum shrimp (Americamysis bahia) Tebufenozide 10,000 138 >72 Growth
B. Endocrine active chemicals in vertebrates
Water flea (Daphnia magna) Bisphenol A 1,336 540 2.5 Reproduction
Water louse (Asellus aquaticus) Bisphenol A 9,500 224 42 Moulting
Water flea (Daphnia magna) Diethylstilbestrol 1,5504 3505 4.4 Moulting
Water flea (Daphnia magna) 4-Nonylphenol 130 35 3.7 Reproduction
Scud (Hyalella azteca) 4-Nonylphenol 38 7.0 5.4 Survival
Water flea (Daphnia magna) Atrazine 54,000 6,900 7.8 Reproduction
Copepod (Amphiascus tenuiremis) Atrazine >1000 86 >11.6 Reproduction
Water flea (Daphnia magna) Cyproterone acetate – 3536 – Growth/reproduction
Water flea (Daphnia magna) Butyl benzyl phthalate 3,700 444 8.3 Reproduction
Opossum shrimp (Americamysis bahia) Butyl benzyl phthalate 900 113 8.0 Reproduction
March 2021 | Volume
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of cadmium, rather the amount of PDH stored in the SG was
affected, putatively by inhibiting the synthesis of PDH (165).
Fingerman et al. also showed that drugs that deplete monoamine
levels, such as reserpine or bretylium, hamper pigment
dispersion when fiddler crabs, Uca pugliator, were transferred
from a white background with concentrated pigments to a black
background, whereas fluoxetine enhanced pigment dispersion by
increasing 5-HT-levels (179, 180, 219). Therefore, these early
studies pointed to the possibility of psychoactive drugs targeting
monoamine levels to interfere with the neurohormonal
regulation of color change. This was confirmed by recent
studies using more environmentally realistic concentrations of
waterborne antidepressants (186). Color change in the sand
shrimp, Crangon crangon, was affected by fluoxetine in the
range of 10–1,000 ng·L−1 when exposed for 1 day or 1 week
(186), suggesting enhanced dark adaptation following fluoxetine
exposure (Table 1).
ENDOCRINE REGULATION OF SEXUAL
DIFFERENTIATION

Vertebrates typically utilize a variety of genetic sex-determining
strategies including sex-determining genes assembled on sex-
chromosomes where females are the heterogametic sex, and sex-
determining genes assembled on sex-chromosomes where males
are the heterogametic sex (220), and autosomal sex-determining
genes whose expression are environmentally controlled (221).
Common to these sex-determining strategies, sex steroids
(androgens, estrogens) are ultimately responsible for sexual
differentiation. Indeed, androgens and estrogens from
exogenous sources can sometimes circumvent genetic sex-
determination (222).

Similarly, crustaceans possess diversity in sex determining
mechanisms. Some decapods utilize sex chromosome where
female are the heterogametic sex [Penaeus monodon (223);
Penaeus japonicus (224)], while male are the heterogametic
sex in others [Orchestia cavimana and Orchestia gammarellus,
(225)]. Among branchiopods, clam shrimp Eulimnadia
texana consists of monogametic males and heterogametic
hermaphrodites (226), and brine shrimp Artemia franciscana
consist of monogametic males and heterogametic females (227).
In contrast, the female and male genomes of D. pulex are
identical (228). A major distinction between vertebrates and
crustaceans is that crustaceans have evolved strategies for
sexual differentiation that do not involve steroidal androgens
and estrogens.

Malacostracans
Evidence for an underlying genetic component to sex-
determination in malacostracan crustaceans has come from a
series of ablation/implantation experiments followed by cross
breeding. The chromosomal system for these crustaceans is often
referred to as ZW males and WW females. Using isopods
(Armadillidium vulgare), Suzuki and Yamasaki (229) were able
Frontiers in Endocrinology | www.frontiersin.org 11
to transform males into functional females through the ablation
of the androgenic gland (AG) and females into functional males
through the implantation of the AG. The reciprocal crosses of
“genetic” males with converted females and “genetic” females
with converted females results in single sex broods. Similar
experiments have been done with a variety of other
crustaceans including prawns, crayfish, and hermit crabs (230–
232). Further evidence of a genetic and potential chromosomal
basis to sex-determination has come from breeding experiments
with intersex crayfish. When intersex crayfish, Cherax
quadricarinatus, that are functionally males were crossed with
females the result was a 1:3 (male:female) sex ratio (232).
Subsequent crossbreeding between female (WW) crayfish with
normal males resulted in an all-female progeny 0:1 (male:
female), leading the authors to conclude that the intersex
specimens must have been genetic females (WZ). While the
evidence for a genetic component to sex- determination remains
strong, sex determination in Crustacea can also show degrees of
plasticity. Therefore, it is most likely controlled also by epigenetic
factors including environmental variables such as light and
temperature (233, 234), parasites (235), and even diet (236).

Androgenic Gland Hormone
Male secondary sex characteristics in malacostracan crustaceans are
under the control of androgenic gland hormone (AGH), which is
produced by the ductless AG (237–239). The AG is usually situated
on the paired testes or vas deferens in crustaceans. Its important role
was discovered through a series of ablation and implantation
experiments in the 1950’s (240–243). Removal of AG results in
the cessation of spermatogenesis and the demasculinization of male
secondary sexual characteristics [(244) and references within].
Complete andrectomy in some species leads to the conversion of
testicular to ovarian tissues that have the capacity to accumulate
yolk proteins (245). Similarly, implantation of AGs into female
crustaceans results in the conversion from ovarian to testicular
tissues and the development of male sexual characteristics. Suzuki
(230) was also able to demonstrate through a series of these ablation
and implantation experiments at different maturation stages within
the isopods that AGH was a sex- differentiating, but not a sex-
determining factor in these organisms.

First purifications by Hasegawa et al. and Martin et al. have
identified the AGH (246–248). The full insulin like peptide
structure, consisting of B chain, A chain, and C peptide and the
gene sequence of AGH have been characterised in the late 1990s
for the isopod A. vulgare (249–251). Immunohistochemistry
has shown that antibodies raised from AGH-peptides display
relatively strong species specificity (252), which is not surprising
as sexual characteristics are under strong selection pressures.
Unfortunately, this makes developing immuno-histochemistry
based bioassays for endocrine disrupter studies more problematic.
The cDNA sequence for the insulin-like androgenic gland (IAG)
gene has now been reported by several species including crayfish,
and several prawn/shrimp and crabs (253). This allows for RNA
interference (RNAi) techniques to be used to demasculinize and
sex reverse aquaculture species with an AG-specific IAG peptide-
encoding transcript (254, 255).
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Potential Targets of Endocrine Disruption
Currently, it is not known whether environmental pollutants can
impact the development of the AG development, or the synthesis
of AGH. A number of studies correlated pollutants with increased
incidences of intersexuality in crustaceans or male crustaceans
displaying certain degrees of feminization or de-masculinization
(18). These phenotypic changes in field collected animals mirror
the physiological changes caused by feminizing parasite infection,
AG ablation or RNAi silencing the AG leading authors to
hypothesize whether chemicals can directly or indirectly interfere
with the AG or AGH (18, 244). These hypotheses require further
testing. In the light of an endocrine axis between the XO/SG, the
AG and the male reproductive system, which has been confirmed
for decapods (256), a disruption of the neuroendocrine regulation
of AGH synthesis and spermatogenesis is conceivable. Indeed,
specific CHH-isoforms appear to regulate AGH-expression (257)
and its has been demonstrated that metal and organic pollution has
the potential to affect CHH-synthesis or -secretion (92, 164, 170–
172) (Table 1).

Branchiopods
Sexual differentiation in branchiopods has been extensively
studied in Daphnia. Daphnids do not possess sex chromosomes
(258, 259) and sexual differentiation of offspring is regulated
by environmental cues (32). Under environmental conditions
that favor rapid population growth, daphnids reproduce
parthenogenetically (diploid oocytes) with all offspring being
largely female (260). Maternal organisms produce broods, often
consisting of dozens of offspring, every few days. These female
offspring then mature in a matter of days and begin producing
broods of female offspring. As a result, the population expands at
an exponential rate. Under conditions that foretell adversity to
population sustainability (exhaustion of resources, impending
temperature extremes associated with summer or winter),
females introduce male offspring to the population. Males mate
with females that are producing haploid oocytes (260). The
resulting embryo has undergone genetic exchange, which helps
to purge deleterious mutations (261). The embryo is in a resting
state of diapause to wait out the period of adversity, and is
encased in a protective ephippium, which withstands desiccation
and freezing. The ephippium is also hydrophobic, which
facilitates transport on transient biota (e.g., aquatic birds) or
dispersal in air currents. This facilitates dispersal of the
organisms to new habitats (262).

Environmental Regulation
The role of photoperiod and temperature in male sex differentiation
of daphnids has been well characterized. Photoperiod and
temperature function in concert to regulate sex ratios in D. pulex
and D. magna populations (263). Under a long-day, summer-like
photoperiod, daphnids produced only female offspring, regardless
of temperature (range evaluated was 16-22°C). However, under a
short-day, autumn-like photoperiod, daphnids became susceptible
to temperature-dependent sex-determination. The different species
exhibited different temperature optima for male sex-determination,
probably relating to the geographic locations at which the
populations used in the study were originally derived. Other
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environmental factors that have been implicated in male sex-
determination include food restriction (264) and crowding (265).

Neuroendocrine Regulation
Exposure of daphnids to environmental conditions that
stimulate the production of male offspring resulted in
increased mRNA levels for various components of glutamate
signaling based upon gene ontology (GO) terms (266). Further,
Camp et al. (185) demonstrated that environmental stimulation
of male sex determination resulted in increased mRNA levels of
the subunit 2 of the N-methyl-D receptor (NMDAR) while
having no effect on the NDMAR-a subunit. This change in the
abundance of a single subunit of the receptor would result in
alterations in subunit composition of the receptors, which has
been shown to be responsible for plasticity in receptor function
in vertebrates (267, 268). Conceivable, a reduction in the
NMDAR-a/NMDAR-b subunit ratio may prompt glutamate
signaling leading to male sex differentiation.

A role for the NMDAR in male sex-differentiation was further
indicated by the observation that exposure of maternal daphnids
to the NMDAR antagonists MK-801 and desipramine
significantly increased the number of male offspring (185).
Toyota et al. (266) also observed an effect of MK-801 on male
sex differentiation; however, these investigators reported that the
NMDAR antagonist suppressed male offspring production (266).
Differences in results between these two research teams may
reflect differences in experimental design. Where Camp et al.
(185) reported the number of male and female offspring
produced per female over six broods, Toyota et al. (266)
reported the percentage of 30-day-old females that produced
males, presumably in a single brood.

MK-801 also inhibits 5-HT, NE, and dopamine reuptake
transporters, while desipramine inhibits noradrenergic
reuptake transporters (269, 270). Therefore, Camp et al. (185)
investigated the potential role of these neurotransmitter-
signaling pathways in male sex differentiation. The mRNA
levels of the serotonin reuptake transporter SERT-a and the a-
adrenergic-like octopamine receptor OctaR-A were significantly
elevated in daphnids reared upon a short-day photoperiod as
compared to those reared under a long-day photoperiod. Two
selective serotonin reuptake inhibitors fluoxetine hydrochloride
and citalopram hydrobrimide increased offspring male sex
determination, although the effect of fluoxetine hydrochloride
was not statistically significant (p=0.08). These results suggest
that in addition to glutamate signaling other neurotransmitters
may be operative in male sex differentiation.

Methyl Farnesoate
Farnesyl units (C15), derived from acetate serve as building
blocks for several important biomolecules, such as cholesterol
and steroid hormones. In crustaceans, and other arthropods,
farnesyl units also are used for the synthesis of farnesoic acid.
Crustaceans utilize farnesoic acid as the substrate for MF. MF is a
major sesquiterpenoid hormone in crustaceans, akin to juvenile
hormone in insects (271).

Male-sex differentiation depends on MF (272, 273). During
late stages of maturation MF programs oocytes to differentiate
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into males. In the absence of methyl farnesoate, offspring
differentiate into females (272). MF is responsible for the
induction of the doublesex gene (dsx1) during oocyte
susceptibility to sex differentiation (274). The doublesex gene
product is transcriptionally upregulated in males and is
responsible for orchestrating male sex-differentiation (274,
275). Sexually dimorphic expression of the double sex gene
also has been shown in other Branchiopod crustaceans
including D. magna, Ceriodaphnia dubia, and Moina
macrocopa (276).

Synthesis and Degradation
In insects, MF is a product of the mevalonate biosynthetic
pathway (277), as is likely the case in crustaceans. Two
enzymes along this pathway were identified in lobster that were
induced commensurate with MF synthesis (278). 3-Hydroxy-3-
methyl-glutaryl-coenzyme A reductase (HMGCR) activity
increased within 24 h of eye-stalk ablation, which increased MF
hemolymph levels, while farnesoic acid O-methyl transferase
(FAMeT) activity was increased substantially two weeks after
ablation. The reduction of HMGCR is the final step in the
biosynthesis of mevalonate; while, methylation of farnesoic acid
is the final step in the synthesis of MF. The authors surmised that
increased production of mevalonate via heightened HMGCR
reductase activity was responsible for the immediate increase in
MF-production following eyestalk ablation, while prolonged
increased synthesis of MF was due to elevation in FAMT activity.

In insects, MF is susceptible to metabolism and inactivation
through ester hydrolysis and conjugation to polar molecules
(279). These inactivation processes are operative in crustaceans
as well (276, 280).

The location of synthesis in branchiopod crustaceans has not
been established. In decapod crustaceans, MF is synthesized in
the mandibular organ, which is under the negative control of
mandibular organ inhibiting hormone (281, 282) (Figure 1). MF
functions in some aspects of masculinization in decapods, such
as the development of the male reproductive morphotype of the
spider crab, Libinia emarginata. Abraded males (have not
moulted in about a year or more) characteristically have high
hemolymph MF-levels, large reproductive organs, and aggressive
mating behavior (283).

Receptor-Mediated Activation
The regulatory activity of MF is mediated primarily through
interaction with the bHLH-PAS protein methoprene-tolerant
(MET) (284, 285). MET derives its name from the discovery
that resistance of Drosophila to the insecticidal MF-analog,
methoprene, was associated with a functional mutation in this
gene (286). MF-activated MET recruits the bHLH-PAS protein,
steroid receptor coactivator (SRC) (37). Together, this MET-SRC
complex comprises the activated MF- receptor (MfR)
in crustaceans.

Other suggested receptors for MF in crustaceans include the
RXR and hormone receptor 97g (HR97g). RXR is a member of
the nuclear receptor superfamily that has been identified in
several crustacean species including the American lobster
Homarus americanus (287), the fiddler crab Uca pugilator
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(288), the tropical land crab Gecarinus lateralis (289), the
crayfish Procambarus clarkii (290), the amphipod G. fossarum
(291) and the water fleas (D. magna, D. pulex) (58, 292). While
MF was unable to activate daphnid RXR in a luciferase reporter
assay, its co-administration with 20E to a reporter system
consisting of RXR and EcR, resulted in activation greater than
that observed with 20E alone (293). This apparent synergistic
interaction between activated EcR and activated RXR was also
observed in vivo using tributyltin as the RXR agonist (294). These
results suggest that MF, through interaction with RXR, may
function in concert with 20E to regulate crustacean moulting.

Nuclear receptor HR97g, isolated from D. pulex, was mildly
activated by MF and the MF-analog pyriproxyfen in a luciferase
reporter assay (295). This crustacean receptor was first identified in
D. pulex (57), and has since been identified in the spiny lobster
Panulirus ornatus (296). The physiological significance of the
receptor as a ligand-activated regulator of crustacean physiology
remains unknown.

Known Targets of Disruption
The MfR is the best-demonstrated target of disruption of this
regulatory pathway by environmental chemicals. Compounds
that elicit insecticidal activity as juvenile hormone analogs also
typically bind and activate the MfR (37, 285). This activity is
responsible for the high sensitivity of crustaceans to this class of
insecticides (273, 297, 298). However, the MfR appears to have
high ligand recognition specificity. We are aware of no
demonstrations that compounds, other than juvenile hormone
analogs, are capable of activating the MfR at environmentally
relevant exposure levels (37).

Potential Targets of Disruption
Alterations in MF levels due to toxicant-mediated effects on
biosynthetic or inactivating hormones is a plausible mechanism
of endocrine disruption. The herbicide atrazine reportedly
increased male offspring production in Daphnia pulicaria (299).
However, atrazine did not interact with the MfR (37), suggesting
that if atrazine did indeed activate this pathway, it may have
been due atrazine increasing endogenous MF. Such an effect
may have been the consequence of competition between atrazine
and MF at a site of inactivation or elimination. Alternatively,
atrazine disrupts endocrine function in mammals by increasing
dopamine and reducing NE levels in the hypothalamus (300).
These neuromediators are operative in the regulation of MF and
sex determination in daphnids (185). Thus, disruption of these
upstream signaling components may be responsible for the effects
of atrazine on the MF-signaling pathway.
FUTURE DIRECTIONS OF RESEARCH
ON ENDOCRINE DISRUPTION
IN CRUSTACEANS

In 1998, a workshop was held in the Netherlands to address the
issue of endocrine disruption in invertebrates sponsored by The
Society of Environmental Toxicology and Chemistry (SETAC).
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The proceedings of this workshop were subsequently published
(301) and made a number of recommendations. Recently, Ford
and LeBlanc conducted a survey of experts to reflect on the
progress made in endocrine disruptor studies with invertebrates
over the past few decades (302). The majority of participants in
that survey believed endocrine disruption was an issue for
invertebrates that needed to be addressed, but were mixed over
the relative progress that had been made. Strikingly, many of the
recommendations provided in this recent survey mirrored those
made back in 1998 indicating that the field had not
significantly progressed.

A major impediment to advancing research on endocrine
disruption in crustaceans has been attempts to detect endocrine
effects using chemicals known to be endocrine disruptors in
vertebrate species along with endpoints known to be indicative of
endocrine disruption in vertebrates. This conclusion has recently
been acknowledged by several researchers (303, 304). For example,
many studies focus upon the effects of estrogens on crustaceans (18)
and use biomarkers of feminization, such as vitellogenin induction,
in crustaceans (305). Elevated vitellogenin levels following chemical
exposure or in field-collected samples has often been interpreted as
an estrogenic effect (306). However, unlike vertebrates, vitellogenin
is not regulated by estrogens in crustaceans (195). Despite existing
knowledge on the endocrine regulation of vitellogenesis in
crustaceans, the precise molecular mechanisms by which
vitellogenesis and ovarian maturation are controlled require
further elucidation (307). Given the lack of clear understanding of
seasonal or developmental fluctuations in normal vitellogenin levels
and overall susceptibility of vitellogenin production to non-
endocrine stressors, associations between altered vitellogenin levels
and endocrine disruption in crustaceans are tenuous at best.

One area where progress has been made is the onset of more
affordable “omic” technologies allowing for the high-throughput
sequencing of genomes, transcriptomes, peptidomes, and
metabolomes (19, 139, 304). These omics-techniques offer a rich
opportunity for discovering conserved molecular and biochemical
pathways, which can applied to the development of adverse
outcome pathways (308). These in turn provide opportunities for
further advancing our mechanistic understanding of crustacean
endocrinology from which to develop appropriate biomarkers of
disruption. Zou (139) in a recent review identified over 30
compounds that have either inhibited or stimulated moulting in
crustaceans. However, in the absence of mechanistic linkages
between exposure and effect, endocrine disruption cannot be
Frontiers in Endocrinology | www.frontiersin.org 14
invoked as responsible for these effects on moulting. The
identification of appropriate biomarkers will facilitate establishing
whether an effect on moulting, or some other endocrine-regulated
process, is due to specific disruption of the endocrine system or due
to some non-specific toxicity.

We hope to have advocated strongly that a “crab is not a fish”
and therefore toxicity evaluations using crustaceans require
appropriate endpoints to determine whether current and newly
licensed chemical compounds might target endocrine processes in
this ecologically important group. While significant progress has
been made in our understanding of crustacean endocrinology,
application of this knowledge to the study of endocrine disruption
in crustaceans is lagging. Where, in the past, we were limited in our
ability to develop the tools to confirm whether a substance was an
endocrine disruptor, these limitations have been largely overcome
with affordable omics-technologies. We now have the ability to
develop high throughput screenings using key crustacean-relevant
endocrine targets. Given the number of crustacean species
incorporated into national toxicity programs, such tools are
sorely needed.
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